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Abstract 21 

The mitochondrial DNA (mtDNA) is a potentially valuable phylogenetic marker given its presence 22 

across all eukaryotic taxa and its relative conservation in structure and sequence. In 23 

trypanosomatids, a homologue of the mtDNA referred to as the maxicircle DNA, is located within a 24 

specialised structure in the single mitochondrion of the trypanosomatids called the kinetoplast; a 25 

high molecular weight network of DNA composed of thousands of catenated minicircles and a 26 

smaller number of larger maxicircles. Unique to the kinetoplastid protists, the maxicircle 27 

component of this complex network could represent a desirable target for taxonomic inquiry that 28 

may also facilitate exploration of the evolutionary history of this important group of parasites. The 29 

aim of this study was to investigate the phylogenetic value of the trypanosomatid maxicircle for 30 

these applications. Maxicircle sequences were obtained either by assembling raw sequence data 31 

publicly accessible in online databases (i.e., NCBI), or by amplification of novel maxicircle 32 

sequences from trypanosomatid DNA using long-range (LR) PCR with subsequent Illumina 33 

sequencing. This procedure facilitated the generation of nearly complete maxicircle sequences (i.e., 34 

excluding the divergent region) for numerous dixenous and monoxenous trypanosomatid species. 35 

Annotation of each maxicircle sequence confirmed that their structure was conserved across all taxa 36 

examined. Phylogenetic analyses confirmed that Z. australiensis showed a greater genetic 37 

relatedness with the dixenous trypanosomatids of the genera Leishmania and Endotrypanum, as 38 

opposed to members of the monoxenous genera Crithidia and Leptomonas. Additionally, molecular 39 

clock analysis supported that the dixenous Leishmaniinae appeared approximately 75 million years 40 

ago during the breakup of Gondwana. In line with previous studies, our results support the 41 

Supercontinents hypothesis regarding the origin of dixenous Leishmaniinae. Ultimately, we 42 

demonstrate that the maxicircle represents an excellent phylogenetic marker for studying the 43 

evolutionary history of trypanosomatids, resulting in trees with very high bootstrap support values.  44 

Keywords: Leishmania; kinetoplast; maxicircle; Long-range PCR; Next-generation sequencing; 45 

phylogenetics 46 



1. Introduction 47 

Leishmaniasis remains one of the most important neglected tropical diseases, affecting some of the 48 

poorest populations worldwide (Torres-Guerrero et al., 2017). Endemic in 97 countries, 700 000 – 1 49 

million new cases are documented per annum, with a further 350 million people at risk of acquiring 50 

the disease (WHO, 2018). Of the approximate 53 species within the Leishmania genus, 20 have 51 

been identified as the aetiological agents of human leishmaniasis. Depending on the species in 52 

question, Leishmania infections manifest as three distinct clinical forms; cutaneous leishmaniasis 53 

(CL), mucocutaneous leishmaniasis (MCL) and visceral leishmaniasis (VL or Kala Azar) (Galluzzi 54 

et al., 2018) . In recent years, the taxonomy and evolutionary history of the trypanosomatid 55 

parasites has been discussed at length, particularly with respect to establishing a consensus on the 56 

procedures for classifying novel species which is partially dependent on the application of robust 57 

phylogenetic approaches (Espinosa et al., 2016; Kaufer et al., 2017; Maslov et al., 2018; Votýpka et 58 

al., 2015). Additionally, the origin and evolutionary history of the dixenous Leishmaniinae has been 59 

rigorously debated as a matter of intrigue and philosophical interest. In any case, both of these 60 

pursuits rely on rigorous phylogenetic analysis.  61 

The mitochondrial DNA of the Trypanosomatidae exists as a large, complex network of 62 

catenated DNA circles organised into a disk-shaped structure known as the kinetoplast (see Fig. 1) 63 

(Lin et al., 2015). The interlocking network referred to as the kinetoplast DNA (kDNA) is 64 

comprised of approximately 10, 000 minicircles and 20-50 maxicircles, representing 20-25% of the 65 

trypanosomatid’s total DNA (Gerasimov et al., 2017; Telleria et al., 2006). Minicircles are circular 66 

DNA molecules with species-specific sizes ranging from 0.5 to 10 kb and account for 95-99% of 67 

the total kDNA mass (Flegontov et al., 2009). Maxicircles are considerably larger circular DNA 68 

molecules ranging from 20 – 40kb in size, depending on the species.  69 

In most trypanosomatid species, the kDNA contains multiple minicircle classes of varied 70 

abundance in a single network (Flegontov et al., 2009). Minicircles encode one or more small non-71 



coding RNAs that act as guide RNAs (gRNA), that are involved in the RNA editing of maxicircle 72 

transcripts (Lin et al., 2015). The gRNAs encoded by the minicircles contain information for the 73 

number of uridine-insertion/deletions required for the correction of DNA-encoded mRNA 74 

frameshifts at the RNA level (Simpson et al., 2015). This unique genetic function of post-75 

transcriptional modification is the most distinguishing characteristic of the kinetoplast (Lin et al., 76 

2015) and is thus crucial for trypanosomatid viability. Minicircle kDNA has been successfully used 77 

for the molecular detection of Leishmania parasites (Ceccarelli et al., 2014); their high copy number 78 

(approx. 10, 000 per cell) makes it ideal as a highly sensitive diagnostic marker. Despite this, 79 

minicircles have a high level of nucleotide polymorphisms amongst their several thousand copies, 80 

making them unsuitable for resolving phylogenetic relationships between closely related 81 

trypanosomatid taxa  (de Oliveira et al., 2013). Due to their abundance and low level of sequence 82 

conservation, the drawbacks of kDNA minicircles seemingly outweigh their benefits as a target for 83 

phylogenetic analyses.  84 

The maxicircle kDNA is comprised of two regions; a coding region with short intergenic 85 

spacers and a variable non-coding region termed the divergent region (DR) (Flegontov et al., 2009). 86 

The coding region contains mitochondrial gene homologues typical of other eukaryotes, encoding 87 

mitochondrial proteins involved in energy production and ribosomal RNAs (see Table 1) (Yatawara 88 

et al., 2008). This coding segment accounts for 50-75% of the maxicircle kDNA length, containing 89 

a region of 15-17kb that is actively transcribed and conserved between species (Lee et al., 1992). 90 

The non-coding divergent region is a non-transcribed segment of various repeats that has been 91 

poorly studied (Flegontov et al., 2006a). The divergent region consists almost entirely of repeats 92 

and is highly variable at the species level (Flegontov et al., 2006b). Due to its variability, the 93 

divergent region represents the main source of size and sequence varatiation in maxicircles of 94 

different species (Lee et al., 1992).  95 

Despite the significant developments made in trypanosomatid taxonomy due to advances in 96 

molecular biology, issues surrounding the robustness of phylogenetic trees and the choice of an 97 



appropriate taxonomic marker remain (Kaufer et al., 2017; Maslov et al., 2018; Yurchenko et al., 98 

