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ABSTRACT 1 

Background: Deep brain stimulation (DBS) surgery is an option for patients experiencing 2 

medically resistant neurological symptoms. DBS complications are rare; finding significant predictors 3 

requires a large number of surgeries. Machine learning algorithms may be used to effectively predict 4 

these outcomes. The aims of this study were to (1) investigate preoperative clinical risk factors, and (2) 5 

build machine learning models to predict adverse outcomes. 6 

Methods: This multicenter registry collected clinical and demographic characteristics of patients 7 

undergoing DBS surgery (n=501) and tabulated occurrence of complications. Logistic regression was 8 

used to evaluate risk factors. Supervised learning algorithms were trained and validated on 70% and 9 

30%, respectively, of both oversampled and original registry data. Performance was evaluated using 10 

area under the receiver operating characteristics curve (AUC), sensitivity, specificity and accuracy. 11 

Results: Logistic regression showed that the risk of complication was related to the operating 12 

institution in which the surgery was performed (OR=0.44, confidence interval [CI]=0.25-0.78), BMI 13 

(OR=0.94,CI=0.89-0.99) and diabetes (OR=2.33,CI=1.18-4.60). Patients with diabetes were almost 14 

three times more likely to return to the operating room (OR=2.78,CI=1.31-5.88). Patients with a history 15 

of smoking were four times more likely to experience postoperative infection (OR=4.20,CI=1.21-16 

14.61). Supervised learning algorithms demonstrated high discrimination performance when predicting 17 

any complication (AUC=0.86), a complication within 12 months (AUC=0.91), return to the operating 18 

room (AUC=0.88) and infection (AUC=0.97). Age, BMI, procedure side, gender and a diagnosis of 19 

Parkinson’s disease were influential features. 20 

Conclusions: Multiple significant complication risk factors were identified and supervised learning 21 

algorithms effectively predicted adverse outcomes in DBS surgery.  22 

  23 
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INTRODUCTION 24 

The primary aim of this study was to look at which preoperative clinical factors were related to 25 

complications that develop in deep brain stimulation (DBS) therapy. DBS is a safe, effective and 26 

common surgical intervention for a range of neurological disorders including Parkinson’s disease and 27 

essential tremor 1–7. Through electrodes implanted in the brain, DBS therapy stimulates deep subcortical 28 

brain structures, including the subthalamic nucleus (STN), the ventral intermedius nucleus (VIM) and 29 

the globus pallidus (GPi) to alleviate neurological symptoms like tremor, motor fluctuations, and 30 

rigidity 4,5,8. It is a treatment modality that is considered when a patient’s symptoms have not been 31 

satisfactorily alleviated by medical management 9–14. 32 

DBS therapy requires an initial electrode implantation operation and subsequent surgery to place 33 

device generators. Potential complications arising from DBS surgery include infection, intracerebral 34 

hemorrhage, seizures and hardware failure, which can lead to unplanned return to the operating room. 35 

Post-operative readmission rates range from 1.9% (30-day) to 4.3% (90-day) 1. Factors likely associated 36 

with complications include age, smoking history, obesity, diabetes, hypertension and facility surgical 37 

volume 1,15.  Advanced age and hypertension have been associated with the risk of intracranial 38 

hemorrhage 16,  and readmission after DBS surgery has been associated with preoperative coronary 39 

artery disease, obesity and a history of smoking 1. Further, there is a seasonal variation in DBS 40 

infection, often referred to as the July effect 17.    41 

Integrating preoperative risk assessment into standard clinical care fosters a shared decision making 42 

process between the surgical team, the patient and clinical enablers 18.  Performing pre-operative risk 43 

assessment for DBS procedures is challenging due to limited data suggesting the contributions of 44 

individual risk factors to post-operative complications. It is arguable that the literature surrounding 45 

DBS surgery risk remains inconclusive because the low frequency of complications limits the power 46 

and sensitivity of traditional statistical methods. To study this problem, a multi-institutional database of 47 

complications and risk factors was compiled, and a pilot study analysed it. Similar to the literature, the 48 

only relationship found was an association between smoking and infection risk. The standard statistical 49 

methods applied were ineffective at determining significant clinical risk factors related to 50 

complications, such as body mass index, diabetes, hypertension, smoking, and age. So, a different 51 
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approach to identifying relationships between complications and risk factors, involving the use of 52 

machine learning, was designed and deployed.  53 

Machine learning, a branch of artificial intelligence, represents a powerful set of technologies that 54 

enable three main tasks: classification, regression and clustering 19. Supervised learning involves 55 

training algorithms with datasets that contain labelled outcomes for each case. Supervised learning (i.e., 56 

classification and regression) uses input features (X) to predict a defined outcome (Y), while 57 

unsupervised learning (i.e., clustering) involves analyzing input variables (X) to elucidate patterns and 58 

structure in the data. Supervised learning algorithms can predict rare events such as surgical 59 

complications 20 and have the potential to improve patient risk stratification, clinical decision making, 60 

informed consent and health service planning 18,21–25. Supervised learning has been used in DBS surgery 61 

to predict clinical outcomes 26,27, surgical targets 28,29, side effects 30, discharge status 31 and 62 

