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Streamlines for Motion Planning in Underwater Currents

K. Y. Cadmus To1, Ki Myung Brian Lee1, Chanyeol Yoo1, Stuart Anstee2 and Robert Fitch1

Abstract—Motion planning for underwater vehicles must
consider the effect of ocean currents. We present an efficient
method to compute reachability and cost between sample points
in sampling-based motion planning that supports long-range
planning over hundreds of kilometres in complicated flows. The
idea is to search a reduced space of control inputs that consists
of stream functions whose level sets, or streamlines, optimally
connect two given points. Such stream functions are generated
by superimposing a control input onto the underlying current
flow. A streamline represents the resulting path that a vehicle
would follow as it is carried along by the current given that
control input. We provide rigorous analysis that shows how
our method avoids exhaustive search of the control space, and
demonstrate simulated examples in complicated flows including
a traversal along the east coast of Australia, using actual current
predictions, between Sydney and Brisbane.

I. Introduction
Underwater vehicles are important in many applications

including environmental monitoring [1], oil and gas explo-
ration [2], and defence [3]. While the majority of robotic
ocean sensors drift freely with the current [4], the require-
ment to concentrate sensing in areas of high priority has
led to increased interest in buoyancy-driven autonomous
underwater gliders [5, 6], propeller-driven autonomous un-
derwater vehicles (AUVs) [7], and hydrids of the two [8].
We are interested in improving the autonomous operation
of underwater vehicles by introducing a new planning tool
that gains computational efficiency by exploiting a concept
in fluid dynamics called a stream function.

The motion of underwater vehicles is heavily influenced
by prevailing ocean currents. Optimal motion planning for
underwater vehicles can be viewed as an instance of the
long-standing Zermelo’s Problem [9], for which there is no
known efficient analytical solution in general. A numerical
approach is to apply the well-known shooting method, which
can be used within a sampling-based planning framework
to find edge connections and costs. We use such a method,
for example, within FMT∗ [10] to produce an asymptotically
optimal minimum-energy planner for gliders in our recent
work [11]. However, an open challenge is how to efficiently
find edge connections in this approach. The shooting method
involves forward integration along the edge, which must be
repeated for each of a set of control values to solve the
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underlying two-point boundary value problem. This high
computational cost limits the number of edges that can
be evaluated in practice, which in turn limits the solution
quality or geographical scale of problem instances that can
be feasibly solved.

In this paper, we examine the use of stream functions
within a sampling-based planner to find edge connections.
Level sets of the stream function, known as streamlines,
represent paths that a vehicle would follow as it is carried
along by the ocean current in the absence of any control
input. We propose control inputs that induce a new stream
function that, when superimposed on the underlying current,
acts as a kind of local roadmap. We show how to efficiently
search the space of control actions so that a streamline
path between two points is found, if one exists. Forward
integration of control inputs is still required, but our method
avoids exhaustive search in control space and hence gains a
major computational advantage by performing far fewer in-
tegrations than in a typical shooting method implementation.

We integrate our streamline method with PRM∗ [12] and
provide rigorous computational analysis. The planning prob-
lem is formulated in the horizontal plane, and we demon-
strate paths through flow fields with multiple gyres; some
over hundreds of kilometres. The main significance of our
result is that the streamline method can be used with a
variety of asymptotically optimal planning algorithms, such
as RRT∗ [12], FMT∗, and other variants, to efficiently find
high quality paths with sparse control inputs. We focus here
on time-optimal paths, but other objectives such as minimum
energy can be accommodated by modifying the objective
function of our streamline method.

II. Related work
Mission plans for underwater vehicles must allow for the

oceanic flows through which they travel, and predictions of
3D oceanic flow fields are freely available from multiple
sources [13–15]. A method that estimates flows from ob-
servations is given by [16].