2014). The kinetoplast is an organelle exclusive to the Kinetoplastida, unique in its structure, 99 

function and mode of replication and thus its maxicircle genome may represent a valuable 100 

taxonomic marker  (Shapiro and Englund, 1995). Mitochondrial genomes of other eukaryotic cells 101 

have been vital to the analysis of evolutionary relationships between related organisms. The 102 

ubiquitous use of mtDNA can be traced to their desirable properties, particularly their relatively fast 103 

rate of evolution, high copy number and small size (approx. 15-20kb) (Messenger et al., 2012). 104 

Additionally, variation in the kDNA has been shown to significantly impact parasite development 105 

and the course of infection (Lin et al., 2015), making it a desirable target for trypanosomatid 106 

taxonomy and phylogenetics.  107 

Due to these desirable attributes which are shared with mtDNA, phylogenies based on the 108 

complete maxicircle genome should inexplicably improve the robustness of the phylogenetic trees 109 

generated, making them ideal markers for phylogenetic inference. The superiority of maxicircle-110 

based phylogenies was demonstrated in the analyses of trypanosomes, providing novel insights into 111 

the biological features of this genus (Botero et al., 2018; Hong et al., 2017; Lin et al., 2015; 112 

Messenger et al., 2012; Simpson and Simpson, 1980). It is proposed that the use of the entire coding 113 

region of the maxicircle genome will provide a much-needed framework for the taxonomic 114 

classification of the Trypanosomatidae, specifically the Leishmania genus which is studied here. 115 

The use of concatenated sequences from multiple phylogenetically informative loci has been 116 

described as standard practice to ensure robust phylogenetic investigations involving Leishmania 117 

spp. and related trypanosomatids (Kaufer et al., 2017; Maslov et al., 2018). However, given the 118 

universally conserved structure of the mtDNA, as well as its possession of several genes varying in 119 

function and rates of evolution, we sought to examine the value of the kDNA maxicircle coding 120 

region as a target for investigating the evolutionary history of trypanosomatid parasites. Using long-121 

range (LR) PCR and Illumina sequencing technology, we amplified and sequenced the maxicircle 122 

(excluding the divergent region) of six trypanosomatid species including the dixenous, Leishmania 123 



braziliensis, Leishmania herreri (hereafter called Endotrypanum herreri), Leishmania major, 124 

Leishmania tropica, Leishmania tarentolae and the putatively monoxenous Zelonia australiensis. 125 

Additionally, the maxicircle was extracted and subsequently assembled from whole genome 126 

sequence data of 22 additional trypanosomatid species. Subsequent phylogenetic analyses 127 

confirmed that Z. australiensis has a greater affinity to the dixenous members of the Leishmaniinae 128 

than to the monoxenous trypanosomatids. Additionally, we found that the maxicircle DNA is an 129 

excellent target for the phylogenetic analyses of the Leishmania genus given the high bootstrap 130 

values obtained. Furthermore, our analyses confirm the taxonomic validity of Leishmania shawi 131 

and support the reclassification of Endotrypanum herreri (previously L. herreri). Finally, as part of 132 

these analyses, we consider the timeframe of evolution for the Leishmania genus using the 133 

divergence of the common ancestor of Trypanosoma cruzi and Trypanosoma brucei as a calibration 134 

date to further explore the origin of the dixenous parasitism within the Leishmaniinae.  These 135 

analyses suggest that a common ancestor of the dixenous genera Leishmania, Endotrypanum and 136 

Porcisia diverged from a common monoxenous ancestor approximately 75 MYA, providing 137 

support for the emergence of dixenous parasitism in the Leishmaniinae during the late cretaceous, 138 

coinciding with the breakup of Gondwana. 139 

 140 

2. Materials and Methods 141 

2.1. Samples 142 

The various Leishmania and trypanosomatid species used in this study are listed in Supplementary 143 

Table 1 (S1 file).  144 

 145 

2.2. DNA Extraction 146 



DNA extraction was performed on Z. australiensis and L. tropica. Cultures of Z. australiensis were 147 

grown over three days in a modified liquid haemoglobin (M3) medium (M199, 10 % inactivated 148 

horse serum, 1X penicillin-streptomycin, IsoVitaleX and 0.99 g/L haemoglobin) (Barratt et al., 149 

2017). Cultures of L. tropica were first cultured on NNN slopes and subsequently transferred to 150 

Minimum Essential Medium (MEM) with 20% foetal calf serum (FCS) (Chouihi et al., 2009). 151 

Parasite cultures were centrifuged at 4000 g for 15 mins to pellet the cells. The supernatant was 152 

removed and cell pellets were resuspended in 1 ml of DNA Extraction Buffer (0.2 M Tris-HCL, 153 

0.025M EDTA, 0.5% EDTA, 0.25M NaCl, 0.3 mg/ml proteinase K), followed by incubation 154 

overnight at 55°C. Samples were centrifuged at 4000 g for 3 minutes and the supernatant was 155 

transferred to a new tube. The DNA was then extracted from the resulting lysate using the phenol-156 

chloroform method. Briefly, 500 µl of TE-Saturated phenol was added to the lysate and vortexed 157 

for approximately 1 minute. Next, 500 µl of chloroform was added and vortexed for an additional 158 

minute. The mixture was then centrifuged at 13 000 g for 1 minute. The aqueous layer was carefully 159 

removed and extracted twice more as previously described.  This was followed by a final extraction 160 

of the aqueous phase once more with 500 µl of chloroform. DNA was then precipitated overnight at 161 

-20°C with the addition of 8µl 5 M NaCl and 1 X volume of isopropanol. The tubes were 162 

centrifuged at 13 000 g for 15 minutes to pellet the precipitated DNA. Once the supernatant was 163 

removed, the pellet was rinsed 3 times with 1 mL of 70% ethanol. Next, the ethanol was decanted, 164 

and the DNA pellet was air dried for 10 minutes at room temperature followed by addition of 50 µl 165 

ddH2O. All DNA extracts were stored at -20°C until assayed.  166 

 167 

2.3. Preliminary Illumina sequencing of total cell DNA and subsequent maxicircle extraction  168 

To obtain the entire maxicircle sequence, including the divergent region, Illumina MiSeq whole 169 

genome sequencing (WGS) of Z. australiensis was performed twice on duplicate samples.  Illumina 170 

shotgun libraries were prepared for Z. australiensis at the Australian Genome Research Facility 171 



which were sequenced using MiSeq, yielding 300 bp paired-end reads. Since the GC content was 172 

high, the data was hard trimmed and quality control was performed using the software Trim Galore! 173 

version 0.5.0 (Krueger, 2018). Additionally, the complete maxicircle sequence of seventeen 174 

trypanosomatid species were obtained from the WGS data freely available through the Sequence 175 

