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Université Paris Diderot-CNRS, F-75013 Paris, France

4School of Mathematical and Physical Sciences,
University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia

5School of Engineering and Information Technology,
University of New South Wales, Canberra ACT 2600, Australia

6Dept. of Information Engineering,
University of Brescia, Via Branze 38, 25123 Brescia, Italy

7ITMO University, 49 Kronverksky Pr., Saint Petersburg 197101, Russia
8Ioffe Physical-Technical Institute, Saint Petersburg 194021, Russia

9The MOE Key Laboratory of Weak Light Nonlinear Photonics,
School of Physics, Nankai University, Tianjin, China
10Centre de Nanosciences et de Nanotechnologies,
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Optical nanoantennas have shown a great capacity for efficient extraction of

photons from the near to the far-field, enabling directional emission from

nanoscale single-photon sources. However, their potential for the generation

and extraction of multi-photon quantum states remains unexplored. Here we

demonstrate experimentally the nanoscale generation of two-photon quantum

states at telecommunication wavelengths based on spontaneous parametric

down-conversion in an optical nanoantenna. The antenna is a crystalline Al-

GaAs nanocylinder, possessing Mie-type resonances at both the pump and the

bi-photon wavelengths and when excited by a pump beam generates photon-

pairs with a rate of 35 Hz. Normalized to the pump energy stored by the

nanoantenna, this rate corresponds to 1.4 GHz/Wm, being one order of mag-

nitude higher than conventional on-chip or bulk photon-pair sources. Our

experiments open the way for multiplexing several antennas for coherent gen-

eration of multi-photon quantum states with complex spatial-mode entangle-

ment and applications in free-space quantum communications and sensing.

2



Introduction

Correlated photon-pairs are essential building blocks for photon entanglement (1, 2), which

underpins many quantum applications, including secure networks, enhanced measurement and

lithography, and quantum information processing (3). One of the most versatile techniques for

the generation of correlated photons is the process of spontaneous parametric down-conversion

(SPDC) (4). The latter SPDC allows for an arbitrary choice of energy and momentum corre-

lations between the generated photons, robust operation at room temperature, as well as for

spatial and temporal coherence between simultaneously pumped multiple SPDC sources.

Alternative approaches based on atom-like single photon emitters, such as solid-state fluo-

rescent atomic defects (5), quantum dots (6,7), and 2D host materials (8,9), have reached a high

degree of frequency indistinguishability, purity and brightness (6,7). However, this comes with

the expense of operation at cryogenic temperatures and lack of spatial coherence between multi-

ple quantum emitters. These features might limit possible applications and reduce the potential

for device scalability. Furthermore, the small size of the atomic sources often requires com-

plex schemes aimed at coupling to optical nanoantennas and improving the photon extraction

efficiency (8).

The miniaturization of SPDC quantum-light sources to micro and nanoscale dimensions is a

continuing quest, as it enables denser integration of functional quantum devices. Traditionally,

bulky cm-sized crystals were utilized for SPDC, entailing the difficulty of aligning multiple

optical elements after the SPDC crystal, while offering relatively low photon-pair rates (4).

As a first step of miniaturization, SPDC was realized in low-index-contrast waveguides, which

allowed confining light down to several square micrometers transversely to the propagation di-

rection, significantly enhancing the conversion efficiency (10). However, this approach still

requires centimetres of propagation length, which makes the on-chip integration with other
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elements challenging (11). The introduction of high-index contrast waveguides and ring res-

onators allowed for shrinking the sizes necessary for SPDC to millimetres (12), and to tens of

micrometers (13). However, further miniaturisation down to the nanoscale requires conceptu-

ally different approaches.

For a long time, plasmonic nanoantennas have been considered as a favorable platform for

enhancing single-photon emission (14, 15) and nonlinear interactions (16–20). However, the

limited volume of the plasmonic modes, the losses and the centrosymmetric nature of plas-

monic materials, result in a relatively low second order nonlinear conversion efficiency. Dielec-

tric nanoantennas have thus emerged as a an alternative nanoscale nonlinear platform (21–24).

