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ABSTRACT

Background: Deep brain stimulation (DBS) surgery is an optiar patients experiencing
medically resistant neurological symptoms. DBS clizagions are rare; finding significant predictors
requires a large number of surgeries. Machine legralgorithms may be used to effectively predict
these outcomes. The aims of this study were tingBstigate preoperative clinical risk factors, g2y

build machine learning models to predict adverdemues.

Methods: This multicenter registry collected clinical andndggraphic characteristics of patients
undergoing DBS surgery (n=501) and tabulated oetwe of complications. Logistic regression was
used to evaluate risk factors. Supervised learalggrithms were trained and validated on 70% and
30%, respectively, of both oversampled and orignegiistry data. Performance was evaluated using

area under the receiver operating characteristicee {AUC), sensitivity, specificity and accuracy.

Results: Logistic regression showed that the risk of congilan was related to the operating
institution in which the surgery was performed (@RH, confidence interval [Cl]=0.25-0.78), BMI
(OR=0.94,CI=0.89-0.99) and diabetes (OR=2.33,CI&#4.50). Patients with diabetes were almost
three times more likely to return to the operatiogm (OR=2.78,CI=1.31-5.88). Patients with a higtor
of smoking were four times more likely to experiengostoperative infection (OR=4.20,CI=1.21-
14.61). Supervised learning algorithms demonstraigll discrimination performance when predicting
any complication (AUC=0.86), a complication witfi2 months (AUC=0.91), return to the operating
room (AUC=0.88) and infection (AUC=0.97). Age, BMirocedure side, gender and a diagnosis of

Parkinson’s disease were influential features.

Conclusions. Multiple significant complication risk factors weigentified and supervised learning

algorithms effectively predicted adverse outcomeBBS surgery.
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INTRODUCTION

The primary aim of this study was to look at whigteoperative clinical factors were related to
complications that develop in deep brain stimulat{®BS) therapy. DBS is a safe, effective and
common surgical intervention for a range of newmal disorders including Parkinson’s disease and
essential tremar”. Through electrodes implanted in the brain, DBSapy stimulates deep subcortical
brain structures, including the subthalamic nuclgiEN), the ventral intermedius nucleus (VIM) and
the globus pallidus (GPi) to alleviate neurologisgimptoms like tremor, motor fluctuations, and
rigidity *>2 It is a treatment modality that is considered misepatient’s symptoms have not been
satisfactorily alleviated by medical managentetit

DBS therapy requires an initial electrode implapntatoperation and subsequent surgery to place
device generators. Potential complications arigiogh DBS surgery include infection, intracerebral
hemorrhage, seizures and hardware failure, whiohead to unplanned return to the operating room.
Post-operative readmission rates range from 1.94é3) to 4.3% (90-day) Factors likely associated
with complications include age, smoking historyesity, diabetes, hypertension and facility surgical

volume 1%,

Advanced age and hypertension have been assbcwath the risk of intracranial
hemorrhage’®, and readmission after DBS surgery has been iassdowith preoperative coronary
artery disease, obesity and a history of smoKingurther, there is a seasonal variation in DBS
infection, often referred to as the July eff€ct

Integrating preoperative risk assessment into st@hdinical care fosters a shared decision making
process between the surgical team, the patienclmdal enablers®. Performing pre-operative risk
assessment for DBS procedures is challenging duamited data suggesting the contributions of
individual risk factors to post-operative complioas. It is arguable that the literature surrougdin
DBS surgery risk remains inconclusive because dheftequency of complications limits the power
and sensitivity of traditional statistical method®. study this problem, a multi-institutional dadigk of
complications and risk factors was compiled, aqd@ study analysed it. Similar to the literatutiee
only relationship found was an association betwaaoking and infection risk. The standard statistica

methods applied were ineffective at determiningnigicant clinical risk factors related to

complications, such as body mass index, diabetgsertension, smoking, and age. So, a different
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approach to identifying relationships between cacagibns and risk factors, involving the use of
machine learning, was designed and deployed.

Machine learning, a branch of artificial intelligay) represents a powerful set of technologies that
enable three main tasks: classification, regressiod clustering'®. Supervised learning involves
training algorithms with datasets that contain lieloeoutcomes for each case. Supervised learniag (i
classification and regression) uses input featup€s to predict a defined outcome (Y), while
unsupervised learning (i.e., clustering) involvealgzing input variables (X) to elucidate patteamsl
structure in the data. Supervised learning algawthcan predict rare events such as surgical
complications® and have the potential to improve patient risktitcation, clinical decision making,
informed consent and health service planrftfg® Supervised learning has been used in DBS surgery
to predict clinical outcomes®?’ surgical targets®?° side effects®®, discharge statug' and
neurophysiological detection of DBS structutes’

