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Abstract

Background:

Transport injuries commonly result in significant disease burden, leading to physical
disability, mental health deterioration and reduced quality of life. Analyzing the
patterns of healthcare service utilization after transport injuries can provide an insight
into the health of the affected parties, allow improved health system resource planning,
and provide a baseline against which any future system-level interventions can be
evaluated. Therefore, this research aims to use time series of service utilization provided
by a compensation agency to identify groups of claimants with similar utilization
patterns, describe such patterns, and characterize the groups in terms of demographic,
accident type and injury type.

Methods:

To achieve this aim, we have proposed an analytical framework that utilizes latent
variables to describe the utilization patterns over time and group the claimants into
clusters based on their service utilization time series. To perform the clustering without
dismissing the temporal dimension of the time series, we have used a well-established
statistical approach known as the mixture of hidden Markov models (MHMM). Ensuing
the clustering, we have applied multinomial logistic regression to provide a description
of the clusters against demographic, injury and accident covariates.

Results:

We have tested our model with data on psychology service utilization from one of the
main compensation agencies for transport accidents in Australia, and found that three
clear clusters of service utilization can be evinced from the data. These three clusters
correspond to claimants who have tended to use the services 1) only briefly after the
accident; 2) for an intermediate period of time and in moderate amounts; and 3) for a
sustained period of time, and intensely. The size of these clusters is approximately 67%,
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27% and 6% of the number of claimants, respectively. The multinomial logistic
regression analysis has showed that claimants who were 30 to 60-year-old at the time of
accident, were witnesses, and who suffered a soft tissue injury were more likely to be
part of the intermediate cluster than the majority cluster. Conversely, claimants who
suffered more severe injuries such as a brain head injury or anon-limb fracture injury
and who started their service utilization later were more likely to be part of the
sustained cluster.

Conclusion:

This research has showed that clustering of service utilization time series is an effective 1

approach for identifying the main user groups and utilization patterns of a healthcare 2

service. In addition, using logistic regression to describe the clusters in terms of 3

demographic, injury and accident covariates has helped identify the salient attributes of 4

the claimants in each cluster. This finding is very important for the compensation 5

agency and potentially other authorities as it provides a baseline to improve need 6

understanding, resource planning and service provision. 7

Introduction and background 8

Transport injuries around the world often result in significant physical and psychological 9

impairments and reduced quality of life [1, 2]. Every year, road traffic accidents cost 10

most countries in excess of 3% of their gross domestic product (GDP), and between 20 11

and 50 million people suffer non-fatal injuries, with many incurring a consequent 12

disability [3]. In the case of Australia, transport accidents are the second leading cause 13

of hospitalized injuries and injury-related deaths [4], with massive health and financial 14

impact [5]. In 2016 alone, nearly half a million motor vehicle accidents occurred in 15

Australia, of which 1, 295 resulted in death (an increase of 7.5% compared to 2015), 16

32, 300 in serious injuries and 224, 104 in minor injuries requiring medical treatment [5]. 17

Planning and providing adequate compensation to the sufferers of transport injuries is 18

an ongoing challenge at national level. Insights into the burden of injury in specific 19

injury groups may be provided by a quantitative analysis of the utilization of health 20

services in the months and years following the accident [6]. A useful source of data to 21

investigate health service utilization after accidents are the personal compensation 22

datasets of insurers and compensation organizations [7–9]. These datasets make it 23

possible to inspect the patterns of service utilization and their evolution over time from 24

data of health service usage (e.g., number of visits to a specialists) at any desired level 25

of aggregation (individual, group etc). 26

In the state of Victoria, Australia, the Transport Accident Commission (TAC) 27

provides state-wide coverage of treatment, rehabilitation, vocational and disability 28

benefits to individuals injured in land-based transport accidents [6, 10]. Despite the 29

progress brought in by road safety programs, motor vehicle accidents still cause about 30

7, 800 serious hospitalizations per year in the state [10,11]. The TAC possesses time 31

series of all healthcare service compensation payments made to its claimants under the 32

compensation scheme. Each time series records all the service utilizations made by a 33

claimant and is identified by a unique claim ID. At its turn, each utilization includes the 34

date of the service, its cost and its type, categorized according to three, increasing levels 35

of detail. In addition to the service utilization data, the TAC also collects additional 36

data about the claim, such as the age and gender of the claimant, the mode of 37

transportation at the time of accident, what type of injuries were sustained, and so 38

forth, grouped into the broader categories of demographic, injuries and accident data. 39
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In the terminology of data analytics, such extra data are commonly called “covariates” 40

(or features, or attributes). 41

Grouping claimants based on their healthcare service utilization following a 42

transport injury could prove beneficial in many ways. In the first place, it is likely to 43

shed some light on the health “trajectory” of the claimamts. In the second instance, it 44

could help improve resource planning and provide a model against which any future 45

system-level interventions can be evaluated [6]. However, with the exception of 46

severely-injured patients [12–15], there seems to exist little published information 47

regarding patterns of healthcare utilization following transport injuries [6]. In particular, 48

to the best of our knowledge, there are no works in the literature exploring the temporal 49

dimension of the service utilization. 50

In this research, we investigate patterns of healthcare utilization following transport 51

injuries using de-identified compensation data provided by the TAC for the state of 52