neurophysiological detection of DBS structures 32–34.  63 

Extreme gradient boosting machines (XGBM) are a type of supervised learning algorithm. It uses 64 

decision tree-based learning and shows strong performance on a diverse array of problems. It operates 65 

by strategically combining networks of sequential decision trees. Later decision tree models correct 66 

inaccuracies in previous models to improve prediction performance 35. An XGBM model is comprised 67 

of an ensemble of decision trees. The development of algorithms that incorporate gradient boosting has 68 

produced highly robust regression and classification methods 36. XGBMs appear to have performed 69 

well in various domains 35,37–41 and have been shown to perform particularly well on datasets 70 

characterized by class imbalance 42,43. Many supervised learning algorithms perform well as predictive 71 

tools partly because they can estimate complex nonlinear relationships in high volume datasets using 72 

weighted statistical functions in a way that cannot be perceived by linear models or clinicians 44–47. 73 

Logistic regression is one such linear classification model. Two advantages it affords are that it is easily 74 

interpretable, and it delivers measures of statistical significance.  75 

Class imbalance describes a situation where the number of one event type (e.g., postoperative DBS 76 

complications) is very low compared to another event type (e.g., no postoperative DBS complications) 77 

48. A class is a subcategory within a variable in a dataset. For example, within a variable capturing data 78 

on postoperative complications, one class may represent the complication state, while another class may 79 
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represent the no-complication state. Class imbalance essentially refers to differences in class 80 

probabilities 49. Postoperative DBS complications are low probability events. There is a much higher 81 

probability that DBS patients will experience no postoperative complications. This imbalanced outcome 82 

probability is what is meant by researchers referring to imbalanced classes. Chawla (2010) states that a 83 

dataset is imbalanced if the classification categories are not equally represented 50. The performance of 84 

some supervised learning algorithms is undermined by class imbalance, resulting in output 85 

classifications that default simply to the majority class 51–53 . However, class imbalance characterizes 86 

many real-world datasets from biomedicine 52, to finance 54, aviation 55 and geoscience 56. Class 87 

imbalance is one of the main barriers to effectively predicting postoperative complications in 88 

neurosurgery 18,19,24,31.  89 

Because the class imbalance problem is so prevalent 53, much research in the fields of predictive 90 

analytics, data mining and machine learning has focused on developing and testing methods to 91 

effectively address it, at both the algorithm and data levels 49,51,52,57–59. The Synthetic Minority 92 

Oversampling Technique (SMOTE) has emerged as one effective method of addressing the class 93 

imbalance issue at the data level 59. It operates by creating additional synthetic cases based upon 94 

existing minority cases and the k-nearest neighbor algorithm. It balances the class distribution by 95 

synthesizing new additional minority class examples through a process of interpolating between 96 

multiple minority class examples that lie together in multidimensional space. In this way, SMOTE has 97 

been intentionally designed to avoid the predictive analytics problem of overfitting 53. Another strength 98 

of employing the SMOTE method is that no cases in the dataset need to be excluded from the predictive 99 

analysis, which is particularly useful in neurosurgery where cases are not common and datasets are 100 

often not large (i.e., hundreds of cases rather than thousands). The application of SMOTE may 101 

effectively facilitate the prediction of DBS complications, which would be of substantial utility to 102 

clinicians.  103 

This study sought to answer the following two research questions. Can multivariate logistic 104 

regression detect significant associations between preoperative variables and postoperative outcomes? 105 

Can DBS complications be accurately predicted by applying the XGBM algorithm and SMOTE? 106 
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METHOD 107 

Subjects 108 

This study was approved by Institutional Review Boards at each study site. Due to the retrospective 109 

nature of the study, the requirement for informed consent was waived. A combined registry was created 110 

comprising 501 adults who underwent initial DBS implantation surgeries between October 1997 and 111 

May 2018 at two private practices. Procedures included were performed by five neurosurgeons at two 112 

neurosurgical centers over a 22-year period. Patients underwent DBS implantation for Parkinson’s 113 

disease (n=348), essential tremor (n=129), dystonia (n=11) and other indications (n=13). 114 

Surgical Technique  115 

The general surgical technique was relatively similar among all surgeons. Primary surgeons at each 116 

institution each had >15 years of experience in DBS surgery. A frame-based approach was used in 117 

patients with DBS lead placement (unilateral or bilateral) using Medtronic 3389 or 3379 leads.  118 

Microelectrode recording was used in all cases. A single microelectrode was used to identify and 119 

confirm the target in all cases. The average number of microelectrode passes per lead was 1.4. 120 

Intraoperative imaging of lead location with cone beam CT was performed in some cases beginning in 121 

2008. The majority of patients underwent intraoperative bipolar review of clinical efficacy and side 122 

effects in an “awake” state 60. Generator placement was staged one to two weeks after initial lead 123 

implantation. All patients underwent postoperative MRI and/or CT scans within a week of lead 124 

implantation.   125 

Data 126 

Pre-existing quality assurance databases of DBS patients and their outcomes from both research 127 

sites were combined. Additional retrospective data were collected from electronic medical records. 128 

