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Abstract

Piezo-floating-gate (PFG) sensors are a class of self-powered sensors fab-

ricated using piezoelectric transducers and p-channel floating-gate metal-

oxide-semiconductor (pMOS) transistors. These sensors are equipped with

a series of floating-gates that are triggered when the voltage generated by

the piezoelectric transducers exceeds one of the specified thresholds. Upon

activation, the floating-gates cumulatively store the duration of the applied

strain events. Defining optimal voltage thresholds plays a key role in the

efficiency of the PFG sensors for structural damage identification. In this

paper, symbolic dynamic analysis (SDA) based on Shannon entropy is used

to find the effective voltage thresholds that ensure the maximum detectabil-

ity of the structural damage-related changes. To this end, a baseline is

constructed using the strain data obtained from the undamaged structure.

These data are used to set the voltage threshold on every floating gate of

the sensor. Then the posterior state of the structure is monitored using

thresholds set upon the baseline and a cumulative density function (CDF)

of strain events. In order to determine the damage severity, a damage index
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is defined based on the Euclidean norm of the distance between the CDFs

for the damaged and healthy structure. The proposed technique is verified

using experimental data for a steel plate subjected to an in-plane tension

loading. The results confirm the capability of the proposed method in mon-

itoring structures for damage initiation and/or propagation using the PFG

sensors, and the CDFs on which the damage sensitive feature (DSF) is based

can provide additional insights into the stress distributions.
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1. Introduction

Several different fields of science have seen advances that have culmi-

nated in methods for real time damage detection. Overall, a reliable damage

detection method should have the following characteristics:

(1) it is not sensitive to environmental effects

(2) it can be applied in-situ

(3) it is economical

(4) it is able to detect and locate small damage

(5) it can be applied remotely

(6) it can monitor structures continuously

(7) it is not very sensitive to other structural features such as load variation.

The methods are of an interdisciplinary nature, and there are three main

fields that must be mentioned: (1) advanced sensing technologies [1, 2]; (2)

advanced damage detection algorithms [3, 4, 5]; and (3) smart materials [6].

Because of recent advances in genetic, neural network, swarm and evolution-

ary methodology, new damage detection algorithms have been developed.
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A new and advanced type of structural health monitoring (SHM) seeks

to create smart materials which mimic biological skin by simultaneously dis-

playing the damaged area by changing colours, as well as self-healing of the

damaged region [7]. However, there are still some challenges with SHM. For

instance, changes in ambient conditions can affect measured data and con-

sequently bring about false detection. Moreover, because of high-damping

characteristics of composite materials, a considerable portion of acoustic

waves stemming from crack propagation would be damped. This may de-

mand accurate placement of sensors, which means that a priori knowledge of

likely damaged areas is required. Moreover, measured data from sensors are

contaminated by noise and in terms of applying modal data, there is always

a limitation in the number of measured modes. Although the application of

smart materials for SHM is a new and promising field, it is unlikely to see

real applications of these types of material in the near future.

Large Area Electronics (LAE) is another new sensing technology in the

form of dense arrays that can span large areas of the structure [8]. Kong et

al. propose a novel large-area strain sensing technology to monitor fatigue

cracks in steel bridge structures [9]. Accordingly, the authors propose using

soft elastomeric capacitors (SEC) which are flexible capacitors consisting of

a dielectric layer sandwiched between to conductive layers. The so-called

SEC sensor can easily be attached to the surface of the structural member.

Structural strains bring about a geometric change in the sensor resulting in a

corresponding change in capacitance. The authors exploit this fact to detect

fatigue cracks in materials. In another study conducted by researchers at

Princeton university, the authors use sensing sheets based on LAE for cyclic

fatigue tests on steel plates [10].

Acoustic and Electromagnetic (EM) waves have been widely used in

modern SHM techniques. Due to the characteristics of waves, there has been

interest in providing an image of a defective area, or alternatively studying
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the modulation of EM waves in terms of amplitude, phase and/or frequency

due to structural vibration. The key characteristic of these approaches is

that they can be used for remote and continuous monitoring of structures

with the aid of wave propagation and modulation within materials.

There are several methods in the literature using waves to locate dam-

age in structures. These can be divided into two main categories based

on the type of wave they deploy: methods that apply acoustic wave prop-

agation within a material, and those that apply EM waves. The former

can be divided into three branches: Acoustic Emission (AE) [11, 12, 13],

Vibro-Acoustic Modulation (VAM) [14, 15, 16], and Guided waves [17, 18].