Extreme gradient boosting machines (XGBM) are & tgpsupervised learning algorithm. It uses
decision tree-based learning and shows strong noeaftce on a diverse array of problems. It operates
by strategically combining networks of sequentiatidion trees. Later decision tree models correct
inaccuracies in previous models to improve pregicperformancé. An XGBM model is comprised
of an ensemble of decision trees. The developnfesigorithms that incorporate gradient boosting has
produced highly robust regression and classificatitethods®. XGBMs appear to have performed

well in various domains®3*

and have been shown to perform particularly weill datasets
characterized by class imbalarfé4> Many supervised learning algorithms perform veslipredictive
tools partly because they can estimate compleximeman relationships in high volume datasets using
weighted statistical functions in a way that canbetperceived by linear models or cliniciafis".
Logistic regression is one such linear classifawatnodel. Two advantages it affords are thatédtaisily
interpretable, and it delivers measures of stasisgignificance.

Class imbalance describes a situation where théeauof one event type (e.g., postoperative DBS
complications) is very low compared to another ¢¥gpe (e.g., no postoperative DBS complications)

A class is a subcategory within a variable irataget. For example, within a variable capturinig da

on postoperative complications, one class may sepitehe complication state, while another clasg ma
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represent the no-complication state. Class imbalaassentially refers to differences in class
probabilities®®. Postoperative DBS complications are low probgbaivents. There is a much higher
probability that DBS patients will experience nasfmperative complications. This imbalanced outcome
probability is what is meant by researchers raigrto imbalanced classes. Chawla (2010) statesathat
dataset is imbalanced if the classification catiegoare not equally represenf@dThe performance of
some supervised learning algorithms is undermingd class imbalance, resulting in output

classifications that default simply to the majorityass® >

. However, class imbalance characterizes
many real-world datasets from biomedicirfe to finance®, aviation>® and geosciencé®. Class
imbalance is one of the main barriers to effecjiveredicting postoperative complications in
neurosurgery®*%243!

Because the class imbalance problem is so prevalemtuch research in the fields of predictive
analytics, data mining and machine learning hasided on developing and testing methods to
effectively address it, at both the algorithm aratadlevels*®*%?*"%° The Synthetic Minority
Oversampling Technique (SMOTE) has emerged as fieetiee method of addressing the class
imbalance issue at the data levél It operates by creating additional synthetic sasased upon
existing minority cases and the k-nearest neigtddgorithm. It balances the class distribution by
synthesizing new additional minority class exampllesough a process of interpolating between
multiple minority class examples that lie togethemultidimensional space. In this way, SMOTE has
been intentionally designed to avoid the predictimalytics problem of overfittingf. Another strength
of employing the SMOTE method is that no casekéndataset need to be excluded from the predictive
analysis, which is particularly useful in neurosmgwhere cases are not common and datasets are
often not large (i.e., hundreds of cases rathen ti@usands). The application of SMOTE may
effectively facilitate the prediction of DBS comgditions, which would be of substantial utility to
clinicians.

This study sought to answer the following two reskaquestions. Can multivariate logistic
regression detect significant associations betwseaperative variables and postoperative outcomes?

Can DBS complications be accurately predicted Iphyapg the XGBM algorithm and SMOTE?
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METHOD
Subjects

This study was approved by Institutional Review Bigaat each study site. Due to the retrospective
nature of the study, the requirement for informedsent was waived. A combined registry was created
comprising 501 adults who underwent initial DBS lamation surgeries between October 1997 and
May 2018 at two private practices. Procedures teduwere performed by five neurosurgeons at two
neurosurgical centers over a 22-year period. Ratienderwent DBS implantation for Parkinson’s

disease (n=348), essential tremor (n=129), dystorial) and other indications (n=13).

Surgical Technique

The general surgical technique was relatively simiimong all surgeons. Primary surgeons at each
institution each had >15 years of experience in BB&ery. A frame-based approach was used in
patients with DBS lead placement (unilateral orateital) using Medtronic 3389 or 3379 leads.
Microelectrode recording was used in all cases.ifgyle microelectrode was used to identify and
confirm the target in all cases. The average nundfemicroelectrode passes per lead was 1.4.
Intraoperative imaging of lead location with coremtn CT was performed in some cases beginning in
2008. The majority of patients underwent intraofieeabipolar review of clinical efficacy and side
effects in an “awake” stat€. Generator placement was staged one to two weftds iaitial lead
implantation. All patients underwent postoperatiM®l and/or CT scans within a week of lead

implantation.