Victoria in Australia. Claimants were included in the study if they had lodged a claim 53

in 2009 and their utilization data were collected until nine years after the accident. The 54

measure of utilization was provided in the dataset as the number of monthly visits to 55

service providers such as psychologists, psychiatrists, physiotherapists, chiropractors, 56

practitioners, surgeons etc. Given that mental health is a priority for the compensation 57

agency, in the rest of this paper we will illustrate our approach using time series of 58

psychological services utilization. From these premises, the main goals of this study are 59

to 1) cluster the claimants into homogeneous, distinct patterns of service utilization, and 60

2) characterize the clusters in terms of demographic, injuries and accident covariates to 61

identify which types of claimants are likely to exhibit specific utilization patterns. 62

Data 63

The TAC provided two de-identified transport-related injury claim datasets spanning 64

2009 through to 2017 for claimants who lodged a claim in 2009. In Victoria, Australia, 65

the compensation of psychology services for victims of transport accidents was 66

established by a Government Act in 1986 [16] and retained to date by the Transport 67

Accident Regulations of 2017 [17]. Therefore, there has been no affecting legislation 68

changes during the observation period. 69

The first dataset contains one record for every compensation claim received by the 70

TAC in 2009. This record consists of the information required for the management of 71

the claim, including demographics (gender, current age, age at accident), 72

accident-related data (accident date, claimant security risk type, claim development 73

month, number of claims, road user type), and injury type. The injury type articulates 74

over fatal, brain head, severe acquired brain injury (ABI), concussion, degloving, burns, 75

spinal, amputation, quadriplegia, paraplegia, nerve damage, soft tissue, dislocation, 76

internal injuries, sprain strains, limb fractures, non-limb fractures, contusion abrasion, 77

sight, and other injuries. The second dataset includes longitudinal data of service 78

utilizations and payments for 9, 328 unique claimants (1, 048, 576 total service 79

utilizations), spanning January 2009-October 2017 (106 months). Each service 80

utilization is labeled with three service categories at increasing level of detail (e.g., in 81

order: hospital – rehabilitation; rehabilitation - private hospital; and rehab - 82

physiotherapy). These categories have 30, 75 and 226 unique values each, respectively, 83

across all the data. These two datasets were integrated for the analysis using the claim 84

ID, and the information on payments was regarded as out of scope for the analysis. The 85

Ethics Committee of University of Technology Sydney (UTS) and the Transport 86

Accident Commission (TAC) approved restricted research use of these dataset (UTS 87

Human Research Ethics Committee ETH182331) 88

The analysis we present in this paper can be carried out using any of the three 89
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service categories or their combinations. Since the third category is the most detailed, 90

we have used it to select a specific service, and, given the importance of mental health 91

for the TAC, we have chosen “psychology” to illustrate our model with. By “psychology 92

service utilization” we mean an office visit to a psychologist. For this service, the 93

longitudinal data contain 788 unique claimants for a total of 22, 523 service utilizations. 94

In the following, all results refer to this service. 95

We have built 788 time series with unique claim IDs by aggregating the number of 96

utilizations by month. The first element of the time series is the month of first 97

utilization, and the last element is the month of last utilization. Alternative alignments 98

are possible; for instance, by the accident date. To take the accident date into account 99

in our model, we have added the number of days between the accident date and the first 100

utilization of the service as an additional covariate. The time series have variable length, 101

from a minimum of 2 months to a maximum of 106, and on average approximately 29 102

months. The few (i.e., 6) time series lasting exactly 106 months are likely truncated by 103

the finite length of the dataset. The number of service utilizations per month ranges 104

over 0, 1, · · · , 20, 22, and 24 and it has been displayed with a unique color through the 105

entire paper (e.g., zero is grey, one is yellow, and so forth). Fig 1 offers a visualization 106

of all the 788 times series as a “stacked plot”. In the figure, the height of each colored 107

bar is proportional to the number of time series with that given number of utilizations. 108

For instance, in the first month there is a large number of claimants with one utilization 109

(yellow bar), fewer but still many with two (light orange bar), and so on. Conversely, 110

toward the right end side of the plot almost all clients have zero (grey bar) utilizations. 111

Table 1 shows the main statistics for the demographic, accident and injury covariates for 112

the claimants who used the psychology service. In the analysis, we have only considered 113

covariates that have at least 10% coverage of the sample. 114

Fig 1. “Stacked plot” of the number of monthly utilizations of the
psychology service. This figure shows the 788 times series as a “stacked plot. The
height of each colored bar is proportional to the number of time series with that given
number of utilizations.