While VAM deals with the mechanical and acoustic waves interaction for

damage detection, some other researchers have recently combined acoustic

techniques with other methods such as eddy current for damage detection

[19].

EM waves have been widely used in the context of SHM. To that end,

different hardware such as antennae and radars for transmitting and re-

ceiving EM waves have been proposed [20, 21]. Self-antenna technology is

a method which applies the characteristics of EM waves for damage detec-

tion. This method, which can be considered as a member of a larger category

called self-sensing SHM technology, seeks to use the structure as an antenna.

Accordingly, by detecting the changes in antenna characteristics an evalu-

ation of the structural health condition is possible. For instance, CFRP

structures can be modelled as half-wavelength dipole antennae. Hence, by

looking at the variation of electrical or antenna properties, the structure can

be monitored wirelessly at a remote location [22]. Electrical conductivity

measurement has been used to monitor the health condition of structural

connection points by some researchers [23].

Millimeter-wave and terahertz Doppler radar technology have been used

successfully in SHM by applying radar technology and antenna theory [20,
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21, 24].

In a recent study, Moll et al. applied a set of transmitting and receiv-

ing antennae attached to the tower of a wind turbine to radiate EM waves

towards the rotor blades. Hence, all blades can be inspected with a sensor

array in a non-contact and highly automated way by exploiting the rota-

tion of the wind turbine and the inverse synthetic aperture radar (ISAR)

principle. This is a method where radar imaging is used to generate a two-

dimensional high resolution image of a target [20]. In order to reach to a

high penetration depth in glass-fiber reinforced material, the authors applied

frequency bands of 24–24.25 GHz and 24–25.6 GHz.

Technological advances in laser technology have evolved to advance SHM

during the last few decades [25]. For instance, Laser Doppler Vibrometers

(LDV) have recently been used to capture non-contact vibration of bridges

[26]. First the laser beam from the LDV is directed at the surface of the

structure. Then, due to the Doppler shift of the reflected laser beam, the

frequency and the vibration amplitude are extracted from the motion anal-

ysis of the surface. Stepped Frequency Continuous Wave (SFCW) RADAR

is another method which has been used successfully to remotely extract vi-

bration data of structures. Recently, this method has been used to detect

bridge Micro-Doppler (MD) data, and to derive the natural frequency and

resonance mode for a bridge while a train crosses [27].

Although, all of the methods discussed above have been applied success-

fully to condition monitoring of structures, problematic issues arise when it

comes to applying these in real structures. For instance, AE methods need

a large number of sensors to be located over a short distance on blades due

to the fact that acoustic waves are rapidly damped in composite materials.

In a study done by Kim et al. the pumping signal of a Vibro-Acoustic Mod-

ulation technique is provided by the blade rotation [15], but in general a

source of probing signal attached to the blade is still necessary. The same
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problem arises when applying other acoustic wave methods, which makes

the remote and continuous condition monitoring of structures challenging.

In this paper, a novel and effective damage detection strategy is proposed

based on the application of the piezo-floating-gate (PFG) sensors, previously

developed at Michigan State University [28]. The proposed method exploits

a key property of the PFG sensors, namely the activation of a series of

floating gates (memory cells) when the strain (or corresponding voltage) ex-

ceeds the gate preselected threshold. Accordingly, the strain-time events are

cumulatively stored in the memory. Recently, some damage detection meth-

ods have been proposed based on the functionality of the PFG sensors [29].

However, that work looked generally at the mean value and variance of the

strain statistics, but did not exploit the unique property of the PFG sensors

that makes them highly amenable to using a Shannon entropy approach

(explained further in Section 4.1). The present study on the other hand

explores the feasibility of using symbolic dynamic analysis (SDA) and Shan-

non entropy to enhance the detectability of the structural damage-related

changes from the PFG sensor data. The concept of the proposed technique

can be generalised to damage detection of large structures based on the LAE

concept.

The paper is organized as follows: in Section 2, the working mechanism

of the PFG sensors is briefly explained; then the SDA and Shannon Entropy

are discussed in Section 3 and the proposed damage detection is explained in

Section 4. In Section 5, the proposed method is verified using the data from

an experimental study conducted by Alavi et al. [29]. The superiority of

the proposed DSF over the other probability distance measure is discussed

in Section 6. Finally, Section 7 is dedicated to derived conclusions.
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2. Self-powered piezo-floating-gate sensors

Lead Zirconate Titanates (PZTs) are the most commonly used piezoce-

ramics. These are solid solutions of lead zirconate and lead titanate [30].