Potential risk factors were recorded, including age, gender, BMI, clinical diagnosis, smoking history, 129 

immunosuppression, hypertension (medications taken within 90 days of surgery), diagnosis of diabetes 130 

mellitus, hypertension, surgical target (VIM, STN, GPi) and procedure side (left, right, bilateral).   131 

Complication categories were intracranial hemorrhage, readmission, ischemic infarction, seizure, 132 

lead fracture, electrode migration, loose or flipping battery needing surgical revision, device 133 
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malfunction, return to the operating room and infection. An infection was defined as an event requiring 134 

surgical removal of hardware, regardless of the time after implantation. This included perioperative 135 

infections within 3 months of surgery, as well as delayed infection associated with hardware erosion or 136 

other systemic infections and infections after generator replacement surgery that could have been years 137 

later. Intracranial hemorrhage was defined as any form of new post-operative bleeding on radiology 138 

report, with or without neurological sequelae and not necessarily requiring surgical intervention. Return 139 

to the operating room included all surgeries that required a return to the operating room, regardless of 140 

time since lead implantation, for indications including haemorrhage, infection, erosion of hardware, 141 

fracture of hardware detected on imaging or as open circuit on programming, revision of lead location, 142 

revision of flipping or loose generator, or tight extension wires. Four primary outcomes were recorded 143 

for each patient: any postoperative complication, a complication within 12 months of surgery, return to 144 

the operating room and infection. 145 

Analysis 146 

Unilateral (n=151), simultaneous bilateral (n=296) and staged bilateral lead implantation (n=54) 147 

were counted each as a single case. Descriptive statistics, multivariate logistic regression and 148 

supervised learning model development were performed using Python 3.6. 149 

Neural network development for BMI data imputation  150 

Missing data can create problems for some supervised learning algorithms and may necessitate 151 

dropping entire cases. Further, missing data can adversely affect the validity of results 61. Out of 501 152 

cases, there were 51 missing BMI values. Given the scarce nature of DBS case data and the resources 153 

required to collect it, the research team was motivated to retain as many cases as possible for analysis. 154 

Data imputation addresses this issue and various methods can be used 61–65. Four neural network 155 

regression models were developed to impute BMI for the cases with missing data. BMI values were 156 

imputed using all pre- and post-operative variables in the dataset. One neural network was selected for 157 

imputation regression because it demonstrated the best performance. Mean BMI before and after 158 

imputation did not differ significantly (27.57, SD=5.06 and 27.39, SD=5.98, respectively; p=0.58).  159 

Feature selection 160 
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Three criteria were used when selecting input features for the models: (1) existing evidence in the 161 

literature suggesting a relationship between the feature and the outcome, (2) availability of the feature 162 

in the dataset; and (3) clinical expert approval that the feature under consideration was clinically related 163 

to the outcome variable. 164 

Multivariate logistic regression to detect associations 165 

Multivariate logistic regression was conducted using the statsmodels [53] and scikitlearn [54] 166 

packages. Multivariate model performance, odds ratios (OR) and confidence intervals (CI) were 167 

calculated for each risk factor. Features with negligible statistical contribution to multivariate models 168 

(z-score <0.02) were excluded and models were subsequently retrained. 169 

XGBM model development for postoperative complication prediction 170 

Multiple classifiers were tested and compared to predict postoperative complication outcomes, 171 

including logistic regression, random forests, decision trees and support vector machines. Algorithm 172 

performance statistics were compared using multiple metrics including area under the receiver 173 

operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value and 174 

negative predictive value. XGBM was among the highest performing classifiers. Because of this and 175 

previous literature demonstrating strong performance on imbalanced datasets, multiple XGBM models 176 

were developed using the XGBoost 66 package. For each of the four primary outcome variables, three 177 

XGBM models were created: one using the original dataset, one using the SMOTE dataset 59, and one 178 

using a SMOTE training dataset with a non-SMOTE validation dataset.  179 

Each model was trained on a 70% sample of the dataset and validated on the remaining 30%. In the 180 

original dataset, this resulted in 350 training cases and 151 validation cases. In the SMOTE 181 

oversampled datasets, ratios of training:validation case numbers were as follows: any complication, 182 

585:251; complication within 12 months, 618:266; return to the operating room, 627:269; and infection, 183 

663:285. SMOTE was selected over other techniques to address class imbalance because (1) it allowed 184 

retention and use of all cases in the DBS dataset, (2) it was designed to avoid overfitting, and (3) it has 185 

been implemented as an accessible Python package. 186 
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Hyperparameter tuning involving grid-search with 5-fold cross-validation was used to find optimal 187 

XGBM parameters. Grid-search employed 1512 hyperparameter combinations, resulting in 7560 fit 188 

cycles for each of the XGBM models. Using the optimal hyperparameters found in the grid-search 189 

process, internal cross-validation was conducted with the number of boosting rounds set at 50 and the 190 

number of early stopping rounds set at 10. AUC was used as the performance metric in this process.  191 