Methodology 115

The modeling of sequential data (i.e., data that come in sequences such as our service 116

utilization time series) requires significantly different assumptions from the more 117

common case of independent samples. Given a generic time series, noted as 118

(x1, x2, . . . , xt, . . . , xT−1, xT ) or as x1:T more compactly, there generally exists no 119

analytical expression for its probability, p(x1:T ). The common approach is to resort to 120

factorized models and Markov assumptions to express the probability as the product of 121

simpler terms, e.g. p(x1:T ) = p(x1)
∏T

t=2 p(xt|xt−1) as in an AR(1) autoregressive 122

model [18]. These assumptions are often realistic and have permitted the 123

implementation of accurate predictive models in many fields [18]. 124

The hidden Markov model introduces a further assumption to improve the 125

descriptive capability of a factorized model [19]. The assumption posits that each 126

sample, rather than depending directly on the immediately previous samples, only 127

depends on a categorical latent variable called the “state”. Such a variable completely 128

encapsulates the state of the model at any given point in time. In turn, the model’s 129

state evolves based on a set of transition probabilities. Therefore, the variables involved 130

in a hidden Markov model (HMM) consist of the sequence of observations, x1:T , and the 131

corresponding sequence of states, noted as y1:T . The factorized joint probability of the 132

observations and the states is expressed as: 133
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Table 1. Main statistics for the demographic, accident and injury
covariates for the psychology service.

Varaibles Percentage Yearly service utilization mean (SD)
Gender

Female 52% 4.5 (8.4)
Male 48% 3.8 (6.6)

Age group (at accident)
< 30-year-old 35% 4.7 (9.7)
30-40-year-old 22% 4.1 (6.9)
40-50-year-old 21% 4.2 (6.5)
50-60-year-old 13% 3.2 (3.7)
> 60-year-old 9% 3.6 (6.3)

Role in transport accident
Driver 48% 3.8 (6.2)
Passenger 23% 4.1 (8.5)
(Motor/) Cyclist 16% 3.8 (4.8)
Pedestrian 12% 6.1 (12.9)
Witness 3% 4.2 (4.2)

Injuries
Brain head (N) 76% 3.1 (4.6)
Brain head (Y) 24% 7.4 (12.6)
Concussion (N) 81% 3.7 (5.9)
Concussion (Y) 19% 6.1 (12.3)
Internal (N) 71% 3.4 (5.0)
Internal (Y) 29% 6.0 (11.6)
Soft tissue (N) 47% 4.4 (9.1)
Soft tissue (Y) 53% 3.9 (5.8)
Dislocation (N) 81% 3.8 (6.5)
Dislocation (Y) 19% 5.6 (10.9)
Sprain strains (N) 76% 3.8 (7.2)
Sprain strains (Y) 24% 5.1 (8.8)
Limb fractures (N) 63% 3.9 (6.4)
Limb fractures (Y) 37% 4.5 (9.3)
Non-limb fractures (N) 62% 3.2 (4.0)
Non-limb fractures (Y) 38% 5.6 (11.1)
Contusion abrasion (N) 33% 4.6 (7.5)
Contusion abrasion (Y) 67% 3.9 (7.7)

p(x1:T , y1:T ) = p(y1)

T∏
t=2

p(yt|yt−1)

T∏
t=1

p(xt|yt) (1)

The terms on the right hand side of Eq (1) fully define an HMM and include: 1) the 134

probability of the initial state, p(y1); 2) the probability of transitioning from the state 135

at time t− 1 to the state at time t, p(yt|yt−1); and 3) the probability of observing value 136

xt when in state yt, p(xt|yt). Such factors are commonly referred to as initial, transition 137

and observation probabilities and form the generative model of the HMM. Each state 138

variable is a latent categorical variable with an arbitrary number of values, let us say, N : 139

therefore both p(y1) and p(yt|yt−1) can be modelled by conventional categorical 140

distributions. Conversely, a single “observation” can consist of any combination of 141

categorical and numerical values: therefore, term p(xt|yt) can be modelled using 142
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corresponding joint categorical/numerical distributions. 143

To give an intuition of an HMM at work, consider a toy example of a sequence of six 144

observations, x1:6 = {5, 3, 7, 0, 3, 0}. We assume this HMM to have N = 2 distinct 145

states that we qualitatively describe as “high utilization” (H) and “low utilization” (L). 146

A plausible state sequence for these observations is y1:6 = {H,H,H,L,L, L}. This 147

means that the first three samples have been generated by a state where higher values 148

are more likely, while the remaining three from a state with lower likely values. Also 149

notice that a same value (3 in this case) can be generated with non-null probability 150

from multiple states. This implies that the states cannot be trivially inferred one by one 151

from the range of the observations; rather, they have to be inferred at once from the 152

entire observation sequence. Given Eq (1), this inference is formally expressed as: 153

y∗1:T = argmax
y1:T

p(x1:T , y1:T ) (2)

An efficient, well-known solution for the state inference is provided by a dynamic 154

programming algorithm known as the Viterbi algorithm [19]. Given a sequence of 155

observations, the inferred sequence of states can be seen as a “macroscopic view” of a 156

subject’s evolution over time. For this reason, such views have been added to Section 157