Read Archive (SRA) on NCBI (S3 file).  176 

Processed reads were assembled into contigs using SPAdes version 3.12.0 (Bankevich et al., 177 

2012). For the purposes of this study, we were only interested in the maxicircle kDNA and 178 

additional analyses of the assemblies were outside the scope of this study. The maxicircle contigs 179 

were identified through BLAST analysis using NCBI BLAST software (NCBI, 2008). To remove 180 

redundancy and close the maxicircle sequences, these larger contigs, sometimes representing 181 

fragmented maxicircle sequences, were subsequently assembled with CAP3 (Huang and Madan, 182 

1999) to generate a complete maxicircle genome sequence. 183 

 184 

2.4. Long-range Polymerase Chain Reaction (LR-PCR) and cell preparation  185 

Long-range PCR primers were designed to amplify two large regions of the kDNA maxicircle 186 

(subsequently referred to here as PCR product A and B), that were approximately 10 kb or greater 187 

(species dependant). LR-PCR assays were performed on a PTC-200 Peltier Thermal Cycler with 188 

each PCR prepared using the RANGER DNA polymerase kit (Bioline) in a total volume of 50 µl, 189 

according to manufacturer’s instructions. For a detailed description of the assay conditions for each 190 

primer pair, see Supplementary file S2. The PCR products were visualised under UV light 191 

following electrophoresis on 1% agarose gel stained with GelRed. After visualisation, amplified 192 

LR-PCR fragments were purified with ExoSAP-IT PCR Product Cleanup Reagent (Thermo Fisher 193 

Scientific). 194 

 195 



2.5. Illumina sequencing of LR-PCR fragments, assembly and genome annotation 196 

Library preparation using a Nextera library prep system and sequencing (Illumina MiSeq) of each 197 

separate sample (PCR product A and B) for all six species was performed at the Australian Genome 198 

Research Facility. The 250 bp-long paired end reads obtained were trimmed using Trim Galore! 199 

version 0.5.0 to remove low-quality reads and adapter content from the reads (Krueger, 2018). The 200 

trimmed reads were then analysed with FASTQC version 0.11.7 software, for quality control (QC) 201 

(Andrews, 2018). The processed reads were assembled into scaffolds using SPAdes version 3.12.0 202 

(Bankevich et al., 2012). Maxicircle contigs were identified using NCBI BLAST software with the 203 

published maxicircle of L. tarentolae (GenBank: M10126.1) used as a query sequence. Final partial 204 

maxicircle genomes (excluding the divergent region) were assembled from the contiguous 205 

sequences of PCR products A and B using CAP3 (Huang and Madan, 1999).  206 

 207 

2.6. Conventional PCR to fill the gaps in read assembly 208 

The Illumina MiSeq reads of L. major resulted in assemblies possessing two gaps that could not be 209 

closed. Primers were designed to amplify these regions of the L. major maxicircle to close these 210 

gaps (S2 file). Conventional PCR assays were performed on PTC-200 Peltier Thermal Cycler. Each 211 

PCR was prepared using the BIOTaq PCR Kit (Bioline) with a total reaction volume of 50 µl, 212 

according to manufacturer’s instructions. The PCR products were visualised under UV light 213 

following electrophoresis on a 2% agarose gel stained with GelRed. The PCR products of the 214 

correct size were excised from the agarose gel using a sterile scalpel blade. The amplicons were 215 

extracted from gel slices using a QIAquick® Gel Extraction Kit (QIAGEN) following the 216 

manufacturer’s protocol. Standard Sanger sequencing was performed by the service provider 217 

Macrogen Inc. (South Korea) on an ABI 3730XL capillary sequencer. Low-quality bases were 218 

trimmed from the ends of the sequence chromatograms with the application SeqTrace (Stucky, 219 

2012), and these sequences were then assembled using CAP3. The Sanger contigs were then 220 



assembled with the L. major MiSeq contigs using CAP3 to close the gaps and construct a single 221 

contiguous maxicircle sequence for L. major. 222 

 223 

2.8. Gene identification, annotation and data analysis 224 

Annotation of the Z. australiensis maxicircle from whole-genome sequencing and the LR-PCR 225 

trypanosomatid maxicircle sequences generated was completed using Geneious version 11.0.2 226 

(Kearse et al., 2012) with the annotated L. tarentolae maxicircle sequence (Genbank: M10126.1) as 227 

the reference.  228 

 229 

2.9. Phylogenetic analysis  230 

Phylogenetic trees were constructed to infer the evolutionary relationships between mono- and 231 

dixenous trypanosomatids. Multiple alignments were performed using the MUSCLE algorithmic 232 

approach implemented in the Seaview software package (Gouy et al., 2010) and then manually 233 

curated to improve accuracy. Phylogenetic trees were constructed using PAUP* version 4.0 and 234 

PhyML (Guindon et al., 2005; Swofford, 1993). Phylogenies were inferred with heuristic searches 235 

using three methods: parsimony, distance and maximum likelihood (ML) (Ajawatanawong, 2017).  236 

Each search involved random stepwise addition with TBR branch swapping and 1000 random 237 

replicates (Swofford and Charles, 2017). Bootstrap support for clade topologies was estimated 238 

following the analysis of 1000 pseudo-replicate datasets using a heuristic tree search. For ML trees, 239 

the best-fit model of evolution, GTR+I+G was selected using jModelTest 2.1 under the Bayesian 240 

information criterion (Posada, 2008). Distances from the nucleotide sequences were determined 241 

with the General Time Reversible (GTR) method which were computed by PAUP* 4.0. 242 

 243 



2.10 Estimating divergence time 244 

To estimate divergence times of various trypanosomatid taxa based on their maxicircle sequences, 245 

the NJ method was applied to pairwise hamming distances calculated using the phangorn package 246 

in R. The maximum likelihood of this tree was calculated using the Jukes-Cantor model with 1000 247 

bootstrap replicates. The timetree was computed using 1 calibration constraint; the divergence of T. 248 

cruzi and T. brucei approximately 100 million years ago (Harkins et al., 2016; Lukeš et al., 2007). 249 

The MEGA7 package (Kumar et al., 2016) was used to infer a timetree using the Reltime method 250 

(Tamura et al., 2012) and the Tamura-Nei model (Tamura and Nei, 1993) from the original NJ tree. 251 

