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Abstract—Current person re-identification (re-ID) works
mainly focus on the short-term scenario where a person is less
likely to change clothes. However, in the long-term re-ID scenario,
a person has a great chance to change clothes. A sophisticated re-
ID system should take such changes into account. To facilitate the
study of long-term re-ID, this paper introduces a large-scale re-ID
dataset called “Celeb-reID” to the community. Unlike previous
datasets, the same person can change clothes in the proposed
Celeb-reID dataset. Images of Celeb-reID are acquired from the
Internet using street snap-shots of celebrities. There is a total of
1,052 IDs with 34,186 images making Celeb-reID being the largest
long-term re-ID dataset so far. To tackle the challenge of cloth
changes, we propose to use vector-neuron (VN) capsules instead
of the traditional scalar neurons (SN) to design our network.
Compared with SN, one extra-dimensional information in VN
can perceive cloth changes of the same person. We introduce a
well-designed ReIDCaps network and integrate capsules to deal
with the person re-ID task. Soft Embedding Attention (SEA) and
Feature Sparse Representation (FSR) mechanisms are adopted
in our network for performance boosting.

Experiments are conducted on the proposed long-term re-ID
dataset and two common short-term re-ID datasets. Comprehen-
sive analyses are given to demonstrate the challenge exposed in
our datasets. Experimental results show that our ReIDCaps can
outperform existing state-of-the-art methods by a large margin in
the long-term scenario. The new dataset and code will be released
to facilitate future researches.

Index Terms—person re-identification, Long-term scenario,
cloth change, vector-neuron capsules.

I. INTRODUCTION

Person re-identification (re-ID) is a typical computer vision
problem which aims to associate person images captured by
different camera views. It is an important research topic and
has a wide range of applications such as cross-camera object
tracking, target re-acquisition, etc [1]. In past years, several
datasets have been proposed and contribute significantly to
the community, e.g., VIPeR [2], CUHK03 [3], Market1501
[4], DukeMTMC-reID [5], etc. However, most of them are
based on the assumption that each person appears under one
camera will re-appear under another one in a short period
(e.g., less than 30 minutes). Under this assumption, a person is
less likely to change clothes. We define this kind of scenario
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as “short-term” re-ID. On the contrary, if a person appears
again after a long-time gap (e.g., more than one day), the
chance of changing clothes or carrying different objects will
become large. This type of scenario can be regarded as “long-
term” re-ID. This paper will investigate the feasibility of the
existing datasets for long-term person re-ID in terms of the
definition above. The long-term re-ID is a more challenging
case commonly seen in large-scale video security surveillance.

According to the existing research outcomes and potential
applications in practice, a dataset is suitable for the long-
term person re-ID researches should satisfy the following
requirements: 1) a large number of person IDs, 2) highly
diverse environment/backgrounds, 3) multiple camera views,
4) various shooting conditions (e.g., illumination and reso-
lution), and 5) highly dynamic appearance of each person.
By investigating the existing datasets regardless of indoor or
outdoor datasets, there are mainly two methods for collecting
datasets: 1) collecting data in a free setup environment with
non-collaborative people [2], [3], [4], [5]; 2) collecting data
in a constrained environment with collaborative people (e.g.,
actors) [6], [7], [8], [9]. Either method has its advantages but
also clear problems when the aforementioned requirements are
to be satisfied.

The first method can best align with the situations of a
real surveillance environment. However, in practice, the data
annotation is extremely difficult even just for a few thousand
people ID. In order to allocate the same ID to the same
person, the annotation staff has to rely on the people face
information (if that is available) to give a typical ID for the
same person when they appear under different cameras. If the
face information is not available due to poor image quality
or poor camera view (e.g., back view), the samples have to
be discarded or marked based on experiences. For the case
of short-term person re-ID, such difficulty is still manageable,
where the annotation staff may use cloth information to match
people across cameras. However, in the case of long-term
person re-ID, the assumption above does not exist. Thus, the
annotation for long-term person re-ID purpose is impossible.
That is the main reason that current datasets such as VIPeR [2],
Market1501 [4], and CUHK03 [3] are not suitable for long-
term person re-ID for the requirement of the highly dynamic
appearance of each annotated person although they are col-
lected in a free control (at least less constrained) environment.