Experiments and Results. 158

A number of other canonical problems exist for an HMM, including deriving various 159

marginal probabilities from (1) and finding the optimal parameters for all its factor 160

distributions under a maximum-likelihood framework. All these problems enjoy proven, 161

computationally-efficient algorithms which have made the HMM a popular model for 162

the modeling of data sequences. Among others, HMMs have been used in computer 163

vision [20], signal processing [21], natural language processing [22], financial 164

prediction [23], gene finding [24] and RNA editing [25]. 165

An HMM can be estimated by maximizing its likehood over a given set of “training” 166

observation sequences. The estimated model will reflect the main trend of its training 167

data: for instance, if a large number of the sequences contain low values and infrequent 168

changes, the model will shape the probability distributions around these cases (i.e., low 169

observation values, rare state transitions). For this reason, the model itself can be seen 170

as the dominant pattern in the training data. Therefore, in the case of a more diverse 171

set of training sequences, an immediate extension could be to employ multiple HMMs to 172

fit the multiple dominant patterns in the set. 173

In principle, one could first cluster the time series using an off-the-shelf clustering 174

algorithm, and then fit an HMM to each cluster. However, this approach would suffer 175

from the limitations of the original clustering algorithm, and the estimated HMMs 176

might not well describe the “uncertain”, boundary cases. Another limitation of this 177

approach is that it assigns each time series to one and only one cluster (hard 178

membership). In alternative to this approach, it is possible to fit all the HMMs 179

optimally at once over all the times series using a ixture of hidden Markov models 180

(MHMM), a specialized instance of the mixture model in statistics [26]. An MHMM is 181

fully defined by the following joint probability: 182

p(x1:T , y1:T , z) = p(z)p(x1:T , y1:T |z) = p(z)p(y1|z)
T∏

t=2

p(yt|yt−1, z)

T∏
t=1

p(xt|yt, z) (3)

where z is a categorical variable that indexes the clusters. Eq (3) simply states that the 183

model consists of a prior probability for the clusters, p(z), and multiple HMMs whose 184

initial, transition and observation probabilities are specific to the cluster. By choosing 185

the number of HMMs, let us say, M , one chooses the number of dominant patterns that 186
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the MHMM is able to describe. Even more interestingly, such a mixture model can be 187

fit on the training data using the same maximum-likelihood framework of the single 188

model. The resulting model automatically “groups” the training sequences according to 189

their closest dominant pattern and, as such, an MHMM provides an ideal, principled 190

tool for the clustering of time series [26]. 191

An MHMM has two parameters requiring external tuning: the number of HMMs in 192

the mixture, M , and the number of states in each HMM, N (this value is usually shared 193

by all the HMMs in the mixture even if, in principle, it is possible to set it individually). 194

A typical procedure for the setting of these parameters starts from their minimum value 195

(i.e., 2) and increases them in unit steps until a satisfactory trade-off between the 196

model’s likelihood and its complexity is reached. Common trade-offs include the 197

Bayesian information criterion (BIC) [27], the Akaike information criterion (AIC) [28] 198

and the use of eye judgment. In this paper, we have used both eye judgement and BIC 199

to select the external parameters. 200

Multinomial logistic regression of cluster membership 201

After clustering, we apply multidimensional logistic regression to explain the cluster 202

membership based on the the demographic, injury and accident covariates described in 203

Section Data. Using external covariates to explain the clustering results allows us to 204

describe what typical profiles of claimants are associated with specific service utilization 205

behaviors. 206

Multinomial logistic regression is the logistic regression framework for multinomial 207

responses, that are categorical variables that can take more than two values (in our case, 208

the number of the clusters, M = 3). In multinomial logistic regression, one of the 209

responses is chosen to serve as reference and a separate logit model is built for each of 210

the remaining M − 1 responses to compare them with the reference. Typically, the 211

response accounting for the largest share of the sample is chosen as the reference. 212

Multinomial logistic regression is a prime investigation analysis in healthcare 213

applications (see [29–31] for a few examples). 214

General use of the applied methodology 215

The methodology employed in this paper for the analysis of psychology services 216

utilization can be applied, substantially unaltered, to any other service or service 217

combination. An MHMM is in fact a highly flexible model that can be used to cluster 218

time series of univariate or multivariate observations, as well as categorical or numerical, 219

or mixed. It also offers many other advantages: 1) it uses a proper temporal model to 220

describe the patterns and form the clusters; 2) it maximizes a proven optimality 221

criterion (the likelihood function); 3) it is not restricted to assigning each time series to 222

one cluster only; rather, it can assign it to multiple clusters in proportion to their 223

probabilistic memberships (soft membership), and 4) it produces a latent state 224

representation that can shed further light on the clusters. A potential weakness of this 225

method is that the number of states in the HMMs needs to be either chosen manually or 226

estimated with an external validation approach such as BIC or AIC [27,28]. Even if the 227

number of states is estimated optimally, there is a chance that the states may overfit 228

the given observations, leading to poor fitting of new samples. However, in this 229

application the data are all available at the beginning of the study, and the models 230

could be easily refitted should new data be acquired. 231

At its turn, multinomial logistic regression can always be applied on the resulting 232

clusters to gain an understanding of their membership. The set of attributes is 233

unrestricted and the approach can be applied with any number of clusters. Using 234