Predictions were made using the optimized model and the validation test sets. Confusion matrices 192 

and performance statistics were computed. Performance metrics included AUC, accuracy, sensitivity, 193 

specificity, positive predictive value and negative predictive value 44,67,68. Feature importance was 194 

calculated, decision trees were visualized and receiver operating characteristics (ROC) curves 195 

developed. Figure 1 outlines the analysis process overall. 196 

  197 
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RESULTS 198 

Descriptive statistics are displayed in Table 1. Mean age at implant was 64±10.3 years.  The 199 

majority of patients were male (63%), were diagnosed with Parkinson’s disease (70%), had a BMI of 200 

25 or more (67%) and underwent a simultaneous bilateral (59%) STN procedure (70%). Patient 201 

characteristics did not differ significantly between institutions. 202 

Complication Rates 203 

There were 27 (5.4%) infections over the period of observation (mean 455 days). These infections 204 

were either perioperative, occurring within 3 months of lead implantation in 13 (2.6%) patients, or 205 

delayed in 14 (2.8%) patients. The median time to onset of all infections was 3.3 months. Delayed 206 

infections were typically related to hardware erosion, systemic infections, generator replacement, or 207 

appeared spontaneously. 208 

Surgical revision of hardware occurred in 26 (5.2%) patients, on average 28 months after initial 209 

implantation. These revisions were for lead or extension wire fracture in 18 (3.6%) patients, loose 210 

hardware in seven (1.4%), or repositioned leads due to side effects or poor efficacy in eight (1.6%).  211 

Intracranial hemorrhage occurred in 15 (3.0%) patients, all associated with lead implantation. This 212 

included intraparenchymal hemorrhage along the lead and subdural hematoma. No deaths occurred in 213 

any of these cases. Of these hemorrhages, 2 of 501 patients (0.4%) had substantial morbidity requiring 214 

surgical intervention. Other hemorrhages, 13 (2.6%), were observed on imaging, and resolved without 215 

surgical treatment or neurological sequelae. 216 

Risk factors identified using logistic regression 217 

Logistic regression demonstrated statistically significant relationships between risk factors and 218 

complications (Table 2). Diabetic patients were nearly three times more likely to return to the operating 219 

room than those without diabetes (OR=2.78, CI=1.31-5.88, p<0.01). Postoperative infection was 220 

associated with a history of smoking (OR=4.20, CI=1.21-14.61, p<0.05). It appeared that patients with 221 

a history of smoking were more than four times more likely to experience postoperative infection. 222 

Experiencing any type of complication was associated with operating institution (OR=0.44, CI=0.25-223 

0.78, p<0.01), BMI (OR=0.94, CI=0.89-0.99, p<0.05) and diabetes (OR=2.33, CI=1.18-4.60, p<0.05). 224 
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Operating institution was also significantly associated with experiencing a complication within 12 225 

months (OR=0.36, CI=0.18-0.70, p<0.01). The institution with slightly higher complication rates 226 

appeared to have operated on a patient sample with higher comorbidity rates (Table 3).  227 

Complication prediction with XGBM models 228 

XGBM models coupled with the SMOTE dataset demonstrated strong predictive performance 229 

(Table 4). These models demonstrated higher performance (validation AUC: 0.86-0.97) compared to 230 

models trained and validated on the original dataset (validation AUC: 0.57-0.69). Models based on the 231 

SMOTE dataset predicted high numbers of true positives and true negatives. Models trained on the 232 

SMOTE training dataset and validated on the non-SMOTE holdout sample demonstrated performance 233 

that was not substantially superior to the models trained on the original dataset.  234 

ROC curves were generated by running the trained models on the holdout validation datasets. The 235 

ROC curves and corresponding AUC associated with the four SMOTE XGBM models showed strong 236 

performance (Figure 2). 237 

Plotting feature importance  238 

Feature importance metrics were plotted for each of the SMOTE XGBM models (Figure 3). Age, 239 

BMI, procedure side, gender, a diagnosis of Parkinson’s disease, institution and comorbidities appeared 240 

to be the most influential predictive features associated with complications. Feature importance 241 

appeared to vary slightly by model. When plotting complicated cases in the original dataset according 242 

to BMI and age, cases clustered at approximately age 70 and a BMI of 24 (Figure 4).  243 

Carrying out predictions on hypothetical patient data 244 

A set of hypothetical patients is shown to demonstrate the output of the XGBM predictive models 245 

(Table 5). Risk thresholds similar to those developed in cardiology risk stratification research were 246 

applied to facilitate interpretation of model output (low=<10%, moderate=10-15%, high=16-50%, very 247 

high= >50%) 69.  248 

  249 
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DISCUSSION 250 

This study found multiple clinical predictors of complications in DBS surgery using supervised 251 

machine learning algorithms. Logistic regression showed that patient BMI, diabetes and operating 252 

institution were significantly associated with all complications grouped together. Diabetics were almost 253 

three times more likely to return to the operating room. A history of smoking was significantly 254 

associated with postoperative infection. 255 

The XGBM supervised learning algorithm demonstrated strong predictive performance. The results 256 

of this study suggested that XGBMs, coupled with a SMOTE oversampling method, may be employed 257 

to successfully overcome the class imbalance problem and effectively predict complication outcomes in 258 

