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Abstract: Recently, features extracted by convolutional neural networks (CNNs) are popularly used for image retrieval.
In CNN representation, high-level features are usually chosen to represent the images in coarse-grained datasets, while
mid-level features are successfully applied to describe the images for fine-grained datasets. In this paper, we combine
these different levels of features as a joint feature to propose a robust representation that is suitable for both coarse-
grained and fine-grained image retrieval datasets. In addition, in order to solve the problem that the efficiency of image
retrieval is influenced by the dimensionality of indexing, a unified subspace learning model named spectral regression
(SR) is applied in this paper. We combine SR and the robust representation of the CNN to form a combined feature
compression encoding (CFCE) method. CFCE preserve the information without noticeably impacting image retrieval
accuracy. We find the tendency of the image retrieval performance to change the compressed dimensionality of features.
We further discover a reasonable dimensionality of indexing in image retrieval. Experiments demonstrate that our model
provides state-of-the-art performances across datasets.
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1. Introduction
After AlexNet [1] broke many records, convolutional neural networks (CNNs) have achieved great successes
in a number of computer vision tasks, including object detection [2], human action recognition [3], visual
recognition [4], and semantic segmentation [5]. As deep features create higher discriminative ability and semantic
representation power, and different distribution properties, their representation provides powerful descriptors
for image retrieval. Many researchers employ this type of deep learning model to solve problems in specific
domains. In terms of representation (features), the performance of image retrieval is deeply dependent on the
choice of feature selection [6]. Many studies reveal that deep features are viable alternatives to traditional
hand-engineered features [7–9].

In image retrieval, the encoder process tries to preserve as much information about the image as possible.
Even though describing images with a high-dimensional vector maintains higher discriminative power than a
low-dimensional one, a high-dimensional indexing vector falls prey to “the curse of dimensionality” [10]. This
problem may decrease the indexing efficiency of image retrieval and search results fall behind the brute-force
linear search. Generally speaking, generating a compact indexed representation is essential in image retrieval.

This paper focuses on generating compact representation that is well suited for image retrieval. Unlike
the singular deep features applied to most state-of-the-art large-scale retrieval systems, our work is mainly
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focused on feature combination, and we use these combined features in subspace learning to generate compact
representation. In addition, we discuss the suitable encoding bits in compression.

The contributions of our work are threefold:

• We join different types of features extracted by a CNN to form a representation that can convey image
information such as local position, object part, and mixture of patterns.

• We apply subspace learning as a dimensionality reduction method and find that subspace learning not
only reduces the dimensionality without noticeably impacting image retrieval accuracy but also excludes
the redundant information and preserves the valid information.

• After many experiments, we find the regular pattern of image retrieval performance with the growth of
compressed dimensionality of features. In addition, we discover a reasonable length of encoding when
deep features are applied in image retrieval.

The rest of the paper is organized as follows. Section 2 reviews the choice of features and feature
encoding in image retrieval. Section 3 introduces the detailed theory of the combined feature compression
encoding (CFCE) method. Section 4 compares our method with different methods popularly used in this field,
and Section 5 concludes the paper and discusses the results.

2. Related work
The process of image retrieval is divided into two parts: the choice of features (local or global) and feature
encoding, aggregating them into a reasonable vector. This section briefly reviews the development of these two
processes and introduces the spectral regression.

2.1. Choice of features
Different types of features may cause different effects with respect to different datasets. In some coarse-grained
or genetic classification datasets, the global (high-level) features outperform local (middle-levels) features [8, 11].
Besides, local features are superior to global features [12–14] in some fine-grained or identical classes.

Hand-crafted features are applied to traditional state-of-the-art image retrieval systems. Local repre-
sentation, such as scale-invariant feature transform (SIFT) [15] and local binary patterns(LBP) [16], can be
aggregated into fixed-length vectors to describe a whole image used in image retrieval. Moreover, global repre-
sentations such as GIST [17] and histograms [18] are also used in image retrieval. These two types of hand-crafted
features are, however, used separately with respect to specific domains. Hand-crafted features need to be re-
designed if the domain changes. Several works have shown that deep descriptors significantly outperform the
state-of-the-art approach on common retrieval benchmarks [8, 19, 20]. Therefore, the focus in computer vision
has shifted from traditional hand-crafted features towards the deep features produced by CNN.