The maxicircle sequence of the monoxenous trypanosomatid Paratrypanosoma confusum served as 252 

an outgroup. 253 

 254 

3. Results 255 

3.1. Assembly of complete maxicircle genome from Z. australiensis and various trypanosomatid 256 

species from whole genome sequencing 257 

From the whole-genome sequencing of Z. australiensis, the resulting libraries contained 19 692 760 258 

and 16 875 783 reads respectively. The data used for the additional trypanosomatid sequences are 259 

summarised in S1 file.  Following the assembly, a BLASTN search was performed using the 260 

published L. tarentolae (GenBank: M10126.1) sequence as a query, to identify the contigs that 261 

corresponded with the maxicircle kDNA. The majority of the remaining contigs derived from the 262 

nuclear DNA and kDNA minicircles are not considered further here. The final CAP3 assembly of Z. 263 

australiensis resulted in a consensus sequence 19, 973 bp in size (Fig. 2). Synonymous with L. 264 

tarentolae, the maxicircle coding region of Z. australiensis encodes 20 genes, accounting for 85% 265 

of the total maxicircle. The non-coding divergent region was approximately 3087 bp in size and 266 

contained a highly repetitive sequence. The maxicircle sequences of the remaining trypanosomatid 267 

species ranged from approximately 16 kb to 30 kb. Given its repetitive nature, it is difficult to 268 



estimate the true length of the divergent region, thus Fig. 2 and S1 file provide an estimate based on 269 

the assemblies. The structure of the maxicircles generated from LR-PCR analyses are described in 270 

section 3.4 (below). 271 

 272 

3.2. LR-PCR amplification and extraction 273 

To obtain the target region spanning the 12S rRNA to COII (PCR product A), one primer pair was 274 

successful in producing an amplicon ~10 kb in size for all six species. For the region ranging from 275 

the CYb to ND5 (PCR product B), 5 additional species-specific primer pairs were designed to 276 

produce a 10 kb amplicon (Fig. 2). For a detailed description of the species-specific primers and 277 

PCR assay conditions used, see S2 file. In total, twelve long-range PCRs (for product A and B of 278 

each species) were optimised and the products subjected to Illumina sequencing (Fig. 3). The 279 

amplicons in the lanes labelled ‘1’ and ‘4’ were ExoSAP-IT extracted according to the 280 

manufacturer’s instructions for next-generation sequencing due to their band intensity and 281 

resolution compared to that of their duplicates (Fig.3).  282 

 283 

3.3. Illumina sequencing and assembly 284 

Twelve Nextera libraries were generated with an average fragment length of 250 bp. All twelve 285 

were successfully sequenced and the maxicircle genome (excluding the divergent region) was 286 

subsequently assembled.  287 

A de novo assembly of this data was performed using SPAdes (Bankevich et al., 2012). The 288 

maxicircle genomes (excluding the divergent region) of L. braziliensis, E. herreri, L. major, L. 289 

tarentolae, L. tropica and Z. australiensis were assembled from these shorts reads to generate the 290 

initial contigs. The initial assembly of L. major product A resulted in three contigs that could not be 291 

assembled to create a final concatenated sequence. To bridge these areas of zero read coverage, two 292 



conventional PCR assays were optimised to successfully generate amplicons of 560 bp (Gap 1) and 293 

650 bp (Gap 2) in size. The final assembly for all species was performed using CAP3, which 294 

combined the contigs from product A & B to generate a concatenated sequence approximately 15 295 

kb in size for each species. The quality of the genomes generated were well supported based on the 296 

high coverage and percentage of reads used to build the assembly. The depth of coverage exceeded 297 

700 X for all samples. When the reads were mapped to its own assembled genome using BWA, the 298 

median percentage of reads mapping back to the assemblies was 95% for L. braziliensis, 99% for E. 299 

herreri, 94% for L. major, 96% for L. tarentolae, 99% for L. tropica and 96% for Z. australiensis.  300 

 301 

3.4. General features of the maxicircle coding region 302 

All 28 trypanosomatid species had the same overarching maxicircle structure and a schematic 303 

diagram of the coding region for the six trypanosomatid species maxicircles generated by long-304 

range PCR is shown in Fig. 4. The sequenced maxicircle genomes consist of an approximately 15 305 

kb region spanning from the 12S rRNA through to the ND5 gene. The total sizes of the sequences 306 

obtained for the kDNA maxicircle of L. braziliensis, E. herreri, L. major, L. tarentolae, L. tropica 307 

and Z. australiensis are provided in Table 2. The sequences were deposited in GenBank under the 308 

accession numbers XXX. 309 

According to previous studies, the gene order and nucleotide sequences of the maxicircle 310 

coding region are highly conserved amongst the trypanosomatid family (Lin et al., 2015). This was 311 

confirmed in this study, allowing a straightforward annotation, by comparison to the previously 312 

published L. tarentolae maxicircle kDNA (M10126.1) as a reference (de la Cruz et al., 1984). Both 313 

schematic diagrams and annotations were built using the software Geneious version 11.0.2. Our 314 

data indicated that the maxicircle sequences of trypanosomatid species belonging to the Leishmania 315 

and Zelonia genera encode 20 genes, with very similar gene structure between all novel maxicircle 316 

sequences generated in this study (see Fig. 4). Based on these data, the 12S rRNA, 9S rRNA, ND8, 317 



ND7, COIII, CYb, MURF4 (ATPase 6), G3, COII, MURF2, ND4, RPS12 and ND5 genes of the 318 

studied trypanosomatids are transcribed from the forward strand while ND9, MURF5, MURF1, 319 

ND1, COI, G4 and ND3 are transcribed from the reverse strand.  320 

 321 

 322 

3.5. Phylogenetic analysis 323 

Phylogenetic trees were constructed from the coding region of the maxicircle genome to infer the 324 

genetic relationships between the trypanosomatid species under investigation. For each alignment, 325 

phylogenies inferred using the parsimony, distance and likelihood methods showed the same overall 326 

topology with robust structures. Furthermore, topologies were synonymous across the different 327 

platforms (PAUP and PhyML).  328 

The parsimony principle states that the simplest explanation i.e. the one that requires the 329 

fewest evolutionary changes, is preferred (Kannan and Wheeler, 2012). From the heuristic search of 330 

the maxicircle, the most parsimonious tree was found to be 30 093. Of the 18 247 characters 331 

analysed under the parsimony optimality criterion, 8759 characters were constant, 2639 variable 332 

characters were parsimony-uninformative and a final 6849 characters were considered parsimony-333 

informative. 334 

The evolutionary relationships showing the genetic distance between members of the 335 