Data
Pre-existing quality assurance databases of DBRenatand their outcomes from both research
sites were combined. Additional retrospective dat&ae collected from electronic medical records.
Potential risk factors were recorded, including,aggnder, BMI, clinical diagnosis, smoking history,
immunosuppression, hypertension (medications takénn 90 days of surgery), diagnosis of diabetes
mellitus, hypertension, surgical target (VIM, STBRi) and procedure side (left, right, bilateral).
Complication categories were intracranial hemorehagadmission, ischemic infarction, seizure,

lead fracture, electrode migration, loose or fligpibattery needing surgical revision, device
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malfunction, return to the operating room and ititet An infection was defined as an event reqgirin
surgical removal of hardware, regardless of theetefter implantation. This included perioperative
infections within 3 months of surgery, as well atagted infection associated with hardware erosion o
other systemic infections and infections after gatwe replacement surgery that could have beersyear
later. Intracranial hemorrhage was defined as anm fof new post-operative bleeding on radiology
report, with or without neurological sequelae antmecessarily requiring surgical intervention. uRet

to the operating room included all surgeries tleguired a return to the operating room, regardbéss
time since lead implantation, for indications irdihg haemorrhage, infection, erosion of hardware,
fracture of hardware detected on imaging or as @genit on programming, revision of lead location,
revision of flipping or loose generator, or tighttension wires. Four primary outcomes were recorded
for each patient: any postoperative complicatiocpmplication within 12 months of surgery, retuon t

the operating room and infection.

Analysis
Unilateral (n=151), simultaneous bilateral (n=226) staged bilateral lead implantation (n=54)
were counted each as a single case. Descriptivestists, multivariate logistic regression and

supervised learning model development were perfdrasing Python 3.6.

Neural network development for BMI data imputation

Missing data can create problems for some supehisarning algorithms and may necessitate
dropping entire cases. Further, missing data caeradly affect the validity of resulfs. Out of 501
cases, there were 51 missing BMI values. Giverstiagce nature of DBS case data and the resources
required to collect it, the research team was ratdil to retain as many cases as possible for amalys
Data imputation addresses this issue and varioufione can be usett™> Four neural network
regression models were developed to impute BMiIttier cases with missing data. BMI values were
imputed using all pre- and post-operative variabiethe dataset. One neural network was selected fo
imputation regression because it demonstrated #s performance. Mean BMI before and after

imputation did not differ significantly (27.57, SB96 and 27.39, SD=5.98, respectively; p=0.58).

Feature sdection
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Three criteria were used when selecting input featfior the models: (1) existing evidence in the
literature suggesting a relationship between tléufe and the outcome, (2) availability of the deat
in the dataset; and (3) clinical expert approvat the feature under consideration was clinicalgted

to the outcome variable.

Multivariate logistic regression to detect associations

Multivariate logistic regression was conducted gsthe statsmodels [53] and scikitlearn [54]
packages. Multivariate model performance, oddsosafOR) and confidence intervals (Cl) were
calculated for each risk factor. Features with igdlgle statistical contribution to multivariate nald

(z-score <0.02) were excluded and models were gubsdly retrained.

XGBM model development for postoperative complication prediction

Multiple classifiers were tested and compared tedigt postoperative complication outcomes,
including logistic regression, random forests, sieti trees and support vector machines. Algorithm
performance statistics were compared using multipletrics including area under the receiver
operating characteristic curve (AUC), accuracy,sgemity, specificity, positive predictive value dn
negative predictive value. XGBM was among the hegheerforming classifiers. Because of this and
previous literature demonstrating strong perforneaoic imbalanced datasets, multiple XGBM models
were developed using the XGBod%package. For each of the four primary outcomeades, three
XGBM models were created: one using the originahskt, one using the SMOTE dataSetind one
using a SMOTE training dataset with a non-SMOT Ededion dataset.

Each model was trained on a 70% sample of the etatmsl validated on the remaining 30%. In the
original dataset, this resulted in 350 training esasand 151 validation cases. In the SMOTE
oversampled datasets, ratios of training:validatase numbers were as follows: any complication,
585:251; complication within 12 months, 618:266@ure to the operating room, 627:269; and infection,
663:285. SMOTE was selected over other techniquesidiress class imbalance because (1) it allowed
retention and use of all cases in the DBS daté®git was designed to avoid overfitting, and {3as

been implemented as an accessible Python package.
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Hyperparameter tuning involving grid-search witlol# cross-validation was used to find optimal
XGBM parameters. Grid-search employed 1512 hypampater combinations, resulting in 7560 fit
cycles for each of the XGBM models. Using the opfirhyperparameters found in the grid-search
process, internal cross-validation was conductdl thie number of boosting rounds set at 50 and the
number of early stopping rounds set at 10. AUC usesl as the performance metric in this process.