Although optimal planning in flow fields is generally well-
studied, existing methods exhibit critical limitations. Work
most closely related to ours elegantly uses level-set methods
to find time-optimal [17] or energy-optimal [18] paths by
explicitly solving for the reachable set as a level set of a
scalar function. Despite recent advances [19], a numerical
solution of the partial differential equation can be compu-
tationally prohibitive in robotics applications, and is subject
to discretisation choice. A variety of graph-based methods
have been proposed, where the workspace is uniformly [20]
or adaptively [21] discretised. This class of algorithms is



resolution-complete, and is subject to well-known perfor-
mance trade-offs and computational drawbacks [22]. Related
work that uses sampling-based planning includes application
of the RRT algorithm [23], where expansions are biased to
follow current flow. Our previous work presents an FMT∗-
based energy-optimal algorithm in 3D where edges represent
glider trim states computed using the shooting method [11].

In this paper, our method reduces the size of the control
space when computing reachability between sample points.
The use of numerical computation is drastically reduced
compared to fully computing reachable sets, and reachability
computation is performed relatively infrequently compared to
graph-based methods with dense resolution. Our method thus
supports long-range navigation, as we demonstrate.

III. Background
A. Vehicle model

Suppose we represent the motion of a vehicle G by a
continuous-time transition model

ẋ = Fv (x) + vg, (1)

where x = [x, y]
> is the position of the vehicle in 2D

space, Fv(x) = [uf , vf ]> is the time-independent flow vector
and vg = [ug, vg]

> is the vehicle’s velocity relative to the
flow, which is bounded by maximum speed Vmax such that

|vg| ≤ Vmax. (2)

Note that the 2D approximation is a common practice for
underwater navigation [24, 25].

The continuous system (1) can be discretised with a small
time step ∆t as

xk+1 = xk + (Fv (xk) + vg,k) ∆t. (3)

The discrete system is controlled by action ak = vg,k at k-th
time step. In a short form, we have fx(xk, ak). The sequence
of vehicle controls σ is denoted as

σ = a0a1 · · · aK−1, (4)

where K is the discrete time horizon. We denote fx(x, σ)
as the resultant state after executing the control sequence σ
from x. Note that a control action ak ∈ A is constrained by
the upper limit on the reference velocity vg , where

A = {v ∈ R2 | |v| ≤ Vmax}. (5)

The cost of transiting from state x with control a is
denoted as fc(x, a). The cost for control sequence σ from
state x is denoted as fc(x, σ).

B. Stream functions
We consider a time-invariant, incompressible flow

field [26]
∇ · Fv = 0, (6)

where ∇· is the divergence operator. With this condition,
which requires that density does not change with flow, a
2D flow field can be represented using the stream func-
tion ψ : R2 ×R2 → R, which describes the flux that passes
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Fig. 1. Incompressible flow visualised by streamlines. The stream values
of the streamlines refer to the flux (rate of flow) of the fluid flowing between
each streamline and the arbitrary reference point (−1, 0).

through a curve connecting two points in 2D space [27]. The
value of the stream function ψPQ, or stream value between
two points P and Q is

ψ (xP ,xQ) =

∫ xQ

xP

(uf (x) dy − vf (x) dx) . (7)

If the flow field is incompressible (i.e. satisfies (6)), then
the line integral (7) is well-defined in the sense that the
value is the same for any curve connecting xP and xQ. A
continuous set of points that have the same stream value
relative to some reference point P is known as a streamline.
The term is apt, because the stream value of an idle vehicle
(i.e. vg = 0) advected by the flow field remains constant. In
other words, with x evolving as (1), we have:

d

dt
ψ(xP ,x) = −vfuf + ufvf = 0, (8)

for any choice of reference point xP .
In Fig. 1, four arbitrary streamlines with different stream

values illustrate the flow of fluid around a circular obsta-
cle. Disjointed streamlines with the same stream value are
referred to as being distinct.