The strong enhancement of the nonlinear processes observed in them is largely due to the ab-

sence of material absorption and the excitation of Mie-type bulk resonances (25). The highest

conversion efficiency to date has been achieved employing III-V semiconductor nanostructures,

such as AlGaAs which is a non-centrosymmetric material with high quadratic nonlinear sus-

ceptibility. In particular, second-harmonic generation efficiencies up to 10−4 have been recently

demonstrated (26–30), six orders of magnitude higher than in plasmonics.

Despite the rapid recent progress, the generation of quantum light with nonlinear nanoan-

tennas has not been reported to date. Such nanoscale multi-photon quantum sources would

offer an unexplored avenue for applications of highly indistinguishable and spatially reconfig-

urable quantum states, through the spatial multiplexing of several coupled nanoantennas. Until

now, the big question on whether a single nanoscale antenna can generate measurable pairs of

photons with non-classical polarization and energy correlations remains open.

Here, we demonstrate experimentally the generation of spontaneous photon pairs from a

single AlGaAs disk nanoantenna exhibiting Mie-type resonances at both pump and bi-photon

wavelengths. As such, the generation of photon pairs is a result of the correlations between

these two sub-wavelength magnetic dipole modes. The observed photon-pair generation rate
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is 35 Hz, which, per unit volume, is higher than other SPDC light sources. Our SPDC source

offers room temperature operation and the possibility of both engineering the radiation pattern

and obtaining coherent interference between multiplexed sources, thanks to its inherent capacity

to shape the subwavelength electromagnetic mode fields.

Results and Discussions

A schematic of our nanoantenna photon-pair source is shown in Fig. 1a. The nanoantenna

is a crystalline AlGaAs cylinder with diameter d = 430 nm and height h = 400 nm. The

scanning electron microscope (SEM) image of the fabricated structure is shown in Fig. 1b. The

non-centrosymmetric crystalline structure of AlGaAs offers strong bulk quadratic susceptibility

of d14 = 100 pm/V. The AlGaAs also exhibits high transparency in a broad spectral window

from 730 nm up to the far infra-red due to the direct electronic bandgap, further preventing

two-photon absorption at telecommunication wavelengths.

In our experiments, a pump beam at a frequency ωp is focused on the nanocylinder, resulting

in the simultaneous emission of signal and idler photons via SPDC. These can have different

frequencies (ωs and ωi) and polarizations, can propagate at different angles with respect to

the incident pump photons, and are collected in reflection geometry. The dimensions of the

nanocylinder are chosen such that it exhibits Mie-type resonances at the pump and signal/idler

wavelengths. The simulated linear scattering efficiency is defined as the scattering cross section

Csca normalized by the cross area of the nanocylinder πr2: Qsca = Csca/πr
2. It is shown in

Fig. 1c along with the two leading multipolar contributions of the scattering. In the infrared

region of the spectrum, where the signal and idler photon pairs are generated, the nanocylinder

exhibits a magnetic dipolar resonance, which is the lowest order Mie-mode, featuring a Q-factor

of nine (Fig. 1c). For the spectral region of the pump 760 − 790 nm, we have another strong