Predictions were made using the optimized modelthadvalidation test sets. Confusion matrices
and performance statistics were computed. Perfarenametrics included AUC, accuracy, sensitivity,
specificity, positive predictive value and negatipeedictive value**®"®® Feature importance was
calculated, decision trees were visualized and iveceoperating characteristics (ROC) curves

developed. Figure 1 outlines the analysis processadl.
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RESULTS

Descriptive statistics are displayed in Table 1.aMege at implant was 6#0.3 years. The
majority of patients were male (63%), were diagdosgh Parkinson’s disease (70%), had a BMI of
25 or more (67%) and underwent a simultaneous ebdht(59%) STN procedure (70%). Patient

characteristics did not differ significantly betweestitutions.

Complication Rates

There were 27 (5.4%) infections over the periodlaservation (mean 455 days). These infections
were either perioperative, occurring within 3 mentf lead implantation in 13 (2.6%) patients, or
delayed in 14 (2.8%) patients. The median time rised of all infections was 3.3 months. Delayed
infections were typically related to hardware ewasisystemic infections, generator replacement, or
appeared spontaneously.

Surgical revision of hardware occurred in 26 (5.384j)ients, on average 28 months after initial
implantation. These revisions were for lead or msiten wire fracture in 18 (3.6%) patients, loose
hardware in seven (1.4%), or repositioned leadsas@le effects or poor efficacy in eight (1.6%).

Intracranial hemorrhage occurred in 15 (3.0%) padieall associated with lead implantation. This
included intraparenchymal hemorrhage along the &atisubdural hematoma. No deaths occurred in
any of these cases. Of these hemorrhages, 2 gbditnts (0.4%) had substantial morbidity requiring
surgical intervention. Other hemorrhages, 13 (2,6#&ye observed on imaging, and resolved without

surgical treatment or neurological sequelae.

Risk factorsidentified using logistic regression

Logistic regression demonstrated statistically ificemt relationships between risk factors and
complications (Table 2). Diabetic patients wererlyethree times more likely to return to the opergt
room than those without diabetes (OR=2.78, Cl=b3B, p<0.01). Postoperative infection was
associated with a history of smoking (OR=4.20, C?2114.61, p<0.05). It appeared that patients with
a history of smoking were more than four times miikely to experience postoperative infection.
Experiencing any type of complication was assodiatéh operating institution (OR=0.44, CI=0.25-

0.78, p<0.01), BMI (OR=0.94, CI=0.89-0.99, p<0.@5)d diabetes (OR=2.33, Cl=1.18-4.60, p<0.05).
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Operating institution was also significantly assted with experiencing a complication within 12
months (OR=0.36, CI=0.18-0.70, p<0.01). The ingbtu with slightly higher complication rates

appeared to have operated on a patient sampléigiler comorbidity rates (Table 3).

Complication prediction with XGBM models

XGBM models coupled with the SMOTE dataset demeastt strong predictive performance
(Table 4). These models demonstrated higher pedioca (validation AUC: 0.86-0.97) compared to
models trained and validated on the original datasdidation AUC: 0.57-0.69). Models based on the
SMOTE dataset predicted high numbers of true pesitiand true negatives. Models trained on the
SMOTE training dataset and validated on the non-SE®@oldout sample demonstrated performance
that was not substantially superior to the modeisi¢d on the original dataset.

ROC curves were generated by running the trainedefscon the holdout validation datasets. The
ROC curves and corresponding AUC associated wahdor SMOTE XGBM models showed strong
performance (Figure 2).

Plotting featureimportance

Feature importance metrics were plotted for eacthefSMOTE XGBM models (Figure 3). Age,
BMI, procedure side, gender, a diagnosis of Padkilssdisease, institution and comorbidities appeare
to be the most influential predictive features asged with complications. Feature importance
appeared to vary slightly by model. When plottimgnplicated cases in the original dataset according

to BMI and age, cases clustered at approximatedy7@gand a BMI of 24 (Figure 4).

Carrying out predictionson hypothetical patient data

A set of hypothetical patients is shown to dematstthe output of the XGBM predictive models
(Table 5). Risk thresholds similar to those devetbfn cardiology risk stratification research were
applied to facilitate interpretation of model outglow=<10%, moderate=10-15%, high=16-50%, very

high= >50%)°.

10
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DISCUSSION

This study found multiple clinical predictors of aplications in DBS surgery using supervised
machine learning algorithms. Logistic regressioovatd that patient BMI, diabetes and operating
institution were significantly associated with eflmplications grouped together. Diabetics were atmo
three times more likely to return to the operatmogpm. A history of smoking was significantly
associated with postoperative infection.