Remark 1 (Additive property of stream function). A useful
property of incompressible flow fields is that they can be
represented by the sum of their stream functions: given two
incompressible flow fields FA and FB with correspond-
ing stream functions ψA and ψB , the superimposed flow
field FA+B is

FA+B = FA + FB , (9)

and the corresponding stream value ψA+B is:

ψA+B = ψA + ψB . (10)

This property becomes vital in Sec. V-A to gain deeper
insight to the vehicle’s net trajectory by considering the net
stream function after treating the vehicle’s relative velocity
as a flow field.

IV. Problem statement
We consider a path planning problem for vehicle G. We

seek an optimal control sequence σ∗ ∈ AK over a cost
function fc from initial position xinit to goal position xgoal
in the presence of an incompressible flow field Fv .
Motivated by the need to control underwater vehicles

with limited energy capacity and connectivity [28], we are



interested in a scenario which minimises changes in control
inputs to reduce energy expenditure that would otherwise
be spent on computation. With this constraint, the vehicle
executes a sequences of persistent controls ω

ω = (a0, τ0), · · · , (aK−1, τK−1), (11)

where a persistent control ωi consists of a control ac-
tion ai ∈ A with a duration τi. The key difference between σ
and ω is that the actions resulting from σ are separated by
constant sampling time ∆t, whereas those from ω coincide
with decision points; for example, when a vehicle surfaces
for a position fix. We slightly abuse the notation for cost
such that fc(xk, ωk) denotes the cost of executing persistent
control ωk starting from xk and fc(xinit, ω) denotes the cost
of executing the entire sequence ω. Similarly, we denote
by fx(xinit, ω) the resultant state after executing ω. We
assume that any control duration τi is of sufficient length so
that the control transition time from ai and ai+1 is negligible.
The path planning problem with a persistent control se-

quence is formally defined as follows:

Problem 1 (Energy-aware optimal path planning in a flow
field). Given a vehicle G, a set of controls A, initial
position xinit, goal position xgoal, and time-invariant incom-
pressible flow field Fv , find an energy-aware disjoint control
sequence ω∗ that minimises the overall cost from xinit
to xgoal such that

ω∗ = arg min
ω

K−1∑
k=0

fc (xk, ωk) , (12)

where xk+1 = fx(xk, ωk), x0 = xinit, and xK = xgoal.

This problem consists of two sub-problems: 1) find a persis-
tent control connecting two arbitrary points in the flow field
(if it exists), and 2) find a sequence that minimises the overall
cost. Without loss of generality, we consider time cost in this
paper.

The key aspect of this formulation is that it fits naturally
with sampling-based planning methods such as PRM∗ where
samples are separated in space and edge connections are
made between pairs of sample points. We show that our
proposed method reduces a complexity bottleneck inherent in
making the edge connections in a flow field by significantly
reducing the control space.

V. Streamline-based control search
In this section, we present a novel method for efficiently

finding a persistent control between two arbitrary points in
the presence of an incompressible time-invariant flow field.
We significantly reduce the control space by exploiting the
idea of stream functions.

A. Finding control bound using stream function
The vehicle G is controlled by adapting its relative veloc-

ity vg . The relative velocity can be viewed as an additional
flow acting on an idle vehicle. We denote such flow Fg = vg
and we call Fg the flow due to control. Formally, the vehicle

is in an equivalent reference frame with a flow field (Fv+Fg)
and control |v̄g| = 0. From (7), for constant relative velocity
vg , the stream value for Fg between two points P and Q is
simply

ψg (xP ,xQ) = ug∆y − vg∆x, (13)

where ∆x = xQ − xP and ∆y = yQ − yP .
By Remark 1, the superimposed stream value for external

flow Fv and the flow due to vehicle motion Fg is

ψPQ ≡ ψ (xP ,xQ) = ψv (xP ,xQ) + ug∆y − vg∆x. (14)

The aim is to find a control vg such that two points P
and Q are on the same streamline in the superimposed flows,
that is, ψPQ = 0 or

ψv (xP ,xQ) + ug∆y − vg∆x = 0. (15)

Note that all points on the same streamline have the same
stream value, but the converse need not apply, since points
with the same stream value may reside on distinct streamlines
as shown in Fig. 2c.