resonance with a Q factor of 52, represented by a peak in the scattering efficiency spectrum
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Figure 1: Nonlinear nanoantenna for generation of heralded photons. (a) Schematic rep-
resentation of the nanoantenna-based source of photon-pairs through the SPDC process. The
inset depicts the energy diagram of the SPDC process. The SPDC pump is horizontally polar-
ized along the [100] AlGaAs crystallographic axis. The signal and idler photons are generated
by entangled magnetic dipole moments inside the volume of the AlGaAs nanoantenna, namely
mx and mz (sketched below the emitted photons). (b) A typical scanning electron micrograph
(SEM) images of [100] AlGaAs monolithic nanocylinders, 10µm apart, such that each disk can
be excited individually. (c) Simulated scattering efficiency, Qsca, and multipolar decomposition
in terms of the two leading electric (ED) and magnetic dipoles (MD) for a nanocylinder with
diameter d = 430 nm and height h = 400 nm. The vertical blue and orange bars show the
spectral ranges of the pump light and the generated SPDC light (signal and idler), respectively.
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(Fig. 1c). This is dominated by the electric dipole moment of the antenna, although it also

contains higher-order multipolar contributions (not shown). The strong internal fields at the

Mie-type resonances allow for strong enhancement of the nonlinear frequency mixing processes

and also imposes a spectral selection for the frequencies of the generated photons.

The SPDC process in the nanocylinder can result in the emission of photon pairs with non-

trivial correlations, associated with different angular and polarization components. In order to

experimentally determine the optimal conditions for photon-pair generation and ultimately for

optimum SPDC efficiency, usually one uses the technique of quantum state tomography (31).

However, due to weakness of nonlinear process, the bi-photon rate tends to be low, thereby

resulting in long time acquisition of the photon counting statistics, as well as lack of correlation

precision. Therefore, optimizing the experimental parameters directly through SPDC measure-

ments is impractical and we need an alternative solution.

To solve this issue, we resort to the quantum-classical correspondence between SPDC and its

reversed process, namely sum-frequency generation (SFG), where the generated sum-frequency

and pump waves propagate in opposite directions to the SPDC pump, signal and idler (32, 33).

Such quantum-classical correspondence is applicable to any quadratic nonlinear structures and

allows the classical estimation of the SPDC generation bi-photon rates through the relation

1

Φp

dNpair

dt
= 2πΞSFG

λ4p
λ3sλ

3
i

c∆λ

λ2s
. (1)

Here, Φp is the SPDC pump flux, λp, λs and λi are the pump, signal and idler wavelengths,

and ∆λ is the nonlinear resonance bandwidth at the signal/idler wavelengths. The efficiency

ΞSFG is given by the ratio of sum-frequency photon power to the product of incident energy

fluxes at signal and idler frequencies. Detailed derivation of Eq. (1) along with its angular-

and polarization-resolved versions are given in Sec. 1.1 of Supplementary Information. We

establish that the number of photon pairs generated through SPDC, in a given optical mode
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of the nanostructure, is proportional to the SFG amplitude of the classical signal and idler

waves, propagating in the opposite direction. In this framework, we can first optimize the SFG

efficiency and thus predict the bi-photon generation rates, prior to SPDC detection. Importantly,

the SFG process can also be characterized for different polarizations, further optimizing the

parameters for the subsequent SPDC measurements.

The schematic of our SFG experiments is illustrated in Fig. 2a. Two short pulses at wave-

lengths 1520 nm and 1560 nm illuminates the nanoantenna as signal and idler beams. Their

spectra are shown in Fig. 2b. The two beams are focused onto a single AlGaAs nanocylinder

by a 0.7 NA objective, with 10 mW average powers, 2 µm (diameter) diffraction-limited spots

and 7 GW/cm2 peak intensities. The polarization in each arm can be controlled independently

by half- and quarter-wave plates. The linear H polarization is parallel to the AlGaAs nano-

resonator crystallographic axis [100]. Figure 2c shows the H-polarized SFG signal collected in

backward direction at different optical delays between the two V-polarized pulses. This polar-

izations arrangement corresponds to the maximum SFG efficiency, as we discuss below. The

two spectral peaks at 760 and 780 nm correspond to the second harmonic generation (SHG)

from the individual signal and idler pulses, and are observed at all delay times. The third peak

at 770 nm only occurs at “time zero,” when the signal and idler pulses arrive at the nanocylin-

der simultaneously. This SFG pulse has a full-width at half-maximum (FWHM) of 80 fs, in

agreement with the duration of the pump pulses.