The XGBM supervised learning algorithm demonstratiedng predictive performance. The results
of this study suggested that XGBMs, coupled wiBMOTE oversampling method, may be employed
to successfully overcome the class imbalance pnolbled effectively predict complication outcomes in
DBS surgery. This method may be used to estimayeiraividual patient’s risk of complications.
Plotting feature importance demonstrated that &jd], gender, procedure side, a diagnosis of
Parkinson’s disease, the operating institution predperative comorbidities were influential predist
of postoperative complications. The results of tkisidy that suggested associations between
preoperative risk factors and postoperative advexgeomes are supported by previous research

demonstrating that many of these same factorsigméisantly associated with complication outcomes

f1,70,71 ?};3,24,72,7.3

in DBS surger and in other forms of neurosurgé
Surgeons often perceive patterns in their clinmactice. Machine learning algorithms seem to
approximate well the intuition of the surgeon. Bpstative complications are likely to arise asslte
of complex interactions between many risk factéraVhile logistic regression has been deployed in
the past to predict surgical outcom&§’ other supervised learning algorithms, includin@BM, may
be better suited to modeling these complex nonlireationshipg*+® >
This study has demonstrated one potential approaaddressing the class imbalance problem,
which is a major issue in surgical risk stratifioat'®**?*3! The approach employed here, applying
SMOTE oversampling in conjunction with the XGBM swuyised learning algorithm, produced
encouraging results.
Simple linear relationships between risks and aqugoare intuitive. Linear and logistic regression

generate statistical weights associated with eastligior and can be represented with a linear emuat

These approaches offer rapid interpretability andirapression of understandability. In contrast,

11



278
279
280
281
282
283
284
285
286
287
288
289
290
201
292
293
294
295
296
297
298
299
300
301
302

303
304

advanced supervised machine learning algorithmsofie®n more complex, inscrutable and opaque.
Surgeons are likely to have a lower level of tinsnd therefore may demonstrate weaker adopfion o
opaque machine learning algorithms as decision augpols. The XGBM performance statistics,
feature importance plots and hypothetical casesrgéed help to address this issue by providing some
insight into the mechanics of the XGBM models depeld. More work on developing the
“explainability” of these models is required.

A collection of hypothetical cases was presentedetmonstrate the risk stratification outputs of the
supervised learning models developed. There may temdency to attempt to identify patterns in the
hypothetical patient data displayed and the comeding risk evaluation output statistics. However,
this tendency is fraught because the number ofthgpical cases displayed is small and the algosthm
are able to model complex nonlinearities in theadhfised on hundreds of training cases, which are
likely to evade human judgement. Similar to presisasearch®, these examples provide a random
selection of cases and patient characteristicdfes olinicians a general sense of the predictigk r
outputs of the models trained. They are not intdrnideoffer a systematic demonstration of the comple
relationships modeled by the trained algorithms.

These machine learning models have the potentiicititate patient safety improvemerifs They
may be used to stimulate a deeper conversationt aoooplications with a patient prior to surgery,
more attention throughout the process from theesur@nd surgical team, closer patient follow-up and
activation of other organizational patient suppoarbcesses postoperatively. Models of this nature
should form part of a broader comprehensive appré@aclinical risk stratification and patient safet
improvement. As an example from another domain @ifirosurgery, the Seattle Spine Team has
developed a systematic and standardised approathntorporates multidisciplinary patient review
conferences, specialized clinical teams, intradp@&amonitoring protocols and multi-surgeon
operating practices, in addition to the developmehtexperimental decision support systems

underpinned by machine learning meth&t/$%*

The advantages of using machine learning methodsratify risk in neurosurgery are numerous.

Machine learning methods are more capable of cagtwomplex nonlinearities in very large datasets

12
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than traditional statistical techniques and caddy@oyed to production using cloud computing s&wic
for potential use by clinicians and patients glbb&t® These tools are well-suited to high-volume
complex data processing, they facilitate accesifiarmation, they save time and they have the
potential to augment the clinical functioning oé theurosurgeon. Incorporating machine learningstool
into the neurosurgical workflow may assist in radgche likelihood of clinical error and positively
engaging the patient. Supervised machine learnindefs can provide accurate and individualized
outcome predictions, which are likely to be benefias healthcare progresses toward a future shat i
more precise and value based. Prediction datapoiats feed into and influence perioperative care
processes and decisions or intraoperative treatbyentiman and robotic systems. On the other hand, i
may not be suitable to apply machine learning nethto datasets that are erroneous, exceedingly
noisy, obsolete or biased. In these cases, it magyéferable to rely on the unassisted judgmetitef

expert surgeon and an experienced clinical team.

Limitations and future research

The performance metrics using SMOTE oversampling) eéxtreme gradient boosting were strong.
Such high performance of the XGBM algorithms suggéisat some degree of overfitting may have
occurred, despite built-in overfitting mitigatiohhis, however, is difficult to assess, particuldrythe
context of limited case data. Caution and appropriciinical judgement should be exercised if
deploying and using these models to make preditmnnew patient data. Further validation on new
data from other institutions and larger datasetslavbe beneficial.