Leishmaniinae is shown in Fig. 5. In the inferred consensus phylogenies (parsimony, distance and 336 

likelihood), all Leishmania spp. formed a strongly supported monophyletic group (Fig. 6.). In 337 

agreement with a recent study (Barratt et al., 2017), Z. australiensis was more closely related to the 338 

dixenous trypanosomatids, clustering with species of the Leishmania and Endotrypanum genera 339 

with 100% confidence (Fig. 6.). All phylogenies positioned Z. australiensis as a possible 340 

intermediate between the dixenous members of the Leishmaninnae subfamily and related 341 



monoxenous trypanosomatids. Another trend observed amongst the trees, was that the species 342 

previously known as L. herreri is more closely related to Endotrypanum, clustering with E. 343 

monterogeii with 100% bootstrap confidence. Hence, we adopted the use of the name E. herreri for 344 

this species. 345 

GTR distances among the Leishmania and Endotrypanum species (except E. herreri) ranged 346 

from 0.005 (between L. braziliensis and L. peruviana) to 0.196 (between L. aethiopica and L. 347 

enriettii) (S3 file). The genetic distance between E. herreri and other Leishmania/Endotrypanum 348 

species ranged from 0.005 (between E. herreri and E. monterogeii) to 0.192 (between E. herreri 349 

and L. arabica). In addition, the genetic distance between the monoxenous Z. australiensis and 350 

other trypanosomatid species ranged from 0.247 (between Z. australiensis and E. montergeii) and 351 

0.358 (between Z. australiensis and Blechomonas ayalai). 352 

 353 

3.6 Divergence time estimates 354 

The node representing the divergence of the common ancestor of T. cruzi and T. brucei was selected 355 

as a calibration point. This node was set at an average of 100 MYA, which is the estimated time 356 

period that Africa and South American became separated, representing a minimum time of 357 

separation. Using this as the calibration marker, a common ancestor to the Leishmaniinae subfamily 358 

was predicted to have appeared approximately 75 MYA, corresponding to the Late Cretaceous 359 

period of earth’s geological history.  360 

 361 

4. Discussion 362 

The kinetoplast is a diagnostic feature of the Kinetoplastids, a group of organisms characterised by 363 

the presence of a single unique network of catenated DNA circles (kDNA) (Cavalcanti and de 364 

Souza, 2018).  The largest molecule in this network, the maxicircle DNA, is homologous to 365 



mammalian mitochondrial DNA (Simpson et al., 1985). Protozoan parasites of the trypanosomatid 366 

family (order Kintetoplastida), predominately infect only insects (i.e. have a monoxenous lifecycle) 367 

(Maslov et al., 2013). However, some genera including Leishmania are transmitted by insects and  368 

are pathogenic to humans (i.e. possess a dixenous lifecycle), being the aetiological agents of the 369 

clinically important disease leishmaniasis, which is a severely debilitating and often-fatal diseases 370 

(WHO, 2018). While different Leishmania species are morphologically very similar and not readily 371 

distinguished by morphology (Lee et al., 2000), leishmaniasis includes a broad-spectrum of diseases 372 

that can present with a multitude of clinical manifestations. The course of a human Leishmania 373 

infection is largely determined by the causative species (Rodgers et al., 1990), which despite being 374 

morphologically similar, are divided into several phylogenetically supported subgenera. 375 

Elucidating the complex biology, phylogenetics and taxonomy of Leishmania spp. requires a 376 

clear understanding of the parasite’s genetic diversity. Here we undertook an in-depth analysis of 377 

maxicircle kDNA from various trypanosomatid species. Sequencing the coding region of the 378 

maxicircle allowed us to explore the phylogenetic relationships between members of the 379 

Leishmania genus, with previous studies traditionally relying on single-gene phylogenies and more 380 

recently concatenated sequences of a few phylogenetically informative loci (Asato et al., 2009; 381 

Croan et al., 1997; Yang et al., 2013). In this study we present a comprehensive analysis of the 382 

maxicircle from several trypanosomatids and further investigate the phylogenetic relationships of 383 

the mono- and dixenous species using these maxicircle sequences. This improved the resolution of 384 

the trees generated compared to previous studies using single gene and small concatenated gene 385 

phylogenies. The work flow for evolutionary analysis in our investigation combined LR-PCR and 386 

Illumina MiSeq to assemble a 15 kb-long region of the maxicircle (excluding the DR) of six 387 

trypanosomatid species. Additionally, we present the complete maxicircle genome of Z. 388 

australiensis and 22 trypanosomatid species assembled from previously sequenced whole genome 389 

sequencing libraries.  390 



In a previous review, we highlighted three systematic issues that represent the main source of 391 

discrepancies in trypanosomatid taxonomy, particularly in the Leishmania genus (Kaufer et al., 392 

2017). In summary the main issues were the result of: - 393 

1. The use of slow-evolving genes (such as the 18S rRNA gene) to construct phylogenies 394 

2. The dependence of tree structure on the choice of locus  395 

3. The number of species/isolates used for analysis  396 

A great advantage of using the entire maxicircle coding region is that it not only addresses these 397 

biases, but subsequently resolves many of the issues present in trypanosomatid phylogenetics. 398 

Phylogenetic trees constructed from the maxicircle kDNA represent an alternative to previous 399 

approaches that provides a superior model (based on the strong bootstrap support values) to 400 

investigate genetic relationships and also avoids the biases that come with phylogenies based on 401 

single-gene and concatenated gene analyses (Som, 2015).  402 

Mitochondrial DNA has a relatively fast rate of mutation compared to nuclear DNA 403 

(Messenger et al., 2012). The use of slow evolving genes in the analysis of closely related species is 404 

often the downfall of traditional phylogenetic reconstructions. Trees based on slow-evolving genes 405 

such as the 18S rDNA are unable to delineate relationships (Deschamps et al., 2011). Consequently, 406 

maxicircle kDNA is particularly useful in phylogenetic analyses for species within the same family 407 

i.e. the trypanosomatids. The higher-rate of mutations result in a greater number of sites with 408 

phylogenetically-informative characters from which the trees are built, ultimately providing a 409 

superior molecular target than those presently documented in the literature. 410 

It is widely accepted that different loci possess different genetic histories, resulting in 411 

phylogenetic trees that are prone to sampling bias (Yang et al., 2013). In this study, for each method 412 

of inference and software package used, the likelihood, parsimony and distance methods all showed 413 

the same structure and overall topology in the trees generated (Fig. 6.). We propose this is the direct 414 

result of using a larger number of phylogenetically informative characters that fall within the 15 kb 415 



region of the maxicircle sequenced. By published standards in the test of robustness (i.e. 416 

bootstrapping), the percentile method justifies the accuracy of a clade, with a confidence interval of  417 

>60% in support of the observed clade (Felsenstein, 1985). It is clear that the use of large datasets 418 

(approximately 15 kb) such as the maxicircle kDNA is an effective method to alleviate sampling 419 

bias, resulting in extremely robust trees, thereby eliminating the interchangeable structure of trees 420 

due to the loci chosen for analysis. The maxicircle sequences of Z. australiensis generated from 421 

both LR-PCR and whole-genome sequencing were 100% identical. Although the LR-PCR assays 422 

described here do not amplify the divergent region, the highly variable nature of this repetitive 423 

feature of the maxicircle is not conducive to phylogenetic inference. Thus, as an alternative to the 424 

often-time-consuming assembly and extraction of maxicircle sequences from whole genome 425 

sequence data, LR-PCR amplification offers a simpler and cost-effective method to obtain the 426 

maxicircle sequence.  427 

The Leishmaniinae subfamily was originally established for a group of monoxenous 428 