By setting different combinations of incident polarizations for the signal and idler pulses,

including horizontal (H), vertical (V), right circular (R) and left circular (L), we measured the

SFG for H (or V) polarization. The choice for H polarized SFG is arbitrary, as for normally in-

cident signal/idler beams V and H are identical due to the cylindrical symmetry of the disk and

anisotropy of the material. The resulting SFG signal intensities (normalized to the maximum

value, see Methods) at 770 nm and the corresponding radiation patterns recorded via a back
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Figure 2: SFG nonlinear characterisation of polarization correlations in the nanoantenna.
(a) Schematic of the experimental arrangement and energy conservation diagram of the SFG
process in the inset. (b) Signal (orange line) and idler (red line) spectra filtered from the fs laser
source. (c) Spectrum of the nonlinear wave mixing in the AlGaAs nanocylinder as a function of
the time delay between the signal and idler pulses. The SFG only happens when the two pulses
overlap, while the spectral features at 760 and 780 nm correspond to SHG from the individual
signal and idler pulses. (d) Intensity of H-polarized reflected SFG at 770 nm measured with 16
combinations of horizontal (H), vertical (V), right circular (R) and left circular (L) polarizations
of signal and idler beams for the nanocylinder geometry in Fig. 1. (e) Measured reflected
SFG images in k-space for the polarization combinations shown in (d) and SFG detected with
NA = 0.7.

focal plane (BFP) imaging system are shown in Figs. 2d,e, respectively. The maximum signal

of H-polarized SFG is obtained when both signal and idler are V-polarized. At the microscopic

scale, this corresponds to the excitation of signal, idler and SFG modes whose vectorial com-
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ponents constructively overlap following the symmetry of AlGaAs second-order susceptibility

tensor. The highest measured SFG conversion efficiency from our nanocylinder is 1.8 × 10−5,

which is comparable to the SHG efficiency obtained in earlier measurements (26–28). As shown

in the BFP images, the SFG radiation patterns strongly depend on signal and idler polarization

combinations, however the general observation is that the SFG signal is emitted under angle,

off-axis to the nanocylinder. This is due to the symmetry of the nonlinear tensor, as previously

reported for SHG in Refs. (28, 34). The experimental results were also compared with finite

element simulations under realistic experimental conditions and are shown in Fig. S3 of the

Supplementary Information. The simulated SFG intensity is enhanced when the polarizations

of both signal and idler beams are VV, or RR or LL polarized. Lower counts are seen for the

mixed polarization cases, and for the case HH. This trend matches the experimental results,

particularly for the combinations involving H and V polarizations, while the RR and LL cases

appears less bright than VV case. This discrepancy can be attributed to slight non-uniformity

of the fabricated structure, which has a small amount of ellipticity.

Importantly, knowing the SFG efficiency of 1.8 × 10−5 for the VV → H process, we can

estimate the possible bi-photon rates for detection of heralded photons from our nanoantenna

SPDC source. Using Eq. (1) we predict a photon-pair generation rate of about 380 Hz at a pump

power of 2 mW. This value is significant and well above the dark count rates for our detector of

5 Hz (for details on the count rate estimation see Sec. 1.2 of the Supplementary Information). It

is worth noting that in contrast to the assumption of Eq. (1), in the experiments (see schematics

in Fig. 1a and 2a) all possible sum-frequency signal/idler/generation do not exactly correspond

to SPDC signal/idler/pump propagating in opposite directions. Thus, some deviation of the

experimentally detected rate from the value predicted above is expected.