In (15), we defined a line in the control space over ug
and vg that connects points P and Q. We denote it by `PQ.
The streamline-based set of feasible controls for manoeu-
vring from P to Q is given as

APQ = {v ∈ `PQ | |v| ≤ Vmax}. (16)

Importantly, any valid control that steers the vehicle from P
to Q must necessarily lie on line `PQ. Note that this 1D
control space differs from our previous approach [11] based
on (5), where the control space was 2D. We discuss the
reduction in complexity in Sec. VI.

Since the set of controls satisfying |vg| ≤ Vmax is convex
and `PQ is linear in control space, three sets of controls are
possible depending on the number of intersections between
the two conditions: 1) the empty set if there is no intersection,
2) a set with one element if there is only one intersection, and
3) a set of infinite solutions between two intersections. Defin-
ing the intersection points in control space as endpoints vA
and vB , we find

vA = Vmax [cos θA, sin θA]
>

vB = Vmax [cos θB , sin θB ]
>, (17)

where θA = δ + π
2 + arccos (κ), θB = δ + π

2 − arccos (κ),
δ = atan2 (∆y,∆x) and κ =

ψv(xP ,xQ)
Vmax||xQ−xP ||2

. Intuitively,
the set of feasible controls lies along the straight line between
the endpoints.

In Fig. 2, we illustrate the streamlines for different con-
trols vg ∈ APQ. The control space shown in Fig. 2a includes
the maximum speed constraint |vg| ≤ Vmax, the control
line `PQ, and the endpoints vA and vB of its feasible subset.
In Fig. 2b, the control vg = v0 is not on the control line `PQ,
so the points P and Q have different stream values and one
is not reachable from the other. In Fig. 2c, the control is on
the control line and points P and Q have the same stream
value but are on distinct streamlines. In Fig. 2d, the control
is on the control line and point Q is downstream from P ,
and is therefore reachable.
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Fig. 2. Streamlines resulting from superimposing stream functions of the environmental flow and the vehicle’s relative velocity. (a) shows velocity samples
in vx-vy control space, where line `PQ represents the control line defined in Sec. V. The control action shown in (d) results in a superimposed streamline
(bold black line) that connects the start (bold circle) and goal (bold cross) positions.

B. Finding critical points in a control set

We have shown that endpoints vA and vB define a set
of feasible controls APQ that guarantees points P and Q
have the same stream values. However, as Fig. 2c shows, the
endpoint-based method does not guarantee that they are on
the same streamline. Note that the points are guaranteed to
be unreachable if they have different stream values.

It turns out that distinct streamlines arise at saddle points
in the flow. This can be shown through Morse theory [29],
the study of critical points of a smooth function. Given two
points P and Q in state space and flow field F , a point c is
a saddle point iff [29]

F (c) = 0 and λ1λ2 < 0, (18)

where λ1 and λ2 are the eigenvalues of the Hessian ma-
trix ∆ψ(c). Intuitively, a point is a saddle point iff the flow at
the point is idle but is at neither a maximum nor a minimum.
A result from Morse theory is that level sets, such as the
streamlines we consider in this paper, are connected if there
are no saddle points [29]; that is, the sampling strategy (17)
then guarantees that the vehicle will travel from P to Q. A
simple way to check for the existence of a saddle point is to
check the magnitude of the net velocity. If it is close to zero
and the determinant of the Hessian of the stream function
is negative, then a saddle point exists near the trajectory.
In physical terms, the saddle points imply that the vehicle
comes to a ‘stall’. This is clearly undesirable in either time-
or energy- optimal case.