Some specific properties can be obtained by smearing PZTs with other el-

ements. According to the manufacturing process of these ceramics, a para-

electric to ferroelectric phase transition occurs during the cooling process.

As such, piezoelectric materials can convert mechanical applied load to an

electrical charge.

As far as the mechanical characteristics of PZT sensors are concerned,

like ceramics, they show a high elastic modulus, brittleness and low tensile

strength. The open circuit voltage (V) generated across the PZT transducer

is

V =
SY D31h

ε
, (1)

in which S, Y , D31, h and ε represent the applied strain, Youngs modu-

lus of the piezoelectric material, piezoelectric constant, thickness, and the

electrical permittivity, respectively [31].

The piezoelectric material can be used to harvest vibration energy of

structures over a wide range of frequencies. As such, piezoelectric transduc-

ers have been widely used by researchers to develop simple and efficient en-

ergy harvesting devices [32]. The piezoelectric transducers have been widely

used for structural health monitoring of structures [33, 34].

The so-called PFG sensor consists of a p-channel floating-gate metal-

oxide-semiconductor (pMOS) transistor, which is connected to a constant

current source commonly powered by the PZT transducer. Using the har-

vested energy on the structure due to the applied force, the electrons from

the transistor channel are injected into the floating-gate, which without

further energy input experiences a decay of the floating-gate voltage with

respect to time. Therefore, by measuring the floating-gate voltage in long-

term monitoring, one can obtain the cumulative operational time of the

7



injector [35, 31].

This principle is illustrated in Figure 1. Accordingly, when a random

force is applied to the structure, each of the set voltage thresholds of gates

corresponding to each sensor might be exceeded from time to time (Figure

1a). However, once a bigger threshold is passed all the smaller thresholds

are also passed and therefore a cumulative density function (CDF) of strain

events is obtained from each sensor (Figure 1b).

(a) Random excitation (b) cumulative time at pre-defined

strain/voltage thresholds

Figure 1: A schematic representation of working procedure of PFG sensors [29].

This is due to the fact that floating-gates can store data like a non-

volatile memory and, therefore, data can be stored on board the sensor, to

be retrieved remotely without a need for any external power source [36].

Further information about the function and manufacturing process of

the PFG sensors can be found in [37, 35, 36, 38].

3. Symbolic Dynamic Analysis (SDA)

SDA, which has a root in information theory, is a one way to deal with a

time series of recorded signals. In practice, for every baseline time epoch t0

the vector of a recorded signal is sorted into some subsets representing the
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current state of the system. The dynamics of the system is studied through

monitoring of the evolution of the subsets with regards to the baseline.

Researchers have applied SDA successfully to the SHM of different types

of structures [39, 40]. It has been demonstrated that SDA is superior to other

methods such as Artificial Neural Networks (ANN), Principal Component

Analysis (PCA), and Kernel Regression Analysis (KRA) in terms of feature

extraction for damage detection [41]. SDA can also improve the signal to

noise ratio considerably, which is a key factor in analysis of noisy signals

[42, 43, 44].

3.1. Shannon Entropy

Shannon entropy is defined as

H = −
N∑
i=1

pi log2(pi) (2)

where pi is the probability of the event i in the time record of all events.

For example the event could be the triggering of gate i in the PFG sensor.

Lemma: It can be shown that, under the general constraint of probability

theorem, i.e.
∑N

i=1 pi = 1, maximum entropy is achieved when all of the

incidents have equal probability. In other words, pi = pj for any i and j.

Proof : The above Lemma is an optimisation problem and can be proved

by using the Lagrange multiplier concept. As such, a goal function can be

constructed as

Λ = −
N∑
i=1

pi log2(pi)− λ

(
N∑
i=1

pi − 1

)
, (3)

to be maximised without the need to explicitly parameterise the constraints.

A stationary point for Λ can be found by setting its derivatives with respect

to all variables pi and λ to zero where i = 1, 2, ..., N .
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Therefore, one can obtain

∂Λ

∂λ
= 0 ⇒ −

N∑
i=1

pi + 1 = 0 (4a)

∀i; ∂Λ

∂pi
= − log2(pi)− log2(e)− λ = 0 ⇒ pi =

2−λ

e
. (4b)

Noting from 4b that the probability pi is the same for all i, it follows

from 4a that

pi =
1

N
. (5)

Therefore, for a random process under the general probability condition,

either a minimum or maximum Entropy is obtained when all the incidents

have equal probability. It is sufficient to show by example that this is not

a minimum, therefore must be a maximum. To that end, substitution of

the distribution {pi} = {1, 0, . . . , 0} into Equation 2 gives H = 0, which

is less than the result H = log2N obtained when {pi} = { 1
N ,

1
N , . . . ,

1
N } is

substituted. Accordingly, for two random processes, the one that has the

larger Shannon entropy is more random.