Detection of coincidences between photons generated through SPDC in the nanocylinder

is illustrated in Fig. 1a. In the experiment we use a CW pump laser, with a power of 2 mW
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at the wavelength of 785 nm. The generated photon pairs are expected to have a large spec-

tral bandwidth of about 150 nm, due to the broad magnetic dipole resonance in the IR spectral

range, as shown in Fig. 1c. This bandwidth is quite broad with respect to conventional SPDC

sources, which have typical sub-nm or few-nm bandwidth. This broad bandwidth offers a range

of advantages, including a short temporal width for timing-critical measurements, such as for

temporal entanglement (35), or for SPDC spectroscopy (36). It also dictates a sub-100 fs tem-

poral width of the generated photons, which is much shorter than the coincidence window τc

(see Methods).

The measured coincidences for an H-polarized CW pump are presented in Figure 3a, where

photon counting statistics is accumulated by integrating over 24 hours. For a time difference

of 26.5 ns, corresponding exactly to the temporal delay between both detectors, we observe a

single bin with high coincidence rate. This is consistent with the physics of SPDC generation

of signal and idler photons with the estimated temporal correlations of sub-100 fs. Although

it only emerges from the background by a limited number of counts (see Sec. 5 of the Supple-

mentary Information), this peak of coincidence rate is statistically relevant. We also observe

the indication of correlation due to thermal excitation of the semiconductor materials (37) with

approximately 2 ns width, as shown with the yellow-shadowed area and its Gaussian fit (green

line) in Fig. 3a.

The estimation of the SPDC rate from the AlGaAs nanocylinder that takes into account the

losses in the detection system (see Sec. 5 of the Supplementary Information) results in a total

photon-pair generation rate from our nanoantenna of dN gen
disk/dt = 35 Hz. Normalized to the

pump energy stored by the nanoantenna, this rate reaches values of up to 1.4 GHz/Wm, being

one order of magnitude higher than conventional on-chip or bulk photon-pair sources (4, 13)

(for details see Sec. 8 of Supplementary Information). Importantly, this rate is significantly

higher than the reference measurements of the AlOx/GaAs substrate without the nanocylinder
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Figure 3: Generation of photon-pairs in an AlGaAs disk nanoantenna. IR coincidence
counts integrated over 24 hours on two single-photon detectors after a beam splitter (shown
in Fig. S4 of the Supplementary Information). A significant statistical increase, marked by
the red bar, is apparent at a time difference of 26.5 ns, corresponding to the temporal delay
between both detectors. Black dots are the measured coincidences, the yellow shadowed area
indicates correlation due to thermal excitation of the semiconductor materials, while the green
line is its fitted Gaussian curve. The inset shows a schematic of the SPDC process and energy
correlation. (b,c) Numerically simulated fields inside the nanocylinder when exciting mx and
mz modes, respectively. The white arrows indicate the electric field vector.

(see Fig. S7 of the Supplementary Information), being dN gen
sub /dt = 9 Hz. We have also consid-

ered the likely influence of the AlGaAs nanocylinder on the SPDC from the substrate, such as

refocusing the pump beam or the photon pairs, however these were found to be negligible (see

Sec. 7 of the Supplementary Information).

Finally, we have numerically calculated the photon-correlation, shown in Fig. S10 of the

Supplementary Information, associated to the measured correlation of Fig. 3a. Only orthogonal

Cartesian components of magnetic dipole contribute to SPDC process, which leads to coupling
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of two magnetic dipole moments of the nanoantenna, namely mx and mz. The two coupled

modes for an H-polarised pump beam are shown in Fig. 3b and c. The coupling of these two sub-

wavelength modes efficiently generates photon pairs in the far-field via the antenna radiation and

underpins the measured photon correlation.

Perspectives

Our calculated correlation suggests that the photons spontaneously emitted from the AlGaAs

nanoantenna might constitute pairs of polarization-entangled twin photons, i.e. they are effi-

ciently generated when energy is conserved and spatial overlap of the corresponding subwave-

length field modes occurs. However increase of the photon-pair rates would be required to

unambiguously test the entanglement in our system.