The condition (18) thus implies that two points P and Q
lie on the same streamline if the net velocity of the vehicle
with respect to absolute reference frame (i.e., Fv + Fg) is
sufficiently large over the streamline from P to Q. Impor-
tantly, this serves as an early termination condition for the
forward integration that further reduces computation time.

C. Control space sampling

The reduced control space and the saddle point-based
stopping condition allow us to find the control a∗ ∈ A that
minimises the objective function. Two steps are required to
find the optimal control between two states: control sampling
and forward integration.

Given a control line `PQ, we linearly sample C controls
between and inclusive of endpoints vA and vB . For each
control, we find a continuous trajectory over state space by
forward integrating the state of the vehicle from point P
to Q based on (3). We continue the integration until any of
the following conditions holds true: 1) the vehicle is near Q
(i.e., destination reached), 2) the integration has exceeded a
specified maximum time horizon H , or 3) the vehicle has
reached a saddle point (i.e., an infeasible control). Once we
complete the enumeration over a set of controls for a given
state sample pair, we find the control that minimises the travel
time among the set of controls that reached the destination.

D. Streamline-based motion planning
We present a high-level analysis of a PRM∗ approach to

path planning in a flow field, in which the evaluation of
edge costs for pairs of points in state space is a compu-
tational bottleneck. Other sampling-based motion planners
such as RRT∗ and FMT∗ would show similar reductions in
edge cost complexity.

The PRM∗ algorithm randomly selects pairs of samples in
state space. For each directed pair of state samples P and Q,
we find the time cost to traverse the edge between them,
denoted Cost(xP ,xQ), using the streamline-based method.
If there exists no solution for a pair, the samples are not
connected. Once we find all the necessary edge costs, we
use Dijkstra’s algorithm over the graph to find an optimal
overall path from xinit to xgoal.

VI. Analysis
Given the number of state samples N , the number of con-

trol samples for a state sample pair C and the time horizon
for forward integration H , the worst-case time complexity of
the framework is O

(
N2 · C ·H

)
. Although the complexity

for the standard shooting method and the proposed method
are similar, there are fundamental differences that make our
framework significantly more efficient.

In our framework, controls sampled from a 1D line seg-
ment are guaranteed to have the same stream values. In
contrast, the shooting method samples controls from a 2D
control space bounded by the maximum speed. Because a
state is guaranteed unreachable from another if the states
do not have the same stream value, most of the control
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Fig. 3. Minimum time trajectories using the PRM∗ with streamline-based control search (dark green) and standard control search (orange) for a vehicle
(circle) to reach its goal (cross), where N = 49 and C = 19. Intermediate waypoints (dots) are used to achieve this despite the limited speed of vehicle.
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samples evaluated using the standard shooting are invalid.
As a result, significantly fewer control samples fall on the
control line `PQ leading to numerous unnecessary forward
integrations, substantially increasing the computation time.

An interesting empirical observation is that the time-
optimal control for a given state pair is almost always
the control with the maximum speed, i.e., at one of the
endpoints vA or vB . For problem instances where maximum
speed controls can be assumed, the overall time complexity
in practice would be O

(
N2 ·H

)
.

VII. Case studies
In this section, we demonstrate our the proposed frame-

work with cases. The first employs a simulated environment
where we compare our framework against the standard to
significant difference in performance. We then find time-
optimal solution using a real ocean dataset provided by the
Australian Bureau of Meteorology (BoM). We show that our
method works efficiently over a large scale with challenging
ocean currents. For both cases, we consider a vehicle with
Vmax = 0.3 ms−1, H = 2000 steps, and step size 750 s.

A. Simulated environment
In Fig. 3, we have four pairs of starting and goal positions

(i.e. from circle to cross) in a simulated environment where
the maximum flow magnitude is 1 ms−1, which is well
beyond the vehicle’s maximum speed. We compare our
streamline-based method (in orange) against the standard
shooting method (in dark green) with sampling parame-
ters N = 49 and C = 19.