MHMM first and multinomial logistic regression after ensures that the clusters are 235
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formed purely based on the patterns of service utilization, and the attributes are only 236

used to describe their memberships. It would be, of course, possible to use the service 237

utilizations and the attributes jointly to produce an alternative clustering, but their 238

respective effects would be mixed up and challenging to interpret. 239

Experiments and Results 240

Analysis of the utilization of the psychology service 241

Our time series consist of observed service utilizations which are assumed to be 242

probabilistic functions of “hidden” utilization levels which evolve over time. This 243

assumption brings two main advantages to our study: 1) it properly takes into account 244

the temporal order of the data, and 2) it models the individual claimants as 245

transitioning through varying utilization levels (“hidden states”). Both features are very 246

important to ensure an accurate description of the service utilization behaviors. In 247

order to determine the number of the clusters and the number of the states in each 248

cluster as required by the model, we have carried out initial experiments with 2, 3, 4 249

and 5 clusters in combination with 2, 3, and 4 states per cluster. Using a combination 250

of eye judgment and BIC for the selection, we have determined that 3 clusters with 3 251

states each provided the best trade-off for these data. The three clusters contain, 252

respectively, 528, 211 and 49 members (approximately 67%, 27% and 6% of the 253

population). Based on the dominant utilization trend in each cluster, we have named 254

them as “brief” (utilization), “intermediate”, and “sustained”, respectively. A similar 255

descriptive naming can be attempted for the states in each cluster by examining some of 256

their numerical attributes such as their average duration or their range of utilizations. 257

By examining the typical numbers of utilizations associated with each of the nine states, 258

we have decided to name them according to the following five labels: “zero”, “low”, 259

“medium”, “high”, and “very high”. While states with the same label in different 260

clusters are not formally equivalent, they are comparable. 261

Several results for each cluster are plotted in the following Figs 2, 3 and 4. Fig 2 262

shows the stacked plots of service utilizations separately for each cluster, while Fig 3 263

shows the stacked “state paths” (the sequence of states traversed by a claimant) of the 264

claimants in each cluster. These figures show unequivocally that the three clusters 265

correspond to different typical amounts of service utilizations. Fig 2, top, shows that 266

cluster 1 generally contains time series with low utilization. In the beginning, the 267

utilization level is typically between 1 and 3 per month, then it quickly drops to reach 0. 268

At months 4 and 20, respectively, more than 50% and 90% of the time series have 269

already reached zero. The trend in cluster 2 is somehow similar, but the drop in service 270

is less rapid: for instance, at months 4 and 20, respectively, only 20% and 50% of the 271

time series have reached zero. The final cluster (cluster 3) contains claimants with 272

higher utilization levels: at the beginning of the time series, a significant fraction of the 273

claimants utilize the service even more than 10 times per month, and such amounts of 274

utilizations are maintained for almost the entire observation period. Analogous 275

considerations are suggested by the state plots displayed in Fig 3: the claimants in 276

cluster 1 tend to start with a brief “medium” level of utilization, but quickly drop to 277

“low” and “zero”. Conversely, more than half of the claimants in cluster 2 start with a 278

“high” utilization level to then decrease to “low” and eventually “zero”, but more slowly 279

compared to cluster 1. Lastly, 40% and 60% of the claimants of cluster 3 start with 280

“high” and “very high” utilization levels, respectively. They then gradually transition 281

toward “high” and “zero” utilizations; yet, at month 50, nearly 50% of the claimants are 282

still at a “high” or “very high” utilization level. 283

Another informative visualization of an HMM is offered by its “state diagram”. In 284
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Fig 2. Stacked plots of the number of monthly utilizations of the
psychology service for cluster 1 (528 claimants), cluster 2 (211 claimants)
and cluster 3 (49 claimants). Based on the trends in the plots, we qualitatively
describe these clusters as “brief”, “intermediate”, and “sustained”.

Fig 3. Stacked “state paths” for the three clusters of the psychology
service. This figure shows the stacked “state paths” (i.e., the traversed sequences of
states) of the claimants in each cluster. These plots confirm the different utilization
trends in the three clusters.

Fig 4. HMM state diagrams for the three clusters of the psychology
service. Each state of each HMM is represented by a pie chart. The number of
utilizations associated with the state are displayed as slices of the pie, with the size of
each slice proportional to how frequent each number appears. The pies are connected by
edges which represent how long the state typically lasts, and how frequently it instead
changes to another state (i.e., the transition probabilities).