The CNN algorithm is a particular kind of representation learning procedure that discovers multiple
levels of representation, with higher-level features representing more abstract aspects of the data [21]. As shown
in Figure 1, with an increasing number of layers, the corresponding size of receptive fields becomes larger, and
the types of features represented shift from local to global features. CNN architectures can potentially generate
progressively abstract features in global representations of higher layers that are only sensitive to some very
specific types of changes in the input [21]. Even though the representations in higher layers are more likely to
represent object parts, they may represent a mixture of patterns. Such complex knowledge representations in
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Figure 1. Features in convolutional layers and fully connected layers.

higher layers diminishes the interpretability of the network. In contrast, an interpretable CNN is activated by
a certain portion of the image in local representation [22].

Razavian et al. [8] revealed that features obtained from CNNs should be the primary candidates in
most visual recognition tasks. Babenko et al. [7] used local features extracted from the convolutional layers to
describe particular regions of whole images. Then, using an aggregation strategy, they embedded these local
features into a vector representation for the whole image. Elisha et al. [23] revealed that in networks performing
well the representations in general “improve” from layer to layer and smoothness improves from layer to layer.
Razavian et al. used a feature representation of size 4096, extracted from the first fully connected layer, to
achieve better performance than state-of-the-art retrieval pipelines. However, using a fully connected layer will
cause some loss of information or break the aspect ratio, which is harmful to the task of visual retrieval while
convolutional layers preserve more spatial information [24]. Zheng et al. [25] observed that average/max pooling
of features from intermediate layers is effective in improving invariance to image translations. Specifically, the
pooled conv5 feature, with much lower dimensionality, was shown to yield competitive accuracy with the FC
features. In addition, a high-layer filter (FC features) may represent a mixture of patterns, which will greatly
decrease the performance of the fine-grained image retrieval [26].

Therefore, these two types of features may be not applicable to different types of datasets. From the
point of view of CNN representation, a single type of deep features may not be suitable for different kinds of
datasets. We combine the different types of features to capture more diverse information biased toward visual
appearance for both of these types of datasets.

2.2. Feature encoding

Fisher vector(FV) [27], vector of locally aggregated descriptors (VLAD) [28], and bag of features (BOF) [29] are
leading aggregation local descriptor approaches. These approaches project each local descriptor into different
components or visual words of a codebook. Then all encoded vectors are aggregated into a single vector
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using sum or average operations. Even though these approaches achieve better performance than those used
before, their shortcoming is that the dimensionality of the final encoding bits is quite high. Projecting the
original feature into latent space can solve the problem of dimensionality. Each feature is mapped into a fixed-
length vector. Many deep learning models use latent nodes corresponding to encoding bits, such as restricted
Boltzmann machines (RBMs), autoencoder (AE), and CNNs. The values of the latent variables in the deepest
layer of RBMs are easy to infer and give a much better representation, as proposed by Salakhutdinov et al.
[30]. In latent space, semantically similar images are mapped to nearby addresses. Carreira-Perpinan et al. [31]
introduced the binary AE model, which consists of an encoder to generate codes and a decoder to reconstruct
each images. Each high-dimensional image is mapped onto a binary, low-dimensional vector. Yang et al. [32]
increased the hidden layer in CNNs. In this model, the number of hidden nodes corresponds to the encoding
bits. The value of hidden nodes is adjusted with classification loss. Furthermore, if the data labels are available,
this deep CNN model may generate encoding and image descriptors simultaneously. Although these methods
may generate dense encodings of high quality, once the encoding bits change, these deep models also need to
be retrained.

In contrast, an alternative approach is using subspace learning algorithms. This method acts as a dimen-
sional reduction method to discover the discriminant structure in feature space and preserve the information of
features without noticeably impacting the image retrieval accuracy.