For all scenarios, our method found significantly better
solutions than the standard shooting method. This is because
we consider a more focussed set of samples in control space
that increases the chance of finding an optimal solution. In
general, the streamline-based solutions exploit the currents to
travel faster, whereas the standard shooting-based solutions
are less effective in doing so. As discussed in Sec. VI, we
found that the time-optimal controls lie at the endpoints. If
this endpoint hypothesis is true, the computation time could
be reduced by eight times in this case.

B. Eastern Australian Currents
We demonstrate the use of the streamline-based framework

to find time-optimal paths between Sydney and Brisbane.
It is important to note that the region is very challenging
to operate a vehicle with relatively slow speed; there exists
strong southward currents and a number of eddies where the
vehicle simply cannot pass or would otherwise get trapped.

The dataset provided by BoM is generated by an ocean
model using a series of satellite images measuring the ocean
heights. In this case study, we use a dataset that estimates the
currents on 5 September 2018. Note that the problem in time-
dependent flow field still remains an open problem and is not
within our scope. From the dataset, we numerically computed
the stream values using (7) by assuming that the ocean flow
is incompressible. Note that the dataset includes ocean flows
more than 7 times faster than the vehicle’s maximum speed.

The resulting paths between Sydney and Brisbane are
shown in Fig. 4. We also compare our streamline-based
method (in orange) against the standard shooting-based
method (in dark green). For both methods, we use the
sampling parameters N = 210 and C = 19.
For the path from Sydney to Brisbane in Fig. 4b, both

methods seem to take advantage of the currents (bottom
right) before moving towards Brisbane. Although the trav-
elled distance is similar, the streamline-based method took
17 days to reach Brisbane whereas the standard shooting-
based method took 22.8 days. The vehicle took almost the
same time (17.6 and 29.4 days, respectively) to travel back
from Brisbane to Sydney shown in Fig. 4b. Intuitively, the
significant difference in path quality is because our method
is likely to find more control samples that are valid, which
increases the chance of finding a connection with less cost.
This result implies that our algorithm is more computation-
ally efficient with respect to overall cost. For the purpose
of comparing the results, the benchmark time it would take
to travel along a straight line between Sydney and Brisbane
in still water is 29.8 days. Our method clearly took a more
efficient path, whereas the standard shooting-based method
performed as poorly as this benchmark.

An important aspect of the proposed framework is that the
control stays the same between two adjacent state samples
(i.e. waypoints). Intuitively, once we set the control from
the starting state, we let the vehicle go until it reaches the
destination in the absence of active control. This aspect is
important, especially for underwater platforms where the
energy capacity is limited and the energy consumption is
related to changes in control [11]. From Sydney to Brisbane,
the vehicle changes its control only 5 times over 17 days.
Graph-based methods, for example, would potentially apply
a new control input at every time step.

VIII. Conclusion and Future Work
We have presented an algorithm to efficiently find a stream

function induced by a control input superimposed on a
flow field, such that two given points are connected by a
streamline. We showed how this method can be integrated
with a sampling-based algorithm to plan long-range paths for
underwater vehicles in real-world ocean currents.

One limitation of our approach so far is that it is restricted
to 2D planning. It is useful for gliders, for example, because
typical onboard software accepts 2D waypoints as input
and generates a depth profile automatically. However, stream
functions are also defined in 3D, and it would be interesting
to extend our approach in this way.

We have designed our method to be easily integrated
with other sampling-based algorithms. Implementing FMT∗
or BIT∗ [30], for example, would be interesting avenues to
pursue, in addition to performing field experiments using
flow estimations methods described in [31] with gliders
and other types of AUVs. Beyond motion planning, the
proposed method can be used in task planning for vehicles
in flow fields [32, 33], which would benefit from the reduced
complexity.
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