this visualization (Fig 4), each state of an HMM is represented by a pie. The numbers 285

of utilizations associated with the state are displayed as slices of the pie, with the size of 286

each slice proportional to how frequent each number appears. The pies are connected by 287

edges which represent how long the state typically lasts, and how frequently it instead 288

changes to another state (i.e., the transition probabilities). The higher the transition 289

probability, the thicker the stroke of the edge and the more frequent is the transitioning 290

from the state to the other. Fig 4 shows the state diagrams for the three clusters of the 291

psychology service. To make the plot clearer, the numbers of utilizations with low 292

frequencies (less than 0.01) have been combined into a single slice (white). Consistently 293

with Figs 2 and 3, also Fig 4 shows that: 294

� cluster 1 (i.e., “brief”) transitions between “medium”, “low” and “zero” levels of 295

utilization. The transitions toward decreasing levels are more frequent since the 296

corresponding transition probabilities (i.e., the edges in the plot) are high (0.28 297

from “medium” to “low” and 0.13 from “low” to “zero”, respectively); however, 298

transitions back from “low” to “medium” are also significant (probability of 0.15); 299

� cluster 2 (“intermediate”) typically transitions from the “high” level to “low” and 300

“zero”, but less frequently (the corresponding transition probabilities are only 0.068 301

and 0.062, respectively); 302

� cluster 3 (“sustained”) typically stays at level “very high” for a while to then 303

transition to “high” (probability of only 0.057). It then stays at “high” for a long 304

time to eventually transition to “zero” (probability of only 0.045). 305

Comparison with other clustering approaches 306

To probe our analysis further, we have compared our approach - clustering by MHMM - 307

with other partition-based clustering approaches (algorithms) for time series, in 308

particular the widely-adopted partitioning around medoids (PAM), clustering large 309

applications (CLARA) and fuzzy C-means (FCM). Each of these algorithms divides a 310

dataset into M groups (clusters) of observations, where the value for M is chosen 311

beforehand. For a fair comparison, we have applied PAM, CLARA and FCM to exactly 312

the same data and with the same number of clusters. We briefly describe these three 313

algorithms in the next paragraph; however, the reader is referred to more detailed 314

explanations in [32], [33] and [34]. 315
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Table 2. Comparing the clusters obtained with MHMM, PAM, CLARA
and FCM.

MHMM PAM Clara FCM

Size
Cluster 1 (“brief”) 528 267 267 142
Cluster 2 (“intermediate”) 211 254 244 346
Cluster 3 (“sustained”) 49 267 277 300

Silhouette index
Min. -0.568 -0.502 -0.497 -0.418
1st Quartile 0.014 0.01 0.01 0.065
Median 0.326 0.147 0.145 0.244
Mean 0.216 0.131 0.132 0.212
3rd Quartile 0.466 0.301 0.307 0.379
Max. 0.507 0.422 0.437 0.504

Dunn index 0.019 0.012 0.014 0.014

PAM searches for M representative medoids among the time series in the dataset. A 316

medoid is defined as the time series whose average distance to all the other time series 317

in a cluster is minimal. PAM’s goal is to find M medoids such that the sum of the 318

distances of the time series in the dataset to their closest medoid is minimized. The 319

approach iterates over two steps: build and swap. In the build step, the medoids are 320

determined from the current clusters, while in the swap step the time series are assigned 321

to their closest medoid. This process is guaranteed to converge to a stable configuration 322

of clusters and medoids. CLARA follows a similar approach to PAM, but finds the 323

medoids over only a small sample of the time series (we have set the sample’s size to 50). 324

It repeats the sampling and clustering processes a pre-specified number of times in order 325

to minimize the sampling bias, and eventually selects the clustering results of minimal 326

distance. At its turn, FCM is a soft clustering algorithm that, unlike PAM and CLARA 327

(yet, similarly to MHMM), is not restricted to assigning each time series to one and one 328

cluster only. Rather, it can assign it to multiple clusters by varying degrees of “fuzzy” 329

(or soft) membership between 0 and 1 [32]. The time series closer to the centers of the 330

clusters have higher degrees of membership than those near the borders, and influence 331

more the determination of the centers. 332

The very notion of “good clustering” is relative and, ultimately, subjective. However, 333

various quantitative indexes have found widespread use to measure the quality of 334

clustering [34]. For this reason, in the rest of this section we use the silhouette and 335

Dunn indexes to compare the four clustering algorithms (MHMM, PAM, CLARA, and 336

FCM), showing that MHMM outperforms the other approaches over this task. Table 2 337

summarizes the results. 338

The size results in Table 2 show that MHMM and FCM have been able to identify 339

three uneven clusters (a “normal”, a “less frequent” and a “rare” cases) whereas PAM 340

and CLARA have partitioned the time series over clusters all of approximately the same 341

size, which seems a priori undesirable. In terms of mean silhouette index, MHMM and 342

FCM have been significantly better than the other two methods, with MHMM (0.216) 343

slightly above FCM (0.212). Eventually, MHMM has reported the highest Dunn index 344

(0.019). Overall, MHMM has proved the most performing of the compared clustering 345

methods. 346

In addition, Fig 5 compares the clustering results of these four methods using a 347

popular projection technique, multidimensional scaling (MDS). MDS is a visualization 348

technique that is able to approximate a whole time series as a point in 2D, and 349

visualizing the clusters as regions. As shown in Fig 5, with PAM and CLARA both 350
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cluster 2 and cluster 3 heavily overlap with cluster 1, and cluster 2 is almost a complete 351

subset of cluster 3. This is not desirable since we expect to be able to divide the 352

claimants more neatly. FCM, too, shows a significant overlap between clusters 2 and 3 353

with cluster 1, as well as cluster 3 with cluster 2. Except for 14 data points, all the 354

members of clusters 2 and 3 overlap with at least another cluster. On the contrary, with 355

the MHMM the three clusters are far less overlapping and more sharply defined. This 356

shows that the MHMM approach is a more suitable clustering technique for temporal 357

data. 358

Fig 5. Comparing the clusters obtained with MHMM, PAM, CLARA and
FCM MHMM. The clusters are plotted in 2D using multidimensional scaling.