DBS surgery. This method may be used to estimate any individual patient’s risk of complications. 259 

Plotting feature importance demonstrated that age, BMI, gender, procedure side, a diagnosis of 260 

Parkinson’s disease, the operating institution and preoperative comorbidities were influential predictors 261 

of postoperative complications. The results of this study that suggested associations between 262 

preoperative risk factors and postoperative adverse outcomes are supported by previous research 263 

demonstrating that many of these same factors are significantly associated with complication outcomes 264 

in DBS surgery 31,70,71 and in other forms of neurosurgery 18,23,24,72,73.  265 

Surgeons often perceive patterns in their clinical practice. Machine learning algorithms seem to 266 

approximate well the intuition of the surgeon. Postoperative complications are likely to arise as a result 267 

of complex interactions between many risk factors 74. While logistic regression has been deployed in 268 

the past to predict surgical outcomes 18,24, other supervised learning algorithms, including XGBM, may 269 

be better suited to modeling these complex nonlinear relationships 44,48,75.  270 

This study has demonstrated one potential approach to addressing the class imbalance problem, 271 

which is a major issue in surgical risk stratification 18,19,24,31. The approach employed here, applying 272 

SMOTE oversampling in conjunction with the XGBM supervised learning algorithm, produced 273 

encouraging results.  274 

Simple linear relationships between risks and outcomes are intuitive. Linear and logistic regression 275 

generate statistical weights associated with each predictor and can be represented with a linear equation.  276 

These approaches offer rapid interpretability and an impression of understandability. In contrast, 277 
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advanced supervised machine learning algorithms are often more complex, inscrutable and opaque. 278 

Surgeons are likely to have a lower level of trust in, and therefore may demonstrate weaker adoption of, 279 

opaque machine learning algorithms as decision support tools. The XGBM performance statistics, 280 

feature importance plots and hypothetical cases generated help to address this issue by providing some 281 

insight into the mechanics of the XGBM models developed. More work on developing the 282 

“explainability” of these models is required. 283 

A collection of hypothetical cases was presented to demonstrate the risk stratification outputs of the 284 

supervised learning models developed. There may be a tendency to attempt to identify patterns in the 285 

hypothetical patient data displayed and the corresponding risk evaluation output statistics. However, 286 

this tendency is fraught because the number of hypothetical cases displayed is small and the algorithms 287 

are able to model complex nonlinearities in the data, based on hundreds of training cases, which are 288 

likely to evade human judgement. Similar to previous research 18, these examples provide a random 289 

selection of cases and patient characteristics to offer clinicians a general sense of the predictive risk 290 

outputs of the models trained. They are not intended to offer a systematic demonstration of the complex 291 

relationships modeled by the trained algorithms. 292 

These machine learning models have the potential to facilitate patient safety improvements 76. They 293 

may be used to stimulate a deeper conversation about complications with a patient prior to surgery, 294 

more attention throughout the process from the surgeon and surgical team, closer patient follow-up and 295 

activation of other organizational patient support processes postoperatively. Models of this nature 296 

should form part of a broader comprehensive approach to clinical risk stratification and patient safety 297 

improvement. As an example from another domain of neurosurgery, the Seattle Spine Team has 298 

developed a systematic and standardised approach that incorporates multidisciplinary patient review 299 

conferences, specialized clinical teams, intraoperative monitoring protocols and multi-surgeon 300 

operating practices, in addition to the development of experimental decision support systems 301 

underpinned by machine learning methods 24,77–84. 302 

The advantages of using machine learning methods to stratify risk in neurosurgery are numerous. 303 

Machine learning methods are more capable of capturing complex nonlinearities in very large datasets 304 
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than traditional statistical techniques and can be deployed to production using cloud computing services 305 

for potential use by clinicians and patients globally 85,86. These tools are well-suited to high-volume 306 

complex data processing, they facilitate access to information, they save time and they have the 307 

potential to augment the clinical functioning of the neurosurgeon. Incorporating machine learning tools 308 

into the neurosurgical workflow may assist in reducing the likelihood of clinical error and positively 309 

engaging the patient. Supervised machine learning models can provide accurate and individualized 310 

outcome predictions, which are likely to be beneficial as healthcare progresses toward a future that is 311 

more precise and value based. Prediction datapoints may feed into and influence perioperative care 312 

processes and decisions or intraoperative treatment by human and robotic systems. On the other hand, it 313 

may not be suitable to apply machine learning methods to datasets that are erroneous, exceedingly 314 

noisy, obsolete or biased. In these cases, it may be preferable to rely on the unassisted judgment of the 315 

expert surgeon and an experienced clinical team.  316 

Limitations and future research 317 

The performance metrics using SMOTE oversampling and extreme gradient boosting were strong. 318 