(Leptomonas and Crithidia) and dixenous (Leishmania) trypanosomatid parasites (Jirků et al., 2012) 429 

and was recently revised to include the newly established monoxenous species Zelonia and 430 

Novymonas (Espinosa et al., 2016). The analysis presented here included sequences from species of 431 

the subgenera Leishmania (Leishmania), Leishmania (Viannia), Leishmania (Mundinia) and 432 

Leishmania (Sauroleishmania). Additionally, the genera Endotrypanum, Porcisia, Zelonia, 433 

Leptomonas, Crithidia, Herpetomonas and Blechomonas were all represented. In the phylogenies, 434 

all Leishmania, Endotrypanum and Porcisia spp. formed a strongly supported monophyletic group 435 

(98% bootstrap confidence). The genetic distance analysis (S3 file) and phylogenetic trees (Fig. 6.) 436 

all suggest that the monoxenous Z. australiensis is genetically closer to the dixenous species of the 437 

Leishmaniinae subfamily than to the monoxenous trypanosomatids.  438 

From our previous analyses, we suggested the common ancestor of the dixenous 439 

Euleishmania (L. (Leishmania) and L. (Viannia)) and Paraleishmania (Endotrypanum and Porcisia) 440 

appeared during the breakup of Gondwana in the Mesozoic era approximately 91 million years ago 441 



(Barratt et al., 2017) as proposed by the Supercontinents hypothesis (Harkins et al., 2016). Based on 442 

our molecular data these genera have emerged as distinct monophyletic lineages, strongly supported 443 

by phylogenetic analyses. However, based on the maxicircle phylogenies presented here, the 444 

ancestor of the dixenous Leishmania, Endotrypanum and Porcisia emerged from monoxenous 445 

parasites approximately 75 MYA (Fig. 7.). Despite the report of a more recent emergence of 446 

Leishmania, our results still place the appearance of dixenous parasitism within the Leishmaniinae 447 

in the Late Cretaceous period, which aligns to the Supercontinents theory of Leishmania evolution. 448 

According to this theory, the divergence of the dixenous genera of the Leishmaniinae coincided 449 

with the adaptive radiation of mammals during this period (90-65 MYA) (Cox, 2000). The 450 

appearance of this common ancestor to the Euleishmania and Paraleishmania at approximately 75 451 

MYA remains within this timeframe, which still supports a Gondwanan origin. Based on the 452 

present study and the previous work of Barratt et al. (2017) and Harkins et al. (2016), we propose 453 

by consensus that the earliest dixenous Leishmaniinae parasites arose in the Cretaceous period 454 

between 77 – 140 MYA, during the protracted breakup of Gondwana.  455 

Two alternative scenarios have been proposed for the divergence of Old and New World 456 

species within the Euleishmania; the first scenario being the presence of Old World and New World 457 

species in the L. (Leishmania) subgenus suggests migration of the Old World to the New. The 458 

second scenario is that land bridges existed in the northern hemisphere 50 MYA connected Europe, 459 

North America and Asia allowing the movement of host and vector species between the Old and 460 

New World until their disappearance during the Eocene-Oligocene boundary approximately 30 461 

MYA (Barratt et al., 2017; Harkins et al., 2016; Momen and Cupolillo, 2000; Ren et al., 2013). The 462 

inferred emergence of the New World L. (Leishmania) spp. coincides with the events of the latter, 463 

supporting the disappearance of these land bridges ultimately driving the species in Northern 464 

Europe towards Africa and South East Asia in the Old World and forcing the tropical Leishmania 465 

species towards the Neotropics in the New World (Barratt et al., 2017).    466 



The southern-supercontinent hypothesis which suggests that T. cruzi evolved in the New 467 

World and T. brucei in the Old World following the split of South America and Africa 100 MYA 468 

has been widely accepted by these interested the evolution of trypanosomes for the last 30 years 469 

(Harkins et al., 2016; Lukeš et al., 2007; Stevens et al., 1999; Stevens et al., 2001). The T. cruzi 470 

clade is composed of two main sister lineages; (i) the Schizotrypanum lineage, formed by T. cruzi 471 

and bat-restricted trypanosomes and (ii) Tra (Tve – Tco) formed by Trypanosoma rangeli, 472 

Trypanosoma vespertilionis and Trypanosomas conorhini. Species of both lineages are associated 473 

with Cimicidae and Triatominae of the order Hemiptera. These vectors are believed to have played 474 

a crucial role in the evolution of these trypanosomes. Fossil evidence shows the presence of ancient 475 

cimicids and the relatively younger triatomes dating back approximately 100 MYA and 32 MYA 476 

respectively, inferring that Old World cimicids were the vector of T. cruzi ancestors. 477 

Although the trypanosome southern-supercontinent hypothesis is widely accepted, recent 478 

evidence supports an alternate ‘bat-seeding’ origin where the common ancestor of the T. cruzi clade 479 

(T. cruzi and T. rangeli) was a bat trypanosome that made the transition into mammals. This Old-480 

World bat trypanosome is likely to have evolved sometime after bats underwent major 481 

diversification approximately 70 – 58 MYA and through successive host switching into terrestrial 482 

mammals, gave origin to T. rangeli and T. cruzi lineages of the T. cruzi clade (Espinosa-Alvarez et 483 

al., 2018). The key implication of the ‘bat-seeding’ origin is that T. cruzi may have evolved more 484 

recently than previously thought (Hamilton et al., 2012). Using the period coinciding with the 485 

diversification of the T. cruzi clade (i.e., 70 to 58 MYA) rather than the split of the common 486 

ancestor of T. cruzi from T. brucei would likely result in an earlier prediction for the appearance of 487 

dixenous Leishmaniinae parasites, although this would still coincide with the adaptive radiation of 488 

mammals.  However, using the estimated divergence times of a host species (i.e., bats – 70 to 58 489 

MYA) rather than a geological time point is problematic as calibrations based on molecular 490 

estimates (i.e. secondary calibrations) may skew the analyses (Sauquet et al., 2012). Based on the 491 

scenario proposed by the ‘bat-seeding’ hypothesis, the last common ancestor of T. cruzi was 492 



transmitted by ancient cimicids. Fossil evidence shows that the Cimicidae were present in the Old 493 

World 100 MYA, predating the well-documented vicariance biogeography of South America and 494 

Africa. Thus, using the geological isolation and fossil evidence to analyse the separation of T. 495 

brucei from the last common ancestor of T. cruzi, the calibration of 100 MYA used in this study 496 

remains a suitable based on current understanding.  497 

All clades observed support a recent appraisal of the classification of Leishmania, 498 