2.3. Spectral regression

For graph-based subspace learning, the purpose of graph embedding is to represent each vertex of a graph as a
low-dimensional vector that preserves similarities between the vertex pairs, where similarity is measured by the
edge weight. In a graph G with k vertices, each vertex corresponds to a feature point. Let W be a symmetric
m ×m matrix with Wij denoting the weight of the edge joining vertices i and j. Suppose y = [y1, y2, ..., yk]

T

is the projection of the graph onto the real line. The y is given by minimizing

∑
i,j

(yi − yj)
2
Wij = 2yTLy, (1)

where L = D−W according to the graph Laplacian and Dii =
∑

j Wij . We can finally get and the optimal y

by maximizing eigenvectors of the eigenproblem:

Wy = λDy. (2)

If we choose a linear function, i.e. yi = f(xi) = aT xi , to map y and all samples X , we have y =

XT a . Therefore, the optimal a values are the eigenvectors corresponding to the maximum eigenvalue of the
eigenproblem:

XWXT a = λXDXT a, (3)

and the following theorem is given to solve Eq. (3) more efficiently.

Theorem 1 Let y be the eigenvector of the eigenproblem in Eq. (2) with eigenvalue λ . If XT a = y , then a
is the eigenvector of the eigenproblem in Eq. (3) with the same eigenvalue λ .
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Theorem 1 shows that instead of solving the eigenproblem of Eq. (3), the linear embedding functions can be
acquired through the following two steps: 1) solving the eigenproblem in Eq. (2) to get y , and 2) finding a
to satisfy XT a = y . In reality, such an a might not exist. A possible way is to find a that can best fit the
equation in the least squares sense a = arg mina

∑m
i=1(aT xi − yi)

2 , where yi is the ith element of y . Such a
two-step approach essentially performs regression after the spectral analysis on the graph. Therefore, Cai et al.
named it spectral regression [33].

3. Combined feature compression encoding

In this section, we give details of the proposed CFCE algorithm. One of the most important purposes of our
method is to find a better explanation of the input, so we compress and encode the combined representation
through SR, which is a reconstruction subspace method. Meanwhile, this coding method is suitable for both
fine-grained and coarse-grained datasets. We start by using the CNN to describe the image data by extracting
features and combining the different types of features. To generate an efficient indexing and enhance encoding
quality for image retrieval, we adopt subspace learning as a dimensionality reduction method to make a compact
representation. The standard pipeline used to build combined feature compression encoding is shown in Figure
2. The first and second stage belong to combinations with different types of features. Between the third and
sixth stages they belong to the dimensionality reduction method.

Figure 2. The standard pipeline used to build combined feature compression encoding. The first and second stages be-
long to combination with different types of features. Between the third and sixth stages they belong to the dimensionality
reduction method.

3.1. Combining with different types of features

We describe our approach using a unified representation as a way of building compact and efficient codes for
image retrieval in this section. We can reuse different levels of features in CNN architectures, since a CNN is
like a hierarchical organization. In fine-grained image retrieval, local patterns in images are more important
than global patterns, while in coarse image retrieval, it may be better using high-level semantic information as a
representation. Unlike using high-level or middle-level features, here we combine multiple types of features. In
our approach, we combine the feature maps extracted separately from a certain portion of the image in middle
levels and an object part in high levels. In this method, we use an fl layer as an aggregation of local fusion
features and fg as global features. Then we combine these two features as a joint feature.

In addition, the dimensionality of aggregated local representation is much larger than global features in
CNN representation. Furthermore, the information of local features is relatively sparse. Therefore, we adopt a
different pooling method to maintain the local image information.
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We use the fl layer as an aggregation vector of local fusion feature and fg as a global feature. Let I

denote a set of training images, where Ii ∈ I represents an image in the dataset. We denote the feature maps
of layer k as fk . Then we define the average pooling feature fk

avg (x) as:

fk
avg (x) =

1

w × h

w,h∑
i,j=1

f (x) , (4)

where k correspondings to a conv5_3 layer, w and h correspond respectively to the width and height of each
channel, and i represents the channel.