While assessing the effects of the use of intraadper CT on complication rates and patient
outcomes was beyond the scope of this study, it naae been beneficial to control for its use in the
analysis. Per patient labelling of this variableswebt captured in the dataset and this is theredore
limitation of this study. Similarly, it would be beficial for future predictive modeling studies to
control for additional preoperative clinical varied in multivariate analyses. These may include pre
and post-operative functional status, anemia, dipgraime, the number of electrode passes, passage

through the ventricle and a patient history of cany artery disease or stroke.
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350
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A primary aim of this study was to develop modedpable of stratifying patient complication risk
in DBS surgery. To achieve this and to mitigate {hmitations of the dataset, complication
subcategories were amalgamated into a superorduaaiable representing general clinical risk and
adverse outcomes. This approach allowed the developof a set of useful and applicable models.
However, it must be noted that these models aradbmo their risk predictions and that to predict
specific types of complications, which would enalihe implementation of specific clinical risk
mitigation tactics (e.g., augmented infection preign or operating room preparation for a returning
patient), larger datasets and more modeling womk @Equired. The variables included in the
superordinate complication outcome variable fadjidally under the banner of adverse postoperative
clinical events. While the specific outcomes thatken up this variable may be considered diverse,
amalgamating them remains clinically useful becaogether they broadly indicate high risk patients
that may require additional critical clinical thdugand discussion, resources and careful periaperat
management.

Future research may deploy the methods appliedfbetbe prediction of complications associated
with other surgical procedures that are chara@drizy a similar class imbalance problem. Studieg ma
also develop supervised learning models to preubsitive functional outcomes and the degree of
functional improvement associated with various osurgical procedures. Future work may focus on
the development of clinical decision support systembe applied in clinical practice and to deliver

decision-support benefits directly to patientsafplication to patient consultations in the clirfics

Conclusion

Significant complication risk factors were detecimud supervised machine learning algorithms
effectively predicted adverse outcomes in DBS syrgehese supervised learning models can be used
for the improvement of risk stratification, preogkive patient informed consent and clinical plagnin
to make DBS surgery safer for patients. XGBMs aMOSE appear to be useful tools for the

prediction of complication outcomes and risk sfigdtion in DBS surgical practice.
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Figurelegend:

e Figure 1: Schematic outline of the two main phasfahe analysis process.

» Figure 2: ROC curves for each of the SMOTE XGBMetmdlerived from the holdout test validation
datasets.

» Figure 3: Feature importance plots for each of 8l dOTE XGBM models. BMI = body mass index. DM
diabetes mellitus. GPi = globus pallidus. HB = heallismus. HTN = hypertension. L = left. PD =
Parkinson’s Disease. R = right. STN = subthalamicleus. VIM = ventral intermedius nucleus.

» Figure 4: Joint plots of complicated cases (any pbcation; A) and uncomplicated cases (B) in our
sample according to age and BMI. Complicated catestered at approximately age=70 and BMI=24,
whereas uncomplicated cases clustered at approrignage=69 and BMI=28. Histograms plot age and

BMI frequency distributions.

24



Feature Category Feature Feature class Count (%)
Predictors Institution Institution 1 201 (40%)
Institution 2 300 (60%
Age 75 and over 70 (14%)
Under 75 431 (86%
Gender Male 318 (63%)
Female 183 (37%
Diagnoses Parkinson’s disease 349 (70%)
Essential tremor 129 (26%)
Dystonia 11 (2%)
Other 12 (2%)
BMI >25 335 (67%)
180 24.9 157 (31%
<18 9 (2%)
Comorbidities and risk factors Smoking history 2%}5
Immune suppressed 25 (5%)
Diabetes 67 (13%
Hypertension 231 (46%
Procedure type Subthalamic (STN) 349 (700%0)
Thalamic (VIM) 128 (26%)
Globus pallidus internus (GPi) 22 (4%)
Other 2 (0%)
Outcomes Intracranial hemorrhage 15 (3%)
Readmission 17 (3%)
Ischemic infarction 3 (1%)
Seizure 3 (1%)
Lead fractures 18 (4%)
Electrode migration 8 (2%)
Battery loose or flipping 7 (1%)
Device malfunction 26 (5%)
Return to operating room 53 (11%)
Infection 27 (5%)
Hemiparesis 5 (1%)
Facial droop 6 (1%)
Sensory change 4 (1%)
Complication other 8 (2%)
Complication any 83 (17%)
Complication within 12 months 59 (12%)

Table 1: Descriptive statistics displaying the classes of each of the predictors and outcome featuresin the

dataset of 501 DBS patients. Other diagnoses included cluster headache, Holmes tremor and Tourette

Syndrome.