Thus, if we are to choose between two random processes to predict what

the next state of the process is, we should choose the one with the larger

Shannon entropy and our predictions will be less biased.

This is the key factor in symbolic time series analysis. Assume that we

are interested in the evolution of a given signal through time. Accordingly,

one way to deal with this problem is first to sort the signal values into

some sub-signals, in which each sub-signal is a sample space. This sorting

is based on thresholds chosen such that the probability of each element

falling into any of these sub-signals is equal. In other words, the sub-signals

contain only values within a given range, are of equal length and have a

uniform distribution. This is considered as a baseline. Then, the evolution

of each sub-signal in a posterior state is monitored through a similar sifting

process using the same thresholds. If there has been a change of state the
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distribution will no longer be uniform. Once the distribution of data in the

posterior signal is obtained a measure can be defined to obtain its distance

from the initial uniform distribution.

4. Damage detection procedure

4.1. The rationale behind using an Entropy-based damage indicator

As PFG sensors only record the cumulative duration of strain events,

they basically carry information about the statistical distribution of strain

data in ranges defined by a set of successive strain thresholds. This perfectly

matches with the concept of entropy as discussed in the section 3.1. This is

the main intuition behind applying Shannon-entropy for interpreting data

recorded on PFG sensors and to relate it to the health condition of the

structure.

By choosing the sensor voltage (hence strain) thresholds in a way that

the distribution of durations of strain events is uniform among all gates, one

can continuously monitor any change in the health condition of the structure

by tracing the change in the distribution of strain events. Since negligible

processing of the recorded data is only required, the procedure of the damage

detection will be one step ahead of other damage detection strategies.

In the following sections, the procedure of damage detection is discussed

in more details.

4.2. Setting thresholds based on Shannon entropy

In most damage detection techniques based on the SDA, an undamaged

structure is first monitored to construct a baseline for damage detection as

stated in Section 3.1. After some time, the structure is monitored again

to decide how much change it has undergone. The proposed PFG sensors

provide the capability of real-time damage detection using SDA. To that

end, it is first required that the thresholds be determined in order to be set

on each sensor.
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In the stage of determining thresholds, an ordinary sensor (i.e. a piezo-

electric sensor without the floating gates) must be deployed on the healthy

structure at the position of interest. The sensor records the strain-time his-

tory of the structure in voltage at that position. Then the recorded data are

sorted in ascending order and, according to the number of required gates,

the thresholds are chosen in such a way that an equal number of data exist

between any two successive thresholds. For instance, if the length of the

recorded signal is Ns and there are Ng gates, the number of data samples

in each gate is calculated approximately as
[
Ns
Ng

]
where [.] indicates round-

ing to the nearest integer. Accordingly, a uniform distribution of data is

obtained whose probability density function (PDF) is a flat line with proba-

bility p(x) = 1
Ng

, thus a straight line is obtained for the cumulative density

function (CDF), and one can set the smallest recorded data as the lowest

threshold.

Note that the PFG sensors count the time that each threshold is passed

in terms of sample count at the specified sampling frequency, and the time

that is read on the nth gate is a cumulative time representing the sum of the

times for which any larger threshold i (i ≥ n) is passed. Thus the CDF is

actually a reverse integration of the PDF. Figure 2 shows the CDF of data

that are uniformly distributed among the gates for the undamaged stage of

the structure. As is evident from the graph, gates with smaller thresholds

have larger corresponding value of CDF and vice versa.

Thus, one needs only to specify some thresholds on floating gates based

on the SDA of the recorded signal obtained from the strain gauges deployed

on the intact structure.

4.3. Monitoring the structure after setting thresholds

Once voltage thresholds for each sensor have been determined on the in-

tact structure using ordinary piezoelectric strain gauges without the floating

gates, these thresholds are set on the corresponding floating gates. These
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Figure 2: Diagram of stochastic characteristics of a random process versus Shannon en-

tropy.

ordinary strain gauges are then replaced with the corresponding calibrated

PFG sensor in exactly the same position.