Endotrypanum and Porcisia (Espinosa et al., 2016). Leishmania spp. of the Viannia subgenus are 499 

restricted to the Neotropics (New World), whereas the subgenus Leishmania occurs in both the New 500 

and Old World (Fig. 6.). The species at the crown of our phylogenetic trees (Leishmania aethiopica, 501 

Leishmania tropica, Leishmania arabica, Leishmania turanica, Leishmania major, Leishmania 502 

donovani, Leishmania infantum, Leishmania mexicana and Leishmania pifanoi) cluster with 100% 503 

confidence to form the L. (Leishmania) subgenus. Immediately below this (L. tarentolae) sits the L. 504 

(Sauroleishmania), followed by species restricted to the New World (L. braziliensis, L. peruviana, 505 

L. guyanensis, L. panamensis and L. shawi) that correspond to the L. (Viannia) subgenus. The most 506 

basal Leishmania sp.  included in our analysis (L. enriettii) represents L. (Mundinia).  507 

The taxonomic validity of L. shawi has come under scrutiny, with reports stating it is not a 508 

distinct species from L. guyanensis (Boité et al., 2012).  Phylogenetic analyses indicate that the 509 

designation of L. shawi as a distinct species is warranted, having emerged from a common ancestor 510 

shared with L. guyanensis and L. panamensis approximately 2.7 MYA (Fig. 7.). However, our 511 

analyses challenge the status of additional species of the Leishmania (Viannia) subgenus (Fig. 5.). 512 

Traditionally separated by geographic distribution, the genetic basis for the separation of L. (V.) 513 

braziliensis and L. (V.) peruviana has been hotly debated over the years (Fraga et al., 2013; 514 

Valdivia et al., 2015). Three arguments have been pursued in the literature with regards to the 515 

controversy surrounding L. braziliensis and L. peruviana: whether or not L. braziliensis and L. 516 

peruviana can be considered sole species; they are in fact heterogenous species, with L. peruviana 517 

being a subspecies of L. braziliensis; and thirdly that they are two distinct species (Banuls et al., 518 



2000; Fraga et al., 2013; Garcia et al., 2005).  Separated by a genetic distance of 0.005 (S3 file), our 519 

analyses show these Viannia species are very closely related. Following this rationale, the same 520 

argument can in theory be used when discussing L. (V.) guyanensis and L. (V.) panamensis, 521 

separated by a genetic distance of only 0.001 (Fig. 5. and S3 File). This result calls in to question 522 

whether these species of the Viannia subgenus warrant speciation as distinct organisms. 523 

Recent revisions of the current taxonomy have established that Leishmania donovani in the 524 

Old World and Leishmania infantum in both the Old World and New World are the only recognised 525 

species of the L. donovani complex (Jamjoom et al., 2004; Lukeš et al., 2007). Ambiguities 526 

concerning this complex have often arisen from phylogenies based on insufficient markers that are 527 

unable to detect the DNA polymorphisms (if any) capable of discriminating between these 528 

extremely similar species. However, despite using a large dataset (approximately 18 000 characters 529 

used in the final analysis), the maxicircle coding region detected very few polymorphisms between 530 

the two species, separated by a genetic distance of only 0.007 (S3 file and Fig.5.). This data from 531 

also calls into question whether these parasites truly represent distinct species. 532 

Basal to the major clades of the Leishmania subgenus, our phylogenetic analyses confirm 533 

the recent proposal to elevate the previous L. hertigi/L. deanei complex to generic status (Espinosa 534 

et al., 2016).  The status of this complex has often been debated and labelled unstable due to the 535 

lack of an in-depth genetic analysis involving this group of organisms (Akhoundi et al., 2016; 536 

Marcili et al., 2014). These Leishmania-like parasites of porcupines’ cluster to form a sister clade, 537 

long separated (approximately 59 MYA) from Leishmania species, with 100% bootstrap confidence 538 

(Fig. 6. and Fig. 7.). Thus, the analyses of the maxicircle coding region support the establishment of 539 

Porcisia as the new genus to accommodate these species. Particularly important is the strong 540 

clustering of E. herreri (previously L. herreri) with E. monterogeii and E. schaudinni, forming a 541 

monophyletic clade basal to all Leishmania spp. (100% confidence). It cannot be ignored that based 542 

on genetic distance and phylogenetic analysis E. herreri is more closely related to Endotrypanum 543 

than to Leishmania. Our results are congruent with the recent suggestion  (Espinosa et al., 2016) 544 



that the Neotropical trypanosomatid known as L. herreri should be placed in the Endotrypanum 545 

genus (Franco and Grimaldi, 1999; Noyes et al., 1996).   546 

In conclusion, given the inconsistencies that exist in trypanosomatid systematics discussed 547 

previously (Kaufer et al., 2017; Som, 2015), we propose the use of maxicircle DNA sequences as 548 

the taxonomic marker of choice for phylogenetic analyses involving this group of parasites. 549 

Specifically, the use of the entire coding region of the maxicircle genome provides more robust 550 

evolutionary insight than the single gene-based phylogenies or phylogenies generated by 551 

concatenating a small number of gene sequences, such as those commonly reported in the literature 552 

(Barratt et al., 2017; Grybchuk et al., 2018; Yazaki et al., 2017). Further research resulting in the 553 

generation of additional maxicircle sequences from trypanosomatids, particularly those from the 554 

monoxenous-dixenous boundary (e.g. Zelonia costaricensis) will provide greater insights into the 555 

evolutionary relationships between trypanosomatid taxa including the relationship between 556 

pathogenic and non-pathogenic trypanosomatid species. We propose that future investigators 557 

aiming to understand the evolutionary relationship between closely related trypanosomatids should 558 

consider using the approach described herein as opposed to single-gene based phylogenies. 559 

Ultimately, this work highlights the importance of the maxicircle as a valuable tool for the 560 

taxonomic and phylogenetic analyses of Leishmania spp. and other related trypanosomatids. 561 
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Legends to Figures 795 

 796 

Fig. 1. Light and electron micrographs of Zelonia australiensis showing the kinetoplast.  797 

(A) and (B) Light micrographs in a Leishman stained smear showing the morphological features of 798 

Zelonia australiensis promastigotes including the nucleus (N), kinetoplast (K), flagellar pocket (FP) 799 

and flagella (Fl). (C) Transmission electron micrograph showing additional gross morphological 800 

features of Z. australiensis including the glycosomes (gl) and a zoomed in micrograph of the 801 

kinetoplast in the bottom right corner of the lower panel.   802 

 803 



 804 

Fig. 2. Graphical map of Z. australiensis maxicircle genome assembled from Illumina 805 

sequencing of total DNA with the regions targeted by long-range PCR highlighted.  806 