We note that a possible increase in the rates of photon pair-generation and detection can

be further anticipated by tuning the wavelength and the angle of incidence of the SPDC pump,

as well as by optimising the nanoantenna geometry. Indeed, as shown in Figs. S4,S5 of the

Supplementary Information and following the discussed SFG-SPDC analogy, for a normal in-

cident pump, the generated SPDC photons will be mostly emitted under oblique angle with

respect to the nanocylinder axis. Therefore, exciting the disk with a doughnut-like cylindrical

vector beam or inclined beam might result in stronger generation of SPDC photons along the

normal direction. Additional increase of the efficiency is expected by measuring the SPDC in

transmission (as demonstrated by a 5-fold enhancement in the SHG efficiency (28)), employ-

ing Fano-resonant nanostructures (22, 38, 39), as well as by extending to an array of multiple

nanoantennas, in the regime of spatial multiplexing with non-trivial spatial correlation (40,41).

In summary, we have experimentally demonstrated the generation of bi-photon states in an

AlGaAs nanoantenna via SPDC. We have firstly inferred the polarization correlation of the gen-

erated photon pairs via the quantum-classical correspondence with the reversed SFG process.
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SFG polarization maps and radiation diagrams not only allowed us to determine the efficiency

of nonlinear interactions in the resonator, but also reveal the directionality of the nonlinear

emission. Secondly, we have demonstrated experimentally, for the first time to our knowledge,

a spontaneous photon-pair source at the nanoscale with a bi-photon rate of up to 35 Hz. This

is significantly higher than conventional SPDC photon sources, when normalised to the energy

stored by the nanoantenna. We also predict further potential to increase the rates in combination

with shaping the radiation pattern and frequency correlations in nanocylinder arrays.

The demonstrated nanoscale two-photon source lends itself to flexible quantum state engi-

neering by possible tailoring of the spectral and radiation profile of the nanoantenna. We can

also envisage the possibility of arranging multiple nanoantennas in a designer fashion to form

a metasurface for generation of complex spatially entangled states. Our nanoantenna concept

is not just limited to the SPDC photon-pair generation but is also applicable to other multi-

photon quantum sources. It can thus open new opportunities for quantum applications such as

free-space quantum communications.

Supplementary Material accompanies this paper.

Materials and Methods

Sample Fabrication.

We fabricate crystalline AlGaAs monolithic nanoantenna, since this material platform provides

strong second order nonlinear susceptibility. The fabrication steps follow the procedure devel-

oped in Ref. (26). The AlGaAs layers are grown by molecular-beam-epitaxy on [100] non-

intentionally doped GaAs wafer. A 400 nm layer of Al0.18Ga0.82As sits on top of a 1-µm-thick

Al0.98Ga0.02As substrate sandwiched between two transition regions with varying aluminum mo-

lar fraction, in order to improve the eventual optical quality of the interface between AlOx and

the adjacent crystalline layers. Patterned circles with radii of 215 nm, and equally spaced by
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10 µm, were produced with a scanning electron microscope lithography system. It followed a

dry etching of the sample with non-selective ICP-RIE with SiCl4:Ar chemical treatment. The

etching depth of 400 nm, controlled by laser interferometer, defined the nanocylinders and re-

vealed the AlAs layer. The etched sample was then oxidized at 390◦C for 30 minutes in an

oven equipped with in situ optical monitoring, under a precisely controlled water vapor flow

with N2:H2 gas carrier. After oxidation, each Al0.18Ga0.82As nanocylinder lies upon a uniform

AlOx substrate, whose low refractive index enables sub-wavelength optical confinement in the

nanocavity by total internal reflection. An SEM image of the AlGaAs nanocylinders is pre-

sented in Fig. 1b.

Numerical simulations.