As long as the structure is healthy, the distribution of recorded times

from PFG sensors are uniform or very close to uniform. However, due

to noise and uncertainty there might be always a slight deviation from a

uniform distribution. As such, a Mont Carlo simulation can be performed

to classify between the healthy and damaged state of the structure using

some classification technique.

4.4. Damage index

When the posterior distribution of the data for each sensor is determined,

a damage index (which we will call the damage sensitive feature, or DSF)

needs to be evaluated to identify how much the structure has deviated from

its healthy state. To that end, the DSF is defined in this section as the

Euclidean norm of the distance between the CDF of the baseline (uniform
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distribution) and damaged states,

DSF =

√√√√ Ng∑
i=1

(F bX(xi)− F dX(xi))2 . (6)

In Equation 6, F bX(xi) and F dX(xi) represent the CDF of the strain events

recorded below the ith threshold xi for the baseline and damaged structure,

respectively. As is evident in Equation 6, the thresholds are the same for

both healthy and damaged state of the structure, thus these are the data

recorded on the PFG sensors. Figure 3, shows the flowchart of the proposed

damage detection strategy adapted for the PFG sensors.

Figure 3: Flowchart of the damage detection algorithm.

14



5. Case study and results

5.1. Test set-up

In this section, the proposed strategy for damage detection using the

PFG sensors is tested using data obtained from a physical experiment con-

ducted by Alavi et al. [29].

Figure 4 shows schematically the experimental set-up. As such, an A-

32 steel plate has been used with length 16 in (406.4 mm), clear span 12 in

(304.8 mm) between restraints, width 6 in (152.4 mm) and thickness 1/32 in

(0.8 mm). As can be seen in the figure, a fixed boundary condition has

been assigned to the top edge of the plate and a uniform in-plane tensile

displacement was applied to the lower edge.

Four thick steel plates with dimensions 2 in × 6 in (50.8 mm × 152.4 mm)

were installed on either side at the top and bottom of the plate to restrain the

horizontal and rotational degrees of freedoms, hence to satisfy respectively

the geometrical and uniform loading boundary conditions. The thick plates

were attached to the specimen with three 3/8 in diameter bolts at each

boundary.

Crack damage was simulated by cutting a narrow horizontal slit of length

2a, as shown in Figure 4. Three damage scenarios are considered as shown

in Table 1. The idea behind the three different slit lengths was to investigate

how the measurements would change if the crack were to propagate.

Damage Scenario Notch size (mm)

D1 17

D2 30

D3 45

Table 1: Three damage scenarios are considered based on the different size of the notch

2a (Figure 4).
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Figure 4: Experimental set-up scheme.

(a) Intact plate (b) Notched plate (c) Sensors arrangment

Figure 5: Sensors placement and numbering on the intact and damaged plate [29].
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Ten strain gauges were installed on the plate to measure vertical strains

along two perpendicular axes, as can be seen in Figure 5. The left figure

shows conventional strain gauges attached to the intact plate, while the right

figure shows the PFG sensors attached to the notched plate. Alavi et al.

performed tests for the intact and three damage scenarios using both the

conventional and PFG sensors, and successfully demonstrated that the two

technologies gave consistent results. However, they had set the thresholds

on the PFG sensors somewhat arbitrarily, so those results could not be

used directly in the current work. Instead, the strain data recorded by the

conventional gauges were manually sorted into the bands defined by the

method outlined in Section 4.2

Alavi et al. [29] performed FE simulations using ABAQUS/CAE 6.11 in

order to determine suitable location of sensors. The sensors on the vertical

axis were located 1.5, 2.5 and 5.0 in (38.1, 63.5 and 127 mm) from the centre

of the notch, and (due to the limited plate width) just 1.5 and 2.5 in on the

horizontal axis.

Due to the maximum stress concentration at the crack tip, it is obvious

that larger values of DSF are expected for PFG sensors 5 and 6, relative

to the more remote points 4 and 7 on the same axis. On the other hand,

sensors 3 and 8 would also experience significant reduction of vertical strain

due to the shielding effect of the crack, thus may also be expected to show a

large DSF. Sensors 2 and 9 would also show reduction but less so, and less

again for 1 and 10.

Uniaxial cyclic loading tests were performed with loading frequencies of

2 and 5 Hz and peak-to-peak amplitudes of 0.05 and 0.08 mm, respectively.

A preload of 4 kN (equivalent to a displacement of 0.05 mm in the intact

plate) ensured that the load was always tensile, however the gauges were

zeroed at this preload so both positive and negative strains were measured.

