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Abstract 16 

Coral reefs are threatened by global warming, which disrupts the symbiosis between corals 17 

and their photosynthetic symbionts (Symbiodiniaceae), leading to mass coral bleaching. 18 

Planktonic diazotrophs, or dinitrogen (N2) fixing prokaryotes are abundant in coral lagoon 19 

waters and could be an alternative nutrient source for corals. Here we incubated untreated and 20 

bleached coral colonies of Stylophora pistillata with a 15N2-pre-labelled natural plankton 21 

assemblage containing diazotrophs. 15N2 assimilation rates in Symbiodiniaceae cells and 22 

tissue of bleached corals were 5 and 30-fold higher, respectively, than those measured in 23 

untreated corals, demonstrating that corals incorporate more nitrogen derived from planktonic 24 

diazotrophs under bleaching conditions. Bleached corals also preferentially fed on 25 

Synechococcus, picophytoplanctonic cells rich in nitrogen, instead of Prochlorococcus and 26 
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picoeukaryotes that are poorer in nitrogen content. By providing an alternative source of 27 

labile nitrogen, both the incorporation of nitrogen derived from planktonic diazotrophs and 28 

the ingestion of Synechococcus may have profound consequences for coral bleaching 29 

recovery, especially for the many coral reef ecosystems characterized by high abundance and 30 

activity of planktonic diazotrophs. 31 
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 35 

Introduction / Materials & methods / Results and discussion 36 

Coral reefs are currently under threat by global warming, which disrupts the symbiosis 37 

between corals and their endosymbiotic dinoflagellates of the family Symbiodiniaceae [1], 38 

leading to mass coral bleaching [2]. When corals bleach, they lose part of their photosynthetic 39 

symbionts that provided them with nitrogen (Muscatine and D’Elia 1978) and seawater 40 

warming also decreases coral nitrogen acquisition capacity [3]. Several studies have reported 41 

an increase in the consumption of meso- and macroplankton by corals when exposed to 42 

thermal stress, potentially sustaining a critical supply of nutrients needed for recovery 43 

following bleaching [4–6]. The ability of corals to feed on smaller planktonic fractions, i.e. 44 

pico- (0.2 to 2 µm) and nanoplankton (2 to 20 µm) has also been documented [7], but the 45 

increase in the ingestion of bacteria and picoflagellates on bleached corals has only been 46 

observed in one study [8]. Among these size fractions, planktonic dinitrogen (N2)-fixing 47 

prokaryotes (subsequently referred to as planktonic diazotrophs) are very abundant in coral 48 

lagoon waters [9, 10]. They reduce atmospheric N2 into bioavailable ammonium (NH4
+), 49 

providing sufficient nitrogen stocks for the development of the planktonic food web in 50 

oligotrophic waters [11]. The assimilation of nitrogen derived from planktonic diazotrophs 51 
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has been recently demonstrated in corals [12]. According to Benavides et al. (2016), 15N-52 

enrichment in corals after their incubation with 15N-labelled natural diazotrophic assemblages 53 

could be due to three different processes: (i) direct feeding on planktonic diazotrophs digested 54 

within the coelenteron, (ii) uptake of 15N-dissolved nitrogen compounds fixed by the 55 

planktonic diazotrophs and released extracellularly, (iii) ingestion of non-diazotrophic 56 

plankton enriched in 15N as a result of diazotroph-derived nitrogen transfer (Bonnet et al 57 

2016). While several studies have demonstrated that N2 fixation by coral symbiotic diazotroph 58 

communities increases in bleached corals (Bednarz et al 2017, 2019), the acquisition of 59 

nitrogen derived from planktonic diazotrophic activity has never been investigated in corals 60 

facing thermal stress. To determine if bleached corals also benefit from planktonic 61 

diazotrophs, we incubated colonies of the branching coral S. pistillata with a 15N2-pre-labelled 62 

(24 h) natural plankton assemblage containing planktonic diazotrophs (pre-filtered through a 63 

100 µm mesh to exclude larger cells) as described in Benavides et al. (2016). In parallel, N2 64 

fixation within endosymbiotic diazotrophs in colonies of the same species was measured by 65 

incubating colonies in 15N-enriched filtered seawater. Coral colonies collected in the New 66 

Caledonian lagoon were acclimated to experimental conditions for three weeks. They were 67 

progressively bleached over 18 days (by a gradual temperature increase up to 31°C) or left at 68 

ambient temperature (28°C) as a control (subsequently referred to as untreated corals, see 69 