The max pooling feature fk
max (x) is:

fk
max (x) = maxw,h

i,j=1f (x) , (5)

where k corresponds to a conv5_3 layer.
We denote aggregation fl (Ii) of the local fusion feature through average and max pooling as:

fl (Ii) = σ
(
ωl
(
fk
avg (x) + fk

max (x)
))

. (6)

The value of global feature representation in the layer is:

fg (Ii) = σ (ωg · fl (Ii)) . (7)

The final feature representation fc (Ii) can be interpreted as the combination of local and global features:

fc (Ii) =

{
fl (Ii) 0 ≤ j < Bl

fg (Ii) Bl + 1 ≤ j < Bl +Bg,
(8)

where Bl is the node of the local fusion layer, Bg is the encoding bits of the global layer, and Bl + Bg is the
encoding bits of the final combined feature vector.

We use exponential linear units (ELUs) as the activation functions of fl and fg to enlarge the margin of
the encoding boundary since ELUs saturate to a negative values with smaller inputs and decreasing propagated
variation, and lead to significantly better generalization performance than ReLUs and LReLUs on networks
[34]. The ELU with α > 0 is:

σ (x) =

{
x if x > 0
α exp ((x)− 1) otherwise.

(9)

3.2. Dimensionality reduction and encoding method

Given a high-dimensional feature f t (Ii) , only a small portion of the possible factors are relevant. This sparsity
of the representation allows us to find compact encoding bits from a feature in a fixed-size vector with tolerable
loss of image information. Moreover, to preserve multisemantic feature information and enhance image retrieval
discriminant ability, the output encoding maps through regression for projective function learning and spectral
graph analysis are used to model the complicated subspace of the features. Therefore, we adopt a unified
approach for subspace learning, the SR [35] method, to build a compact indexing with proper encoding bits. In
the SR method, we use a different weight matrix W to simulate different graph embedding methods.
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Given k features {f t (Ii)}ki=1 ⊂ Rn , the dimensionality reduction algorithm tries to find {zi}ki=1 ⊂ Rd ,
d ≪ n , where zi is the embedding result of f t (Ii) . In a graph G with k vertices, each vertex corresponds to a
feature point. Let W be a symmetric m×m matrix with Wij denoting the weight of the edge joining vertices
i and j. Suppose y = [y1, y2, · · · , yk]T is the projection of the graph onto the real line. Then y is given by
minimizing ∑

i,j

(yi − yj)
2
Wij = 2yTLy, (10)

where L = D −W according to the graph Laplacian and Dii =
∑

j Wij .

In the LDA algorithm, the weight matrix is:

Wij =

 1/kt if f c (Ii) and f c (Ij) both belong
to the tth class;

0 otherwise
(11)

where we suppose there are c classes, and the tth class has kt samples, k1 + ...+ kc = k .
In the LPP algorithm, the weight matrix is:

Wij =

{
e−

∥xi−xj∥2

2σ2 if xi ∈ Nk (xj) and xj ∈ Nk (xi)
0 otherwise.

(12)

Wij has a value when the k nearest neighbors of the point have the same label with the point.
The projection matrix a satisfies:

ai = arg min
a

(
m∑
i=1

(
aT f c (Ii)− yi

)2
+ α ∥ a ∥2

)
. (13)

Let A = [a1, a2, ..., ac−1] . A is an n× (c− 1) transformation matrix. The samples can be embedded into
c− 1 dimensional subspace by

x → z = ATx. (14)

Since short binary codes provide very fast searching in image retrieval, we use the binary codes to provide
efficient retrieval. The binary encoding b is:

b = sgn (zi −mean(i)) , (15)

where mean(i) is with respect to the mean value of corresponding encoding bits of the training data.

4. Experiments
This section reports experiments using cross datasets including fine-grained and coarse-grained data. Our
network is trained in a NVIDIA TESLA P40. Its GPU global memory is 24 GB and it has 3840 CUDA cores.

4.1. Datasets and settings
For coarse-grained datasets, we use Caltech 101. Caltech 101 is composed of 101 widely varied categories. Each
category has 40 to 800 images. Most categories have about 50 images. Categories such as motorbike, airplane,
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cannon, etc. where two mirror image views were present were manually flipped, so all instances faced the same
direction. The size of each image is roughly 300× 200 pixels [36].