Only the results for 2 Hz frequency and 0.08 mm displacement amplitude
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were reported in the original paper of Alavi et al. [29], hence these are used

in the current study. Further details of the experiment can be found in [29].

Seven floating-gates with different injection rates were considered for

each of the 10 sensors. Hence, six meaningful data points (excluding 0 and 1)

can be obtained for the cumulative probability distribution plot (Figure 2),

the seventh value being used for normalisation. However, as stated above,

thresholds in the original paper were not set on the sensors in the manner

proposed in this study, therefore the current study manually processed data

from the conventional gauges to simulate the setting of the floating gate

thresholds in accordance with the procedure in Section 4.2. The results

obtained from the current study are discussed in the following sections and

compared with those obtained in the original work.

5.2. Results and discussion

Figure 6, shows the CDF of the data distribution obtained for sensors 1

to 10.

As can be seen from the figure, and in accordance with Section 4.2 the

chosen thresholds for each sensor produce a uniform distribution of data in

the undamaged state. After occurring the damage, however, the distribution

of the data deviates from uniform and tends to some other distribution

roughly close to normal distribution. After obtaining these graphs, which

can be read directly from the timers of PFG sensors, one just needs to

calculate the damage sensitive feature corresponding to each state of the

structure on each sensor using Equation 6.

Note that since the PFG sensors are wireless, monitoring of the structure

can be conducted in real time and therefore the damage progression can be

monitored continuously.

Figure 7 shows the DSF obtained from the data read on each sensor for

each of the three damage scenarios. Note that, according to the definition,
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Figure 6: Data distribution shown by sensors.
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the DSF for the healthy state of the structure is zero and therefore is not

presented in the bar-graph.

One can observe in general that sensors that are closer to the damage

position show more sensitivity to the damage presence and propagation. In

particular, sensors 5 and 6, which are placed near the crack tip, show a

larger DSF at each step than any of the other sensors. This is followed by

sensors 3 and 8, which are also close to the crack but are perpendicular to

the damage propagation path, hence show a slightly lower DSF than sensors

5 and 6. Thus, the DSF is greater for the case when damage is more severe,

or closer to the sensor.

However, it may be observed that the calculated DSFs for sensors 9 and

10 do not seem to agree with their relative proximity to the introduced

damage. This is mentioned in [29] as possibly being due to a faulty sensor.

However a more likely explanation is given in Section 5.3.
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Figure 7: Calculated damage index for different sensor at different damage stages.
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5.3. Discussion of gauges S9 and S10

Sensors 3, 2 and 1 in Figure 7 show respectively a reduction of DSF with

distance from the crack, as expected. With a perfect experimental setup,

sensors 8, 9 and 10 should show an identical trend. However this is not

borne out by the results of Figure 7, in which sensor 9 is lower than sensor

10.

To explain this, consider the corresponding cumulative probabilities shown

in Figure 6.

The sigmoidal shape of gauges 1, 2 and 3, with a positive lobe on the left

and negative on the right, indicate a shift of data out of stress bins 1 and 8

and into stress bins 4 and 5 after the crack is introduced, i.e. the stresses

were of lower magnitude. This is consistent with the stress shielding effect

in the shadow of the crack, and the confinement of this to the crack vicinity

is explained by the Saint-Venant principle.

On the other hand, gauges 4–7 show the opposite form of sigmoid, with

negative lobe on the left and positive on the right, indicating shift of data

into higher magnitude stress bin, i.e. a local stress concentration, as ex-

pected in the vertical stress field near the end of the crack.

Like gauge 3, the shape of the sigmoid of gauge 8 clearly shows the

expected stress shielding from the notch. However, gauge 10 (unlike its

nominal counterpart, gauge 1) suggests there is a stress concentration in

the vicinity of that gauge. This is likely to be a genuine effect, rather than

a faulty gauge, since the neutral response of the adjacent gauge 9 is quite

consistent with its location between gauges 8 and 10.

It is speculated that the stress concentration in the vicinity of gauge 10

may be due to applied forces being concentrated at the bolts rather than

being distributed uniformly across the bottom of the plate. This could arise

for example if the bolts are not clamping the two restraining end plates

tightly enough and there is some slippage.
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5.4. Comparing the results with other methods

In this section the results obtained from the current study are compared

with the results obtained in the original work conducted by Alavi et al. [29].