Any complication Complication within 12 months | Return to the operating room Infection

Coefficient OR (95% Cl) Coefficient OR (95% Cl) Coefficient OR (95% Cl) Coefficient OR (95% Cl)
Intercept 0.35 1.55 -0.60 0.55 -0.79 0.46 -2.20 0.11
(0.35, 6.90) (0.10, 3.00) (0.08, 2.67) (0.01,1.11)
Institution 02 -0.82** 0.44 -1.03** 0.36 -0.39 0.68 - -

" (0.25, 0.78) (0.18, 0.70) (0.35, 1.34)
E Age 75 and over 0.44 1.55 0.53 1.70 0.17 1.18 0.90 2.45
o (0.77,3.13) (0.75, 3.84) (0.50, 2.80) (0.88, 6.78)
g" Male -0.09 0.91 0.06 1.06 -0.09 0.91 0.13 1.14
g (0.55, 1.51) (0.58,1.91) (0.50, 1.68) (0.48, 2.68)
e BMI at implant -0.07* 0.94 -0.05 0.95 -0.04 0.96 -0.06 0.95
(0.89, 0.99) (0.90, 1.01) (0.90, 1.02) (0.87, 1.03)
Diabetes 0.84* 2.33 0.78 2.17 1.02%* 2.78 0.56 1.75
(1.18, 4.60) (0.98, 4.80) (1.31, 5.88) (0.58, 5.29)
Hypertension 0.00 1.00 0.21 1.23 -0.18 0.84 0.83 2.29
(0.58, 1.73) (0.65, 2.32) (0.43, 1.60) (0.99, 5.30)
Smoking history 0.16 1.18 0.38 1.46 0.27 131 1.44* 4.20
(0.40, 3.46) (0.45, 4.79) (0.41, 4.25) (1.21, 14.61)
Immunosuppression 0.14 1.15 0.35 1.42 -1.30 0.27 - -

(0.38, 3.55) (0.43, 4.67) (0.03, 2.27)
] ET 0.02 1.02 0.53 1.70 -0.02 0.98 -0.45 0.64
E (0.23, 4.55) (0.43, 6.67) (0.19, 5.09) (0.07, 5.96)
8 Dystonia -1.02 0.36 - - -0.53 0.59 - -

k& (0.03,4.12) (0.05, 7.25)
€ Diagnosis other -0.59 0.55 - - - - - -

=] (0.07, 4.17)

Thalamic (Vim) -0.10 0.91 -1.11 0.33 0.37 1.44 -0.47 0.62
(0.21, 4.04) (0.08, 1.33) (0.28, 7.55) (0.07, 5.84)
Globus pallidus 0.58 1.78 0.20 1.22 0.60 1.82 0.10 1.10
internus (GPi) (0.46, 6.97) (0.32, 4.70) (0.39, 8.51) (0.21, 5.70)
Left sided procedure 0.20 1.23 0.50 1.65 -0.05 0.95 0.25 1.29
(0.65, 2.32) (0.80, 3.38) (0.44, 2.07) (0.46, 3.62)
Right sided -0.23 0.79 0.19 1.20 -0.52 0.59 0.32 1.37
procedure (0.34, 1.85) (0.49, 2.98) (0.20, 1.75) (0.41, 4.62)
LLR p-value p=0.09 p<0.05 p=0.54 p=0.21

Table 2: Multivariate logistic regression modellingsults. These results are based on analysiseobtiginal (non-
SMOTE) dataset. Cl = confidence interval. LLR = ldgelihood ratio. OR = odds ratio. The referencategories
were: female, Parkinson’'s Disease, age <75, ingtitu 01, an operation conducted on both sides andSaN
procedure. *p<0.05, **p<0.01.




Institution 01

Institution 02

Number of cases

201 300

Demographics Age (mean, SD) 62.12 (10.52) 66.28 (9.94
BMI (mean, SD) 27.71 (5.47) 27.17 (4.62

Female 41% 34%

Diagnosis Parkinson’s disease 68% 71%
Essential tremor 24% 27%

Dystonia 1% 3%

Clinical features Smoking history 5% 5%
Immune suppressed 9% 204

Diabetes mellitus 13% 13%

Hypertension 70% 30%

Target STN 69% 70%
VIM 27% 24%

GPi 3% 5%

Procedure side Left 36% 2504
Right 17% 8%

Both 47% 67%

Complication outcomes Any complication 2204 13%
Complication at 12 months 18% 7%

Return to the operating room 11% 10%

Infection 6% 5%

Table 3: A comparison of case characteristics between institutions, demonstrating a notable difference in the

prevalence of patients with hypertension and immune suppression.