Supplementary Information for details). The 15N isotopic values were measured in 70 

symbionts, coral tissues and plankton before and after incubation (12 h). Nitrogen 71 

assimilation rates were calculated as previously described [13]. The contribution of 15N-72 

enrichment levels from endosymbiotic diazotrophic communities was minor (see results in the 73 

Supplementary Information). Conversely, after the incubation with 15N-labelled natural 74 

diazotrophic assemblages significant 15N-enrichments were found in the Symbiodiniaceae of 75 

both untreated and bleached corals. This suggests that Symbiodiniaceae used nitrogen 76 
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originating from the planktonic diazotrophs [12, 14, 15]. Nitrogen assimilation rates in 77 

Symbiodiniaceae and bleached corals tissue increased by 5- (0.6512 ± 0.3890 µg N cm-2 h-1; n 78 

= 5; Mann-Whitney-Wilcoxon test, P < 0.05) and 30-fold (0.0057 ± 0.0028 µg N cm-2 h-1; n = 79 

5; Mann-Whitney-Wilcoxon test, P < 0.01) respectively, compared to those measured in the 80 

untreated corals (0.1330 ± 0.2465 and 0.0002 ± 0.0004 µg N cm-2 h-1) (Fig. 1). This 81 

demonstrates that corals could incorporate more nitrogen coming from planktonic diazotrophs 82 

under bleaching conditions than untreated corals. By providing an alternative source of labile 83 

nitrogen, the increased incorporation of nitrogen derived from planktonic diazotrophs may 84 

have profound consequences for coral bleaching recovery, particularly in coral reef 85 

ecosystems characterized by high abundance and activity of planktonic diazotrophs. Such 86 

kind of reefs are widespread, and can be found in the Western South Pacific (e.g. New 87 

Caledonia, Papua New Guinea, and Australian Great Barrier Reef) [9, 10, 16, 17], but also in 88 

Hawaii and in the Caribbean and Red Seas [18–20]. After 12 h of incubation, the assimilation 89 

rates were 100 times greater in Symbiodiniaceae than in coral tissues, regardless of the 90 

treatment (n = 10 for each compartment; Mann-Whitney-Wilcoxon test, P = 0.019). This 91 

observation is consistent with the results obtained by several authors (e.g. [23], [12], [24], [15, 92 

25] ,[26]) who demonstrated that symbionts can immediately take up and store nitrogen-93 

derived compounds that are then transferred to the host’s tissue. We conducted quantitative 94 

PCR (qPCR) assays to determine planktonic diazotroph abundances (UCYN-A1, UCYN-C 95 

and Trichodesmium, i.e. the most important phylotypes in the lagoon [9, 27]) in the incubation 96 

medium at the beginning and at the end of incubation by targeting the nifH gene, a common 97 

biomarker for diazotrophs. These assays revealed (i) a significant abundance of diazotrophs in 98 

the incubation medium at the beginning of the experiment (UCYN-A1, UCYN-C and 99 

Trichodesmium abundances were respectively 4.14 ± 5.35 102, 0.97 ± 1.26 101 and 8.63 ± 100 

6.03 102 nifH gene copies L-1), and (ii) a decrease in the abundance of UCYN-A1 (1 µm) and 101 
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UCYN-C (4-8 µm) in all tanks containing corals (n = 3) compared to the controls without 102 

corals, confirming that corals fed on these two types of preys. While UCYN-A1 are ~1 µm in 103 

size, their association with a picoeukaryote host (Thompson et al 2012) could increase their 104 

size to 7-10 µm and thus improve their chances of being consumed by corals. Pico-, nano-105 

eukaryotes and bacterial abundances were further assessed by flow cytometry at the start and 106 

end of incubations to quantify their ingestion by both bleached and untreated corals. During 107 

the 12 h of incubation Prochlorococcus was quantitatively the major prey ingested, followed 108 

by Synechococcus and picoeukaryotes in both treatments and confirming the ability of corals 109 

to feed on picoplankton [e.g. 9, 29; see Supplementary Information]. One of the most 110 

notable results of this study is that the ingestion rates of Synechococcus were 1.6 times higher 111 

in bleached corals (3.79 ± 0.64 104 cell cm-2 h-1) than in untreated corals (2.38 ± 0.24 104 cell 112 