Alavi et al. proposed the maximum voltage recorded by the PFG sensors

(maximum delivered voltage, or MDV) as a damage sensitive feature. Al-

though MDV has proven to be a good DSF to find the most critical points

around the damage site, it does not seem to be a good DSF to monitor

damage severity, therefore it fails to investigate the damage propagation.

For instance, in their original paper, Amir et al. showed that a greater

MDV is obtained for sensors 5 and 6 and this complies well with the fact that

these sensors are located at zones of maximum stress or strain concentration.

However, as is evident in Figure 8, in which the obtained DSFs for each

of sensors 1, 2, 3, and 8 in the current work is compared against those

introduced in [29], the MDV fluctuates with damage severity and, therefore,

fails to monitor the damage propagation in the material. On the other hand,

as seen in Section 5.2 (and in particular Figure 7), the DSF proposed in this

paper shows an increasing trend with the damage proximity, and in every

case increases with the progression of its severity, which makes it a good

damage indicator.

Alavi et al. also proposed a second damage detection method based on

data fusion of multi-sensors. They noted that the PDF of the measured

strain changed in the presence of a crack, so they first performed a Gaus-

sian transformation to obtain the mean (µ) and standard deviation (σ) of

the distributions of the time records of each sensor output. These values

changed as the damage increased, for example the stress concentration due

to the crack amplified the σ of the output signal. They then surmised that

the statistics from groups of sensors might give a more reliable indication

of damage. They investigated various statistical measures and found that

the standard deviation of the µ and σ values from certain groups of sensors
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(which they normalised by the highest value over the various damage sce-

narios, and designated ‘STD of µ/σ of sensors’) was correlated with the size

of the crack. Other measures of sensor group statistics (average, minimum,

maximum, range, skewness and kurtosis) were not positively correlated.

In Figures 9 and 10, the STD of µ and σ (as presented by Alavi et al.)

for the sensor groups {1,4,7,10} and {1,2,3,8,9,10} are compared against the

mean of the DSF (calculated by Equation 6) for the same sensor groups.

According to the figures the proposed damage DSF shows a much clearer

correlation with the damage severity, again confirming it as a good damage

indicator.

6. Comparing the proposed DSF with other probability distance

measures

There are different methods to measure the distance between two proba-

bility distributions, which mostly measure the distance between two PDFs.

In order to show why the proposed DSF, which measures the distance be-

tween two CDFs, is preferred, the following two points are considered:

1. The proposed probability distance (DSF) should be equal or close to

zero for when the structure is undamaged. This means that the dis-

tance between the baseline and posterior state probability distribution

functions must be zero.

2. The proposed DSF should increase as the damage becomes more se-

vere.

In reference to the above two criteria, here we examine two different prob-

ability distances in comparison to the one proposed in this paper, which are

(1) Kullback-Leibler divergence [45], and (2) Bhattacharyya distance [46].
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Figure 8: Comparing the obtained DSF for sensors 1, 2, 3, and 8 against maximum

delivered voltage (MDV) obtained at this sensor in different damage scenarios.
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Figure 9: Mean value of the DSF obtained for sensors 1, 4, 7, and 10 compared to the

STD of σ and µ of the voltage obtained at these sensors.
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Figure 10: Mean value of the DSF obtained for sensors 1,2,3,8,9, and 10 compared to the

STD of σ and µ of the voltage obtained at these sensors.
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6.1. Kullback-Leibler divergence

The Kullback-Leibler divergence, which is also known as relative entropy

and measures the difference between two probability density functions, is

defined for discrete probability distributions P (reference probability) and

Q (posterior probability) as

DKL(P, Q) = −
N∑
i=1

pi ln

(
pi
qi

)
. (7)

As can be seen from Equation 7, DKL is the expectation of the logarithmic

difference between probabilities P and Q. As such, the Kullback-Leibler

divergence is defined only if for all i where qi is zero, pi is also zero. In

this case, the contribution of the ith term vanishes as limx→0 x ln(x) = 0.

However, in the problem of this paper, this is not always the case as we

know that for all i, pi is always nonzero, whereas a zero outcome for qi is

possible depending on the severity of damage, the number of specified gates,

and/or the chosen thresholds.

Therefore, the Kullback-Leibler divergence fails to be a suitable damage

sensitive feature for the current problem, even though it fulfills the first

criterion.