The blue line (PCR product A), targets the genes from 12S rRNA to the end of COII and the purple 807 

line (PCR product B), targets the genes from CYb to NADH5. A description of the function of the 808 

genes shown in this figure is provided in Table 1. 809 

 810 

 811 



Fig. 3. DNA electrophoresis of PCR products generated through optimised LR-PCR assays. 812 

Samples were run alongside a Lambda DNA Hind III Digest molecular weight marker (MWM) 813 

(Sigma Aldrich). PCR product A (lanes 1 & 2) and PCR product B (lanes 3 & 4) were run in 814 

duplicates, each against a negative control void of DNA, -ve (A) & -ve (b) respectively.  815 

 816 

 817 

Fig. 4. Schematic diagram of the maxicircle genome sequence of various trypanosomatid spp. 818 

generated in this study.  819 

The diagram is composed of the sequences assembled from the Illumina Miseq reads. Gene order 820 

and structure is shown of L. braziliensis, E. herreri, L. major, L. tarentolae, L. tropica and Z. 821 

australiensis. Light grey blocks represent rRNA genes and dark grey blocks represent protein-822 

coding genes. Blocks above the line represent genes transcribed on the forward strand and blocks 823 

below represent genes transcribed on the reverse strand. 824 



 825 

Fig. 5. Inferred evolutionary relationship showing genetic distance between Z. australiensis 826 

and other trypanosomatids using the maxicircle coding region. 827 

The structure of this tree was inferred using the maximum likelihood based on the GTR+I+G model 828 

with 1000 bootstrap replicates. A solid diamond indicates a node that obtained a bootstrap value of 829 

100%. The scale bar represents the number of nucleotide substitutions per site. 830 

 831 



 832 

Fig. 6. Inferred evolutionary relationship between Z. australiensis and other trypanosomatids 833 

using the maxicircle coding region. 834 

The structure of this tree was inferred using three statistical methods; the parsimony, distance and 835 

maximum likelihood based on the GTR+I+G model. The same tree structure was predicted using 836 

each method. The first value at each node is the confidence interval using the parsimony method 837 

based on 1,000 bootstrap replicates. The second and third number are the bootstrap support (1,000 838 

replicates) values for the distance and ML methods respectively. The scale bar represents the 839 

number of nucleotide substitutions per site. 840 



 841 

Fig. 7. Phylogenetic time tree inferring the evolutionary relationships between the 842 

Leishmaniinae and other trypanosomatids using the maxicircle coding region. 843 

The structure of this tree was inferred using the NJ method from pairwise hamming distances 844 

calculated using the phangorn package in R. The maximum likelihood of this tree was calculated 845 

using the Jukes-Cantor model with 1000 bootstrap replicates (log likelihood: -188084.7), achieving 846 

a bootstrap support value of 100% for each node. This tree includes several important dixenous 847 

(Leishmania, Endotrypanum, Porcisia and Trypanosoma sp.) and monoxenous taxa (Leptomonas 848 

and Crithidia sp.), as well as one representative of the genus Zelonia which sits on the 849 

monoxenous/dixenous boundary. This timetree was computed using 1 calibration constraint, 850 

indicated by a diamond (the divergence of T. cruzi and T. brucei approximately 100 million years 851 

ago). Predicted divergence times are displayed on nodes.   852 



Tables with their legends 853 

Table 1 854 

Main genetic information contained in the maxicircle. 855 

Gene/Region Description 

9S rRNA and 12S RNA The unusually small ribosomal RNAs of trypanosomatids 

are significantly smaller than both mammalian 

mitochondrial and eubacterial rRNAs (Maslov et al., 2006).  

MURFs  

(MURF1, MURF2, MURF4 and 

MURF5) 

MURFs are unidentified open-reading frames whose 

function is unknown (Yatawara et al., 2008).  

ND  

(ND1, ND3, ND4, ND5, ND7, ND8, 

ND9) 

The NADH dehydrogenase complex is comprised of the 

subunits involved in the mitochondrial membrane 

respiratory chain. 

Cytochrome Oxidase I, II and III 

(COI-COIII) 

Cytochrome Oxidase subunits I-III constitute the functional 

core of the enzyme complex. COI is the catalytic 

component of the respiratory chain responsible for the 

reduction of oxygen to water. COII transfers the electrons 

from cytochrome oxidase to the centre of the catalytic COI 

(Horvath et al., 2000).   

G3 – G4  Pan edited cryptogenes, distinguished by intergenic G-rich 

regions (Neboháčová et al., 2009).  

Cytochrome b  

(CYb) 

Cyt b is the main redox catalytic subunit of the ubiquinol-

cytochrome c reductase complex, which is a component of 



the mitochondrial respiratory chain (Asato et al., 2009). 

RPS12 The single ribosomal protein encoded by the kDNA. The 

RPS12 gene function is ambiguous but is involved in the 

translation initiation step and its transcript undergoes 

extensive U-insertion/deletion editing (Aphasizheva et al., 

2013). 

Divergent region (DR) The most variable region of the kinetoplast maxicircle. The 

non-coding segment consists almost entirely of repeats and 

is highly variable at the species-specific sequence level 

(Flegontov et al., 2006b). 

 856 

  857 



Table 2 858 

Data generated from LR-PCR following QC grooming in this study.  859 

Species PCR Target Data type Number and length of QC-

trimmed paired-reads  

Total 

combined 

size (bp) 

Endotrypanum 

herreri 

12S rRNA à 

COII 

Reads 240 967 (250 paired-end) 15 306 

Cyt b à ND5 164 501 (250 paired-end) 

Leishmania 

braziliensis  

12S rRNA à 

COII 

Reads  28 543 (250 paired-end) 15 180 

Cyt b à ND5 261 561 (250 paired-end) 

Leishmania major 12S rRNA à 

COII 

Reads  303 013 (250 paired-end) 14 821 

Cyt b à ND5 95 051 (250 paired-end) 

Leishmania 

tarentolae 

12S rRNA à 

COII 

Reads  56 313 (250 paired-end) 15 193 

Cyt b à ND5 55 236 (250 paired-end) 

Leishmania tropica 12S rRNA à 

COII 

Reads  324 870 (250 paired-end) 15 559 

Cyt b à ND5 224 739 (250 paired-end) 

Zelonia australiensis 12S rRNA à Reads  139 528 (250 paired-end) 15 104  



COII 

Cyt b à ND5 92 588 (250 paired-end) 



Supplementary Data  860 

S1 - Table  861 

List of trypanosomatid species used in this study. 862 

 863 

S2 – Table  864 

Long-range and conventional PCR primers used in this study. 865 

 866 

S3 - Table 867 

Number of nucleotide differences and genetic differences between maxicircle kDNA of various 868 

trypanosomatid species. Below diagonal: genetic distance, above diagonal: number of nucleotide 869 

bases which are not identical. 870 

 871 
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