For fine-grained datasets we used Stanford dogs and indoor scene recognition. The Stanford dogs set
contain 20,580 images with 120 dog breeds and approximately 150 images per class. This dataset is extremely
challenging for a variety of reasons. First, being a fine-grained categorization problem, there is little interclass
variation. Second, there is very large intraclass variation [37]. The images in the indoor scene recognition
dataset were collected from different sources: online image search tools (Google and Altavista), online photo
sharing sites (Flickr), and the LabelMe dataset. This dataset contains a total of 15,620 images, 67 indoor
categories, and at least 100 images per category [38]. All images have a minimum resolution of 200 pixels in
the smallest axis.

Our method is based on VGG-16 as configuration D [39], which is one of the most popular models in
CNNs and can be replaced by other CNN models. For the experimental setting, we choose 60% of the data
as a training set and the remaining 40% data as test data. However, FV and VLAD are time-consuming. We
randomly chose 50 instances from each class from the remaining 40% of data to form a test dataset and then
we repeated this process 10 times. The result of image retrieval performance was worked out by averaging the
performances produced 10 times. In this paper, the retrieval time corresponds to the mean time of each image
search of the top 1000 images.

To generate a good CNN model, we are supposed to collect a large amount of labeled data. However,
this process can be very expensive and unrealistic. In the real world, the existing data are usually unlabeled
and unbalanced. We can use inductive transfer learning to generate suitable models in CNNs. In coarse-grained
image retrieval, the source domain and target domain are very similar, i.e. DS = DT , while their learning tasks
are different, i.e. TS ̸= TT . We can fine-tune the original model to generate good representation. In fine-grained
image retrieval, the source domain and target domain are different, i.e. DS ̸= DT , and their learning tasks are
different, i.e. TS ̸= TT . The learning rates in different parts are different since the different parts of CNNs have
different similarity. Then we freeze the weights in low conv-layers, because the low levels have already been
trained very well. The mid-level and high-level layers use relatively large learning rates since these features are
dissimilar compared with the original feature part.

4.2. Comparison of layer performance

Inspired by Babenko [40], we compared the neural codes of different layers to find the relations between the
performance of image retrieval and deep representation. Therefore, we compare the performance of our method
versus the final local and global layers through the neural codes.

Tables 1 shows the results of this experiment using different layer representations to retrieve images. It
shows that our powerful representation provides a viable alternative for neural codes of different layers. With
the deepening of the layers, the image retrieval performance is getting better, because the deeper layer can
provide more abstract representation. However, using local final layers creates a performance bottleneck due to
positional information in local features being overlooked in representation and the local information of neural
codes in the convolutional layer without further processing. When we combine different types of features, the
search time and dimensionality slightly increase, so we use subspace learning to relieve the gap.

4.3. Feature compression using subspace learning

We compress the dimensionality to [16,32,64,128,256,512] separately when using LPP PCA, and to [16,32,64,c-1]
separately when using LDA.
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Table 1. Comparison of layer performance.

Method Caltech 101 Stanford dogs Indoor scene Dim Time (s)
conv5_1 0.659 0.351 0.373 100352 10.76
conv5_2 0.724 0.397 0.411 100352 10.76
conv5_3 0.759 0.410 0.396 100352 10.76
fc6 0.938 0.765 0.762 4096 0.30
fc7 0.954 0.746 0.737 4096 0.30
combined representation 0.970 0.898 0.901 8192 0.59

Figures 3, 4, and 5 show the results of using different dimensionality reduction methods with different
types of datasets. We can see that the mAP of LPP and PCA does not always rise with the increase
of dimensionality. On the contrary, mAP performs best if the compressed dimensionality is close to the
threshold, which is usually around the number categories. Besides, the mAP of LDA keeps increasing until
the dimensionality is equal to c−1 , so it can prove our conclusion as well. Before the encoding length comes
close to the number of categories, the performance of image retrieval presents an upward trend. In contrast,
away from this threshold, the tendency presents a downward trend.

The parameter α is chosen from the values {10r : r ∈ {−5,−4,−3, ...3, 4, 5}} . To discuss the influence
of α when set as different values, we show the results of retrieval performance in Figure 6. Then we can get
value of α for our experiment.

Table 2. Comparison among different encoding approaches.