6.2. Bhattacharyya distance

The Bhattacharyya distance is defined for two probability distribution

functions P and Q over the same domain as

DB(P,Q) = − ln

(
N∑
i=1

√
piqi

)
. (8)

To show that DB fulfills the first criterion, we note that for the undam-

aged posterior state the probability distribution will be unchanged. There-

fore, for all i, qi = pi, and

DB(P,Q) = − ln

(
N∑
i=1

pi = 1

)
, (9)
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which is zero since
∑N

i=1 pi = 1. Therefore, the Bhattacharyya distance

appears to be a possible candidate for a damage sensitive feature.

The PDF of the posterior state of strain events was obtained from its

CDF and the Bhattacharyya distance relative to the uniform PDF inferior

state was calculated. The results are presented in the bar plot of Figure 11.

It is observed,

1. The results obtained for sensor 9 complies with our discussion in Sec-

tion 5.3.

2. The results obtained for sensor 1 do not comply with the damage

progression from the first to second scenario.

3. Unlike the proposed damage sensitive feature based on Euclidean dis-

tance between the CDFs, the Bhattacharyya distance does not show

the location of the damage properly. For instance, following our dis-

cussion at Section 5.2, it is expected that the maximum DSFs are

calculated at sensors 5 and 6 (Figure 7). However, as can be seen from

the Figure 11, the peak values are obtained at different sensors for

different damage scenarios (for example, at 3 and 8 for D3, but at 5,

6 and 8 for D2 and at 5 and 6 for D1).

According to the above observations, we conclude that the proposed DSF

based on the Euclidean distance between two CDFs outperforms the other

possible methods.

7. Conclusions

In this paper a novel damage detection procedure is introduced for con-

dition monitoring of structures using previously developed PFG sensors [29].

A special characteristic of these sensors has been recognized by the au-

thors of this paper to perfectly match with the concept of Shannon Entropy.

As a result, a strategy to obtain optimal values for thresholds to be set on
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Figure 11: Calculated DSF based on the Bhattacharyya distance between the baseline

and the posterior state of the strain events recorded at all sensors.

the sensors is first proposed. To that end, the baseline structure must be

monitored to obtain its strain-time history. This can be done either by mon-

itoring the real structure or studying an available FE model of the structure.

As such, the structure needs to be monitored for strain at the position of

interest for some time while it is operating in its natural operation condition,

to ensure that all loading scenarios are considered.

After obtaining the thresholds, they need to be set on the gates for

each sensors. Then, a DSF has been introduced to find the location and

severity of damage. The proposed damage detection procedure is shown to

be perfectly matched with the special characteristic of the PFG sensors.

In this paper, results obtained from a uniaxial cyclic loading test on a

damaged plate were used to demonstrate the ability of the proposed method.

However, the proposed method can also be applied to real structure sub-

jected to random ambient vibration, due to the fact that any random white

noise is a linear superposition of infinite harmonics. This also complies bet-
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ter with the nature of SDA and Shannon Entropy, which work ideally when

dealing with a random process. It should also be mentioned that any state of

the structure can be considered as a baseline, and therefore one can monitor

any possible damage propagation at the vicinity of the sensor position.

It has been shown that the proposed DSF is sensitive enough to deter-

mine both the damage location and severity. The results obtained from this

work were compared to results presented in [29]. Accordingly, it has been

demonstrated that the proposed method is more effective. Furthermore, the

CDFs on which the DSF is based can provide additional insights into the

stress distributions, such as those discussed in Section 5.3.

Finally, it has been discussed why the proposed probability distance

measure between two CDFs is a good DSF. It has been demonstrated that

the use of Euclidean distance for the proposed DSF outweighs some other

well known probability distance measures which could have been used.

The proposed damage detection strategy along with the exploited sensing

technology has been proven to work well for structural health monitoring of

structures. As such, not only can the proposed strategy be used for damage

detection on new structures, but it can be also used for monitoring damage

in old structures. This can be achieved by considering the current state of

the structure to be the primary state and basis for the choice the voltage

thresholds. As damage is a dynamic phenomenon and progresses through

time any change in the calculated DSF can be referred to presence of damage

at the vicinity of sensors.

There are a few questions, however, which need to be addressed in future

works. For instance, one can study the possibility of correlating the value

of the proposed DSF to the possible location of the damage. Further future

work could focus on developing a strategy to find the exact location of

damage by determining the intersection of likely circular damage zones of

specific radius obtained from the different sensors. A new electronic device
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can be also developed based on the proposed damage detection strategy to

show the severity of damage recorded on each sensor. This can be shown

either on a display monitor attached to sensors or transferred wirelessly to

a remote monitoring unit.
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