Many other methods are available for clustering time series. Among them, optimal 359

matching, marked point processes, and autoregressive (AR)-based clustering [35–38]). 360

However, the MHMM has a principled advantage over all of them as it allows modeling 361

each cluster in terms of latent states and their transitions. This feature of the model 362

has allowed us to identify the main levels of service utilization and infer them for each 363

time series as they change over time. While this feature may contribute to the accuracy 364

of the clustering, it can also prove a useful descriptor of the utilization behaviors, both 365

at the cluster and individual levels. 366

Multinomial logistic regression results 367

Table 3 shows the results from the multinomial logistic regression analysis using the 368

three clusters as responses and seven variables as independent inputs (i.e., covariates). 369

Cluster 1 is the largest (approximately 67% of the claimants) and therefore been used as 370

reference cluster. The input variables are categorized into four types as demographic 371

(gender, age group at accident), injury (brain head, soft tissue and non-limb fractures), 372

time (“elapsed time”) and accident (role in transport accident). Non-limb fractures 373

refer to fractures that are not in the arms or legs such as skull, spine and ribs fractures. 374

The elapsed time has been defined as the time in years between the date of the accident 375

and the date of first utilization of the service. As for the encoding of the inputs, the 376

elapsed time is a numerical variable, all injuries and the gender are binary variables, 377

and the role in transport accident and age group are categorical variables. For each 378

binary and categorical input, one of their values is used as reference in the analysis and 379

as such does not appear in Table 3. In the case of the binary variables, the reference 380

value is the alternative; for the role in transport accident, the reference value is 381

“pedestrian” and for the age group is “< 30-year-old”. Four models using different 382

subsets of the covariates are reported in Table 3, with all the covariates being 383

statistically significant for at least one of the clusters (the confidence level is indicated 384

by the asterisks next to the regression coefficients). Instead, the remaining covariates 385

(concussion, internal dislocation, sprain strains, limb fracture and contusion abrasion) 386

have not proved statistically significant for any of the clusters and therefore they have 387

not been reported in the table. 388

Table 3 shows the following significant relations: 389

� gender: the differences in terms of gender were mild. In general, male claimants 390

were less likely to be members of the “sustained” cluster than the reference “brief” 391

cluster; 392

� age: in terms of age group, claimants who were 30 to 60-year-old at the time of 393

the accident were more likely to be members of the “intermediate” cluster than 394

the “brief” cluster. In addition, claimants who were 50 to 60-year old at the time 395
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of the accident were less likely to be members of the “sustained” cluster than the 396

“brief” cluster. This trend was computed with respect to less-than-30-year-old as 397

reference value; 398

� injuries: claimants who experienced a brain head injury or experienced non-limb 399

fractures were significantly more likely to be members of the “sustained” cluster 400

than the “brief” cluster; on the other hand, claimants who experienced a soft 401

tissue injury were significantly more likely to be members of the “intermediate” 402

cluster than the “brief” cluster; 403

� accident: in terms of role in the accident, witnesses were significantly more likely 404

to belong to the “intermediate” cluster than the “brief” cluster. These trends 405

were computed with respect to pedestrian as reference value. NB: in the TAC 406

dataset, a witness is defined as anyone who was present at the accident scene 407

other than the drivers, pedestrians and other parties involved in the accident. 408

� time: in terms of elapsed time, the later the claimants had their first utilization, 409

the more likely they belonged to the “sustained” cluster compared to the “brief” 410

cluster. 411

Overall, the results of the multinomial logistic analysis show that claimants who 412

were 30 to 60-year-old at the time of accident, who were witnesses, and who suffered a 413

soft tissue injury were more likely to belong to the “intermediate” cluster than the 414

reference, majority cluster. Conversely, claimants who suffered more severe injuries such 415

as a brain head injury or a non-limb fracture and who started their service utilization 416

later were more likely to belong to the “sustained” cluster. 417

Conclusions and Future Work 418

This research has aimed to identify distinct behaviors of service utilization, describe the 419

characteristic differences between behavior groups and identify the dominant behavior 420

of individual claimants with respect to the utilization of a healthcare service. To 421

analyze the clients’ behaviors in terms of service utilization over time, we have used an 422

authoritative statistical approach known as the mixture of hidden Markov models 423