Method Caltech 101 Stanford dogs Indoor scene k Dim Time (s)
fc7 0.954 0.746 0.737 – 4096 0.30
FV 0.980 0.801 0.852 16 4096 0.30

0.971 0.819 0.857 32 8192 0.59
0.973 0.846 0.881 64 16384 1.2
0.965 0.897 0.866 128 32768 2.48

VLAD 0.979 0.880 0.877 16 4096 0.30
0.980 0.884 0.888 32 8192 0.59
0.985 0.891 0.897 64 16384 1.2
0.988 0.902 0.907 128 32768 2.48

SSDH 0.814 0.770 0.898 – 16 0.002
0.953 0.878 0.905 – 32 0.0025
0.977 0.894 0.904 – 64 0.0046
0.975 0.890 0.906 – 128 0.0087
0.974 0.895 0.912 – 512 0.0352

CFCE 0.610 0.351 0.551 – 16 0.002
0.884 0.622 0.799 – 32 0.0025
0.982 0.836 0.916 – 64 0.0046
0.990 0.907 0.918 – c−1 –
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Figure 3. In Caltech 101, retrieval performance comparison of three different dimensionality reduction approaches by
representation as layer conv5_3 , representation as layer fc6 , representation as layer fc7 , or representation as combined
layer.

4.4. Comparison among different encoding approaches

In this experiment, unified representation is used as a default feature. In order to verify the validity of
our encoding method, our model is further compared with different encoding methods including aggregation
approaches, neural codes [40], and SSDH [32]. For aggregation approaches, we choose FV [41] and VLAD [28]
as typical examples. k is the number of Gaussian mixture models in FV. In VLAD, k is the number of cluster
center points. For k, we chose values of [16,32,64,128] separately. Before using an aggregation approach to
encode the indexing, we use a dimensionality reduction method to accelerate aggregation speed.

We evaluate the performances of different encoding approaches. The results are shown in Tables 2. Our
approach provides arguably the best performance. The CFCE is comparable with the best. Even though all
of these approaches perform well, the dimensions of FV and VLAD are relatively high. The result of SSDH is
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Figure 4. In Stanford dogs, retrieval performance comparison of three different dimensionality reduction approaches by
representation as layer conv5_3 , representation as layer fc6 , representation as layer fc7 , or representation as combined
layer.

better when encoding bits are relatively shorter. However, the model requires retraining, which is quite time-
consuming, once the lengths of encoding have changed. In our approach, however, we only need training one
time to obtain a unified representation. For different encoding bits, we only modify the subspace learning as a
dimensionality reduction method. Therefore, our approach provides a considerably better trade-off between the
model training time, performance, and efficiency of image retrieval. At the same time, the retrieval performance
of our approach is comparable to the SSDH method.

4.5. Results
• Our method is suitable for coarse-grained and fine-grained datasets in image retrieval.

• Our experiments prove that the suitable length of encoding bits is close to the number of classes in different
dataset types.
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Figure 5. In Indoor Scene, retrieval performance comparison of three different dimensionality reduction approaches
by representation as layer conv5_3 , representation as layer fc6 , representation as layer fc7 , or by representation as
combined layer.
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Figure 6. The retrieval mAP when parameter α was set as different values in Caltech 101, Stanford dogs, and Indoor
Scene datasets using LPP method (a) and LDA method (b).
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• Subspace learning can significantly improve the performance of image retrieval and exclude the redundant
information.

(a) Caltech 101

(b) Stanford dogs

(c) Indoor Scene recognition

Figure 7. Retrieval examples using CFCE method on cross datasets. Blue color corresponds to inquiry image, red to
false results, and green to true results.

Figure 7 shows the top ten retrieval results for three typical examples of classes in the collected dataset.
Most of the results are relevant to the inquiry. Therefore, CFCE can provide great performance for cross
datasets.

5. Conclusion
We have proposed a new feature compression method suitable to both coarse-grained and fine-grained image
retrieval, which provides state-of-the-art performances across datasets. In the process, spectral regression is the
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primary candidate to explore the subspace of combined features without noticeably impacting accuracy. One
potential drawback is that the retrieval performance will decrease once the length of the code is less than the
number of categories. In the future, we will try to solve this problem.
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