Such high performance of the XGBM algorithms suggests that some degree of overfitting may have 319 

occurred, despite built-in overfitting mitigation. This, however, is difficult to assess, particularly in the 320 

context of limited case data. Caution and appropriate clinical judgement should be exercised if 321 

deploying and using these models to make predictions on new patient data. Further validation on new 322 

data from other institutions and larger datasets would be beneficial. 323 

While assessing the effects of the use of intraoperative CT on complication rates and patient 324 

outcomes was beyond the scope of this study, it may have been beneficial to control for its use in the 325 

analysis. Per patient labelling of this variable was not captured in the dataset and this is therefore a 326 

limitation of this study. Similarly, it would be beneficial for future predictive modeling studies to 327 

control for additional preoperative clinical variables in multivariate analyses. These may include pre- 328 

and post-operative functional status, anemia, operating time, the number of electrode passes, passage 329 

through the ventricle and a patient history of coronary artery disease or stroke. 330 
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A primary aim of this study was to develop models capable of stratifying patient complication risk 331 

in DBS surgery. To achieve this and to mitigate the limitations of the dataset, complication 332 

subcategories were amalgamated into a superordinate variable representing general clinical risk and 333 

adverse outcomes. This approach allowed the development of a set of useful and applicable models. 334 

However, it must be noted that these models are broad in their risk predictions and that to predict 335 

specific types of complications, which would enable the implementation of specific clinical risk 336 

mitigation tactics (e.g., augmented infection prevention or operating room preparation for a returning 337 

patient), larger datasets and more modeling work are required. The variables included in the 338 

superordinate complication outcome variable fall logically under the banner of adverse postoperative 339 

clinical events. While the specific outcomes that make up this variable may be considered diverse, 340 

amalgamating them remains clinically useful because together they broadly indicate high risk patients 341 

that may require additional critical clinical thought and discussion, resources and careful perioperative 342 

management. 343 

Future research may deploy the methods applied here for the prediction of complications associated 344 

with other surgical procedures that are characterized by a similar class imbalance problem. Studies may 345 

also develop supervised learning models to predict positive functional outcomes and the degree of 346 

functional improvement associated with various neurosurgical procedures. Future work may focus on 347 

the development of clinical decision support systems to be applied in clinical practice and to deliver 348 

decision-support benefits directly to patients via application to patient consultations in the clinics 87.   349 

Conclusion 350 

Significant complication risk factors were detected and supervised machine learning algorithms 351 

effectively predicted adverse outcomes in DBS surgery. These supervised learning models can be used 352 

for the improvement of risk stratification, preoperative patient informed consent and clinical planning 353 

to make DBS surgery safer for patients. XGBMs and SMOTE appear to be useful tools for the 354 

prediction of complication outcomes and risk stratification in DBS surgical practice.  355 

  356 
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Figure legend:  

• Figure 1: Schematic outline of the two main phases of the analysis process. 

• Figure 2: ROC curves for each of the SMOTE XGBM models, derived from the holdout test validation 

datasets.  

• Figure 3: Feature importance plots for each of the SMOTE XGBM models. BMI = body mass index. DM 

diabetes mellitus. GPi = globus pallidus. HB = hemiballismus. HTN = hypertension. L = left. PD = 

Parkinson’s Disease. R = right. STN = subthalamic nucleus. VIM = ventral intermedius nucleus. 

• Figure 4: Joint plots of complicated cases (any complication; A) and uncomplicated cases (B) in our 

sample according to age and BMI. Complicated cases clustered at approximately age=70 and BMI=24, 

whereas uncomplicated cases clustered at approximately age=69 and BMI=28. Histograms plot age and 

BMI frequency distributions. 



Feature Category Feature Feature class Count (%)  

Predictors Institution Institution 1  201 (40%) 

Institution 2  300 (60%) 

Age 75 and over  70 (14%) 

Under 75 431 (86%) 

Gender Male 318 (63%) 

Female 183 (37%) 

Diagnoses Parkinson’s disease 349 (70%) 

Essential tremor 129 (26%) 

Dystonia 11 (2%) 

Other 12 (2%) 

BMI ≥25 335 (67%) 

18 to 24.9 157 (31%) 

<18 9 (2%) 

Comorbidities and risk factors Smoking history 25 (5%) 

Immune suppressed 25 (5%) 

Diabetes 67 (13%) 

Hypertension 231 (46%) 

Procedure type Subthalamic (STN) 349 (70%) 

Thalamic (VIM) 128 (26%) 

Globus pallidus internus (GPi) 22 (4%) 

Other 2 (0%) 

Outcomes Intracranial hemorrhage 15 (3%) 

Readmission 17 (3%) 

Ischemic infarction 3 (1%) 

Seizure 3 (1%) 

Lead fractures 18 (4%) 

Electrode migration 8 (2%) 

Battery loose or flipping 7 (1%) 

Device malfunction 26 (5%) 

Return to operating room 53 (11%) 

Infection 27 (5%) 

Hemiparesis 5 (1%) 

Facial droop 6 (1%) 

Sensory change 4 (1%) 

Complication other 8 (2%) 

Complication any 83 (17%) 

Complication within 12 months 59 (12%) 
 

Table 1: Descriptive statistics displaying the classes of each of the predictors and outcome features in the 

dataset of 501 DBS patients. Other diagnoses included cluster headache, Holmes tremor and Tourette 

Syndrome.  