~



Data Original Dataset SMOTE Dataset
Model Any Complication Return to Infection Any Complication Return to Infection
complication at 12 months operating room complication at 12 months | operating room

Performance on validation holdout datasets
Accuracy 0.66 0.86 0.88 0.95 0.85 0.91 0.88 0.97
AUC 0.58 0.69 0.57 0.68 0.94 0.96 097 0.99
Sensitivity 0.07 0.00 0.00 0.00 0.96 0.98 0.99 1.00
Specificity 0.81 0.88 0.91 0.95 0.78 0.85 0.80 0.93
PPV 0.08 0.00 0.00 0.00 0.75 0.85 0.77 0.93

Confusion matrices

Predicted Actual Actual

+ - + - + - + - + - + - + - + -

+ 2 23 0 18 0 13 0 8 99 33 120 21 108 32 134 10
- 29 97 3 130 5 133 0 143 4 115 3 122 1 128 0 141

Table 4: Predictive performance metrics of XGBM models predicting (1) any complication, (2) complication within 12 months, (3) return to the operating room and (4)
infection; using (a) the original dataset, and (b) the SMIOTE oversampled training and validation datasets.



Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8 Patient 9 | Patient 10

Institution 1 1 1 1 2 2 2 2 1 2
Age at implant 33 48 63 75 33 48 54 78 57 76
Gender F F M M M M F F M M
BMI 18 24 30 27 28 35 22 29 35 40
Diagnosis PD Dyst PD PD PD ET PD PD PD ET
Smoking history No Yes No Yes Yes No Yes Yes Yes No
Immunosuppression Normal Normal Normal Yes Normal Normal Yes Normal Yes Normal
Diabetes status -- DM -- -- -- DM -- DM DM DM
Hypertension status -- -- HTN -- HTN -- -- HTN HTN --
Procedure target STN GPi GPi STN STN VIM STN STN STN VIM
Procedure side Left Both Left Right Both Both Left Both Both Right
Predicted probabilities of complication outcomes (likelihood shown in parentheses)
Infection M H L H H L M M H H

(11%) (25%) (7%) (29%) (17%) (4%) (10%) (12%) (16%) (19%)
Return to the operating M VH L L H M M M H L
room (12%) (64%) (7%) (5%) (28%) (13%) (13%) (11%) (22%) (7%)
Any postoperative H VH L M H M M M H H
complication (43%) (61%) (2%) (13%) (39%) (10%) (13%) (10%) (22%) (16%)
Postoperative complication M H L H L L H L H H
within 12 months (14%) (19%) (2%) (32%) (6%) (8%) (17%) (3%) (23%) (31%)

Table 5: Hypothetical patient characteristics aratresponding predicted complication likelihood. IRis

thresholds are based on decision boundaries deedlapcardiology: Low = <10%; Moderate = 10-15%;

High = 16-50%; Very high = >50%. Dyst = dystoniaTE essential tremor. GPi = globus pallidus. H =ghi.

L = low. M = moderate. PD = Parkinson’s Disease N6¥F subthalamic nucleus. VH = very high. VIM =

ventral intermedius nucleus.




i Phase 1: Statistical Analysis i Phase 2: Supervised Leaming |

E Purpose: Detect hypothesis-driven statistically ' Purpose: Train XGBM classifiers to enable complication prediction :
significant associations

' Logistic regression XGBM
i v : A 4 .
Feature selection Feature selection
: \ 4
: Approach 01 Approach 02 Approach 03
v Original dataset SMOTE oversampled dataset Original dataset

100% of original dataset used in the analysis '

v v v :
: : 70% SMOTE |

! : 70% training set 30% validation set 70% training set 30% validation set o 30% validation set '
1 1 training set i

; ; v !

. . XGBM hyperparameter tuning
| | 0 | |

Validation :

v

; : Training
| | | |
: v : y i

i Significant associations detected i Performance evaluation :
! AUC ACC SEN SPC PPV NPV :
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Feature importance for a complication at 12 months

Feature importance for any complication
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Abbreviationslist

Abbreviation
AUC
Cl
DBS
Dyst
ET
GBM
GPi

H

L

LLR

M
NPV
OR
PD
PPV
ROC
SMOTE
STN
VH
VIM
XGBM

Expansion / Meaning

area under the receiver operating characiesistirve
confidence interval

deep brain stimulation

dystonia

essential tremor

gradient boosting machine

globus pallidus

High

Low

log likelihood ratio

Moderate

negative predictive value

odds ratio

Parkinson’s disease

positive predictive value

receiver operating characteristics
Synthetic Minority Oversampling Technique
subthalamic nucleus

Very high
ventral intermedius nucleus
extreme gradient boosting machine
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