(MHMM). To conduct a case study, we have selected psychology as the service of 424

interest and then optimally fitted an MHMM over the time series of 788 claimants. 425

After fitting the model, each claimant has been assigned to its closest cluster. This step 426

has led to the identification of three main, typical behaviors of utilization which we have 427

referred to as “brief” (and low), “ intermediate” (and lasting longer) and “sustained” 428

(and high over a significant period of time). We have also provided extensive 429

visualization of the results. 430

As the next step, we have investigated which profiles of claimants have tended to be 431

associated with each cluster. To this aim, we have used multidimensional logistic 432

regression to explain the cluster membership based on demographic, injury, time and 433

accident covariates. From all the available covariates, we have identified some that 434

appeared promising, including gender, the age at the time of accident, brain head, soft 435

tissue, and non-limb fractures injuries, role in transport accident and the elapsed time 436

from the date of the accident to the first utilization. The results have shown that 437

several of these covariates are statistically significant for the cluster membership. 438

The proposed approach is general and could be used by compensation agencies to 439

predict ahead of time which claimants are likely to exhibit specific service utilization 440

patterns. This ultimately provides the opportunity to design early, dedicated 441

interventions aimed at improving the claimants’ treatment or improve offering of the 442

services through packaging and provider agreements. 443
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Table 3. Multinomial logistic regression for clusters 1, 2 and 3, using
cluster 1 as the reference.

Dependent variable: clusters

Model (1) Model (2) Model (3) Model (4)

2:(intercept) −1.66∗∗∗ −2.15∗∗∗ −2.14∗∗∗ −2.57∗∗∗

(0.20) (0.26) (0.27) (0.40)

3:(intercept) −2.03∗∗∗ −4.08∗∗∗ −4.44∗∗∗ −4.37∗∗∗

(0.25) (0.52) (0.55) (0.66)

D
em

o
g
ra
p
h
ic

2:Gender (male) −0.31∗ −0.28 −0.28 −0.29
(0.19) (0.19) (0.19) (0.20)

3:Gender (male) 0.13 −0.58∗ −0.64∗ −0.54
(0.29) (0.34) (0.35) (0.36)

2:30-40 years 0.71∗∗∗ 0.69∗∗∗ 0.69∗∗∗ 0.65∗∗

(0.26) (0.26) (0.26) (0.27)

3:30-40 years −0.46 −0.27 −0.18 −0.10
(0.37) (0.41) (0.42) (0.43)

2:40-50 years 0.84∗∗∗ 0.82∗∗∗ 0.81∗∗∗ 0.81∗∗∗

(0.26) (0.26) (0.26) (0.26)

3:40-50 years −0.98∗∗ −0.50 −0.42 −0.39
(0.46) (0.51) (0.52) (0.52)

2:50-60 years 0.63∗∗ 0.65∗∗ 0.65∗∗ 0.60∗∗

(0.30) (0.30) (0.30) (0.31)

3:50-60 years −2.38∗∗ −2.06∗ −2.08∗ −2.04∗

(1.03) (1.06) (1.07) (1.07)

2:>60 years 0.27 0.21 0.20 0.21
(0.37) (0.37) (0.37) (0.38)

3:>60 years −0.66 −0.72 −0.68 −0.75
(0.55) (0.61) (0.62) (0.66)

In
ju
ry

2:Brain head 0.51∗∗ 0.50∗∗ 0.58∗∗

(0.24) (0.24) (0.24)

3:Brain head 2.88∗∗∗ 2.89∗∗∗ 2.90∗∗∗

(0.45) (0.45) (0.46)

2:Soft tissue 0.59∗∗∗ 0.59∗∗∗ 0.63∗∗∗

(0.20) (0.20) (0.21)

3:Soft tissue −0.04 −0.08 0.02
(0.36) (0.36) (0.37)

2:Non-limb fractures 0.10 0.10 0.13
(0.21) (0.21) (0.21)

3:Non-limb fractures 1.23∗∗∗ 1.20∗∗∗ 1.28∗∗∗

(0.41) (0.41) (0.42)

T
im

e

2:Elapsed time (years) −0.01 −0.01
(0.06) (0.06)

3:Elapsed time (years) 0.23∗∗ 0.23∗∗

(0.09) (0.09)

A
cc
id
en
t

2:Driver 0.40
(0.35)

3:Driver −0.55
(0.49)

2: Passenger 0.42
(0.38)

3: Passenger 0.01
(0.52)

2:(Motor/) Cyclist 0.43
(0.41)

3:(Motor/) Cyclist −0.36
(0.58)

2: Witness 1.34∗∗

(0.54)

3: Witness 1.17
(1.23)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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As future work, we are planning to investigate the correlation between different, yet 444

related services. To do so, we envisage two lines of investigation: the first is to explore 445

the relationship between multiple, related services; for example, the relationship 446

between physical and psychological treatments. The second is to identify the services 447

that are prevalent among specific pools of claimants; for example, the prevalence of 448

psychiatric services among claimants with persistent pain. Overall, the main goal of this 449

investigation is to better understand service utilization for improving recovery. 450
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