The linear and nonlinear response of the AlGaAs nanoantenna is modelled numerically using

FEM solver in COMSOL Multiphysics, in the frequency domain. The material dispersion of

AlGaAs is taken from Ref. (42). The Q factor of the resonances are estimated by calculating

the complex frequency of resonances around the fundamental and harmonics wavelengths using

FEM solver through eigenfrequency analysis in COMSOL Multiphysics. The second-order

susceptibility tensor of the [100] grown AlGaAs, possessing a zinc blend crystalline structure,

is anisotropic and contains only off-diagonal elements χ(2)
ijk with i 6= j 6= k. We predict the

SPDC output and correlations based on the quantum-classical analogy between the SPDC and

the SFG processes (32). For the SFG process, assuming an undepleted pump approximation, we

follow two steps. Firstly, we simulate the linear scattering at the fundamental wavelengths λs

and λi. The bulk nonlinear polarization induced inside the particle is then employed as a source

for the electromagnetic simulation to obtain the generated SF field. Based on the calculated SF

field and the field at the signal and idler wavelengths λs and λi, we further obtain the SPDC

output correlations based on the quantum-classical analogy, as shown in Eq. (1).
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SFG measurements.

Pulsed signal and idler beams are derived from a broadband femtosecond laser with a repetition

rate of 80 MHz (Toptica, FibrePro). The two pulses are generated by spectrally slicing the 100 fs

long pulses (bandwidth of 80 nm) into two paths at central wavelengths of 1520 and 1560 nm.

After appropriate polarization conversion via the use of half and quarter wave plates, the two

pulses are recombined with a 50:50 beam splitter and focussed onto the nanoantenna at normal

incidence by a 0.7 NA objective (as shown in Fig. S1 of the Supplementary Information). The

reflected SFG radiation was collected in reflection through the same objective, separated from

the signal and idler by a dichroic mirror. A short-pass filter at 800 nm is subsequently used for

removal of the photoluminescence from the substrate, while a long-pass filter at 600 nm is used

to remove the third harmonic emission component from the nanocylinder. The SFG emission

was then acquired with a spectrometer or with a cooled camera in the real space. An additional

confocal lens focusing at the objective back focal plane is used for imaging the emission pattern

in the Fourier space.

SPDC measurements.

The statistics of photons generated in SPDC can be characterised by measuring the second-order

correlation g(2) = Rc/(R1R2τc) using a beam splitter and two single-photon detectors at both

outputs of this beam splitter (13). Here Rc is the rate of coincidences between the detectors,

corresponding to SPDC, while Racc = R1R2τc is the accidental coincidence rate that includes

the count rates on each detector R1 and R2. The coincidence time window is τc. We expect

maximum g(2) at the zero time delay for the simultaneous arrival of the two photons (43).

In our experiments, we used a CW pump beam at a central wavelength of 785 nm and a

linewidth of < 10 MHz, horizontally polarized, to pump the nanoantenna at normal incidence

via a 0.7 NA objective (as shown in Fig. S4 of the Supplementary Information). The choice of
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the CW laser is justified by the fact that the SPDC photon-pair generation rate scales linearly

with the average pump power. Furthermore, the CW operation allows us to eliminate the time-

correlated noise if a pulsed pump was used, since a CW source has a flat temporal profile and a

coherence time > 100 ns, which is larger than the measured coincidence time range of' 40 ns.

The reflected SPDC signal and idler photon pairs were collected in reflection through the

same objective, separated by the pump with a dichroic mirror, and further filtered in free-space

from the residual pump with the use of three long-pass filters at 1100 nm. The photon pairs were

then separated by a 50:50 beam splitter into two paths and coincidences were measured with

two gated InGaAs avalanche photo-diodes (IDQ230) and a time-tagging module (ID801-TDC).

The detectors are coupled with multi-mode fibres and operate at −90◦C with an efficiency of

10% and dark counts of 5 Hz. The counting scheme consisted of a coincidence window of 300

bins with a bin width of τc = 162 ps.
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