 

  Any complication  Complication within 12 months Return to the operating room Infection 

  Coefficient OR (95% CI) Coefficient OR (95% CI) Coefficient OR (95% CI) Coefficient OR (95% CI) 

Intercept 0.35 1.55  

(0.35, 6.90) 

-0.60 0.55  

(0.10, 3.00) 

-0.79 0.46  

(0.08, 2.67) 

-2.20 0.11  

(0.01, 1.11) 

D
e

m
o

g
ra

p
h

ic
s 

Institution 02 -0.82** 0.44  

(0.25, 0.78) 

-1.03** 0.36  

(0.18, 0.70) 

-0.39 0.68  

(0.35, 1.34) 

-- -- 

Age 75 and over 0.44 1.55 

(0.77, 3.13) 

0.53 1.70 

(0.75, 3.84) 

0.17 1.18  

(0.50, 2.80) 

0.90 2.45  

(0.88, 6.78) 

Male -0.09 0.91 

(0.55, 1.51) 

0.06 1.06 

(0.58, 1.91) 

-0.09 0.91  

(0.50, 1.68) 

0.13 1.14  

(0.48, 2.68) 

BMI at implant -0.07* 0.94 

(0.89, 0.99) 

-0.05 0.95 

(0.90, 1.01) 

-0.04 0.96  

(0.90, 1.02) 

-0.06 0.95  

(0.87, 1.03) 

C
li

n
ic

a
l 

fe
a

tu
re

s 

Diabetes 0.84* 2.33 

(1.18, 4.60) 

0.78 2.17 

(0.98, 4.80) 

1.02** 2.78  

(1.31, 5.88) 

0.56 1.75  

(0.58, 5.29) 

Hypertension 0.00 1.00 

(0.58, 1.73) 

0.21 1.23 

(0.65, 2.32) 

-0.18 0.84  

(0.43, 1.60) 

0.83 2.29  

(0.99, 5.30) 

Smoking history 0.16 1.18 

(0.40, 3.46) 

0.38 1.46 

(0.45, 4.79) 

0.27 1.31 

(0.41, 4.25) 

1.44* 4.20  

(1.21, 14.61) 

Immunosuppression 0.14 1.15 

(0.38, 3.55) 

0.35 1.42 

(0.43, 4.67) 

-1.30 0.27  

(0.03, 2.27) 

-- -- 

ET 0.02 1.02 

(0.23, 4.55) 

0.53 1.70 

(0.43, 6.67) 

-0.02 0.98 

(0.19, 5.09) 

-0.45 0.64  

(0.07, 5.96) 

Dystonia -1.02 0.36 

(0.03, 4.12) 

-- -- -0.53 0.59  

(0.05, 7.25) 

-- -- 

Diagnosis other -0.59 0.55 

(0.07, 4.17) 

-- -- -- -- -- -- 

Thalamic (Vim) -0.10 0.91 

(0.21, 4.04) 

-1.11 0.33 

(0.08, 1.33) 

0.37 1.44  

(0.28, 7.55) 

-0.47 0.62  

(0.07, 5.84) 

Globus pallidus 

internus (GPi) 

0.58 1.78 

(0.46, 6.97) 

0.20 1.22 

(0.32, 4.70) 

0.60 1.82  

(0.39, 8.51) 

0.10 1.10  

(0.21, 5.70) 

Left sided procedure 0.20 1.23 

(0.65, 2.32) 

0.50 1.65 

(0.80, 3.38) 

-0.05 0.95 

(0.44, 2.07) 

0.25 1.29  

(0.46, 3.62) 

Right sided 

procedure 

-0.23 0.79 

(0.34, 1.85) 

0.19 1.20 

(0.49, 2.98) 

-0.52 0.59  

(0.20, 1.75) 

0.32 1.37  

(0.41, 4.62) 

LLR p-value p=0.09 p<0.05 p=0.54 p=0.21 

 
Table 2: Multivariate logistic regression modelling results. These results are based on analysis of the original (non-
SMOTE) dataset. CI = confidence interval. LLR = log likelihood ratio. OR = odds ratio. The reference categories 
were: female, Parkinson’s Disease, age <75, institution 01, an operation conducted on both sides and an STN 
procedure. *p<0.05, **p<0.01. 

 

 

 

 

 



 Institution 01 Institution 02 

Number of cases 201 300 

Demographics Age (mean, SD) 62.12 (10.52) 66.28 (9.94) 

BMI (mean, SD) 27.71 (5.47) 27.17 (4.62) 

Female 41% 34% 

Diagnosis Parkinson’s disease 68% 71% 

Essential tremor  24% 27% 

Dystonia  1% 3% 

Clinical features Smoking history  5% 5% 

Immune suppressed  9% 2% 

Diabetes mellitus  13% 13% 

Hypertension  70% 30% 

Target STN  69% 70% 

VIM  27% 24% 

GPi  3% 5% 

Procedure side Left  36% 25% 

Right  17% 8% 

Both  47% 67% 

Complication outcomes Any complication  22% 13% 

Complication at 12 months  18% 7% 

Return to the operating room  11% 10% 

Infection  6% 5% 

 

Table 3: A comparison of case characteristics between institutions, demonstrating a notable difference in the 

prevalence of patients with hypertension and immune suppression.  