cm-2 h-1, Mann-Whitney-Wilcoxon test, P = 0.028; Fig.2). Until now, studies have shown that 113 

corals can regulate their heterotrophic feeding capacities in zooplankton (> 50 µm) [5] and in 114 

picoflagellates and bacteria (Tremblay et al 2012) in response to bleaching. For the first time, 115 

our results show that thermally stressed corals are able to increase not only their consumption 116 

of planktonic diazotrophs and plankton that likely benefited from N2 fixation [9], but also 117 

more specifically their ingestion of a very specific taxonomic group of picoplankton: the 118 

ubiquitous marine cyanobacterium Synechoccoccus. Surprisingly, bleached colonies of S. 119 

pistillata preferentially selected Synechococcus cells, which were not the most abundant in the 120 

medium during our incubation, but are known to be rich in nitrogen and also to benefit from 121 

nitrogen released by surrounding diazotrophs in the natural environment [29–31]. So far, this 122 

type of selective feeding on Synechococcus cells has only been shown under controlled 123 

conditions in colonies of Porites astreoides [32]. Additional experiments are needed to 124 

determine which chemosensory cues are at the origin of this selection (Lenhoff and Heagy 125 

1977).  126 
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Without their symbionts supplying them with nutrients [33], corals thriving within an 127 

oligotrophic environment have an urgent need for nitrogen. Our results demonstrate that, 128 

unlike in a previous study (Bednarz et al., 2017), bleached corals do not meet this nitrogen 129 

requirement through the activity of their endosymbiotic diazotrophs but through nitrogen 130 

derived from planktonic diazotrophs and plankton that benefited from N2 fixation. The 131 

amount of nitrogen coming from planktonic diazotrophs and Synechococcus for bleached 132 

corals, compared to the other nitrogen sources can be estimated. S. pistillata is able to take up 133 

ammonium and nitrate (at in situ concentrations) at a rate of 2 ng cm-2 h-1 (Grover et al 2002, 134 

2003) and Hoegh-Guldberg and Williamson (1999) also estimated that the uptake of nitrogen 135 

in the form of dissolved free amino acids was ca. 60 ng N cm-2 h-1. Hence, the maximal 136 

amount of total dissolved nitrogen taken up is ca. 0.062 µg N cm-2 h-1. We thus estimate that 137 

for the bleached corals in our study nitrogen coming from diazotrophic plankton and 138 

Synechococcus (0.658 µg N cm-2 h-1) brings ten times more nitrogen than what corals take up 139 

in dissolved nitrogen when they still contain Symbiodiniaceae. This specific feeding also 140 

represents a non-negligible source of carbon for corals devoid of Symbiodiniaceae. Studying 141 

the fate of nitrogen derived from planktonic diazotrophs within coral holobionts holds great 142 

potential to improve our understanding of nutritional interactions driving coral function and 143 

resilience in the context of climate change. Benefiting from N2 fixation could become a 144 

common strategy for coral recovery facing bleaching, as both the activity and geographical 145 

distribution of diazotrophs will likely increase with future raising sea surface temperature [21, 146 

22]. 147 

Supplementary information is available at ISME’s website 148 

 149 

Conflict of interest 150 

The authors declare no conflict of interest. 151 



7 
 

 152 

Acknowledgements 153 

V. Meunier was beneficiary of a PhD grant from LabEx-Corail (MACADAM project). This 154 

work was also funded by the LabEx-Corail FLAMENCO project. We wish to thank the 155 

technical staff of the Aquarium des Lagons (Nouméa, New Caledonia) for their welcome and 156 

assistance in tank maintenance 157 



8 
 

Symbiodinium Tissue 

a b 

Figure 1: Nitrogen assimilation rates (µg N cm-2 h-1) in Symbiodiniaceae (A) and coral tissue 158 

(B) in untreated and bleached corals after 12 h of exposure to 15N2-enriched natural plankton 159 

assemblage (mean ± SD; n = 5 for each treatment). Horizontal line in each boxplot indicates 160 

the median and black dots represent the outlier samples. Stars indicate statistically significant 161 

differences. 162 
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Figure 2: Ingestion rates (cell cm-2 h-1) of Prochlorococcus (A), Synechococcus (B) and 166 

picoeukaryotes (C) in untreated and bleached corals (mean ± SD; n = 5 for each treatment). 167 

Horizontal line in each boxplot indicates the median and black dots represent the outlier 168 

samples. Stars indicate statistically significant differences. 169 

 170 
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