 

 

Data Original Dataset SMOTE Dataset 

Model Any 

complication 

Complication 

at 12 months 

 

Return to 

operating room 

Infection Any 

complication 

Complication 

at 12 months 

 

Return to 

operating room 

Infection 

Performance on validation holdout datasets 

  Accuracy 0.66 0.86 0.88 0.95 0.85 0.91 0.88 0.97 

  AUC 0.58 0.69 0.57 0.68 0.94 0.96 0.97 0.99 

  Sensitivity 0.07 0.00 0.00 0.00 0.96 0.98 0.99 1.00 

  Specificity 0.81 0.88 0.91 0.95 0.78 0.85 0.80 0.93 

  PPV 0.08 0.00 0.00 0.00 0.75 0.85 0.77 0.93 

Confusion matrices 

Predicted Actual Actual 

+ - + - + - + - + - + - + - + - 

  + 2 23 0 18 0 13 0 8 99 33 120 21 108 32 134 10 

  - 29 97 3 130 5 133 0 143 4 115 3 122 1 128 0 141 

 

Table 4: Predictive performance metrics of XGBM models predicting (1) any complication, (2) complication within 12 months, (3) return to the operating room and (4) 

infection; using (a) the original dataset, and (b) the SMOTE oversampled training and validation datasets.  

 



 

 Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8 Patient 9 Patient 10 

Institution 1 1 1 1 2 2 2 2 1 2 

Age at implant 33 48 63 75 33 48 54 78 57 76 

Gender F F M M M M F F M M 

BMI 18 24 30 27 28 35 22 29 35 40 

Diagnosis PD Dyst PD PD PD ET PD PD PD ET 

Smoking history No Yes No Yes Yes No Yes Yes Yes No 

Immunosuppression  Normal Normal Normal Yes Normal Normal Yes Normal Yes Normal 

Diabetes status -- DM -- -- -- DM -- DM DM DM 

Hypertension status -- -- HTN -- HTN -- -- HTN HTN -- 

Procedure target  STN GPi GPi STN STN VIM STN STN STN VIM 

Procedure side  Left Both Left Right Both Both Left Both Both Right 

Predicted probabilities of complication outcomes (likelihood shown in parentheses) 

Infection M 

(11%) 

H 

(25%) 

L 

(7%) 

H 

(29%) 

H  

(17%) 

L  

(4%) 

M 

(10%) 

M 

(12%) 

H 

(16%) 

H 

(19%) 

Return to the operating 

room 

M 

(12%) 

VH 

(64%) 

L 

(7%) 

L 

(5%) 

H  

(28%) 

M  

(13%) 

M 

(13%) 

M 

(11%) 

H 

(22%) 

L 

(7%) 

Any postoperative 

complication 

H 

(43%) 

VH 

(61%) 

L 

(2%) 

M 

(13%) 

H  

(39%) 

M  

(10%) 

M 

(13%) 

M 

(10%) 

H 

(22%) 

H 

(16%) 

Postoperative complication 

within 12 months 

M 

(14%) 

H 

(19%) 

L 

(2%) 

H 

(32%) 

L 

(6%) 

L  

(8%) 

H 

(17%) 

L 

(3%) 

H 

(23%) 

H 

(31%) 

 

Table 5: Hypothetical patient characteristics and corresponding predicted complication likelihood. Risk 

thresholds are based on decision boundaries developed in cardiology: Low = <10%; Moderate = 10-15%; 

High = 16-50%; Very high = >50%. Dyst = dystonia. ET = essential tremor. GPi = globus pallidus. H = high. 

L = low. M = moderate. PD = Parkinson’s Disease. STN = subthalamic nucleus. VH = very high. VIM = 

ventral intermedius nucleus.    

 

 



Phase 1: Statistical Analysis

Purpose: Detect hypothesis-driven statistically 
significant associations

Phase 2: Supervised Learning

Purpose: Train XGBM classifiers to enable complication prediction

Performance evaluation
AUC    ACC    SEN    SPC   PPV   NPV

XGBM   

Original dataset

70% training set 30% validation set

Approach 01

Feature selection

SMOTE oversampled dataset

70% training set 30% validation set

Original dataset

70% SMOTE 
training set 30% validation set

XGBM hyperparameter tuning

Training

Approach 02 Approach 03

Validation

Logistic regression

Feature selection

100% of original dataset used in the analysis

Significant associations detected









Abbreviations list 
 

Abbreviation Expansion / Meaning 
AUC  area under the receiver operating characteristics curve 
CI  confidence interval 
DBS deep brain stimulation 
Dyst  dystonia 
ET  essential tremor 
GBM  gradient boosting machine 
GPi  globus pallidus 
H  High 
L  Low  
LLR  log likelihood ratio  
M  Moderate  
NPV  negative predictive value 
OR  odds ratio 
PD  Parkinson’s disease 
PPV  positive predictive value 
ROC receiver operating characteristics  
SMOTE  Synthetic Minority Oversampling Technique   
STN  subthalamic nucleus 
VH  Very high 
VIM  ventral intermedius nucleus 
XGBM  extreme gradient boosting machine 
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