The second method can best simulate many extremely
difficult cases, such as very unusual camera views and cloth
changes. For example, a person re-ID dataset is proposed in [9]
that demonstrates the scenarios of person re-ID in the case of
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Fig. 1. SN vs. VN capsule in person re-ID. The (a)-(d) and (A)-(D) are
images belonging to two different IDs in our Celeb-reID dataset. The (d)
and (A) include two persons with similar dark clothes. The VN capsules use
the length of the vector to represent different IDs, while its orientations are
used to perceive different types of clothes. With two-dimensional perception
capability, different IDs can be distinguished easier by using the length
of capsules. Instead, typical SN cannot make a decision between confused
appearance (e.g., some images in (d) are regraded as the ID in the green
bounding box). Best viewed in color.

clothes change. It tries to recognize different people through
gait information across view angles. However, the main issue
of the datasets conducted by the second method is the scale,
including the number of people ID, diversity of environment,
and the number of camera view. This is mainly because
building-up such dataset in a mimic environment relies on
a certain number of actors who follow the predefined way
to complete the shooting. In practice, it is not manageable
to have a few thousand actors. Moreover, shooting usually is
completed in some specific places based on predefined design.
So it is hard to mimic real surveillance situations.

Based on the experiences of existing datasets, the key
challenging problems to build a dataset, particularly, suitable
for long-term person re-ID are: 1) sufficient large number
of people IDs, 2) dynamic shooting with true environments,
3) various clothes on each person. In this paper, a new
dataset called “Celeb-reID” is proposed, which can tackle
the aforementioned challenging problem. We name it Celeb-
reID because all images are collected using celebrities’ street
snap-shots. We choose celebrities as our target because there
are tremendous resources of celebrity images on the Internet.
We use street snap-shots of celebrities because they are more
relevant to the real-life scenario. In this way, we can acquire
a large number of people ID. Moreover, celebrities are widely
seen and taken photos in various scenarios so we may obtain
their images under different environments. The most important
thing is that these celebrities normally wear different clothes
in different scenes. It well satisfies the requirements in terms
of a highly dynamic environment in the scenarios of security

surveillance for long-term person re-ID.
Since the reliability of appearance (e.g., color and texture)

is reduced greatly due to the change of cloth, current re-
ID approaches, which mainly rely on the appearance, may
not be suitable for the long-term scenario. However, existing
person re-ID approaches are mainly designed on the condition
of unchanged clothes [10], [11], [12], [13], [14], [15], [16].
Although these approaches have achieved compelling perfor-
mance for short-term re-ID, we argue that simply concentrate
on appearance and overlook the change of clothes may not be
suitable for the long-term re-ID scenario. Specifically, existing
approaches try to distinguish the inter-class clothes changes,
but do not pay attention to the capability of perceiving and
differentiating the large intra-class cloth changes. Therefore,
existing re-ID methods are hard to directly apply to the long-
term re-ID scenario.

Compared with traditional approaches which use the Scalar
Neuron (SN), we propose to use Vector-Neuron (VN) cap-
sules [17] to perceive the cloth change of the same person. In
common CNNs, the value of each scalar reflects the likelihood
of a neuron belonging to an existing people ID. However, if
the cloth is changed, the one-dimensional SN cannot further
perceive the cloth change information. Therefore, we integrate
the two-dimensional VN capsules in our network. Our idea
is inspired by [17]: the length (the first dimension) of each
capsule (denoted as CL) expresses the “existence of the
entity”; the orientation (the second dimension) of each capsule
(denoted as CO) is forced to represent “the properties of the
entity”. In our case, we expect CL to reflect the likelihood of
an existing people ID while CO represents different clothes
of the same ID. Fig. 1 shows the difference between SNs
and VNs. With two-dimensional perception capability, VN
capsules can discriminate different IDs (through the length
of capsules) with confused appearance (perceived by the
orientation of capsules), while the SN may make a wrong de-
cision. We call our model as “ReIDCaps”. Unlike the original
application of capsules in [17] (e.g., learning the property of
affine transformation for handwritten digits recognition), our
ReIDCaps network considers the cloth change of the same
person should be further perceived and represented by CO.
In the meantime, CL is used as common SN to distinguish
different people ID. Finally, to further enhance the discrimina-
tion and generalization power of ReIDCaps, we integrate Soft
Embedding Attention (SEA) mechanism and Feature Sparse
Representation (FSR) mechanism in our network.

In general, the main contributions of this paper can be
summarized in three-fold:

• We propose a large-scale long-term person re-ID dataset
Celeb-reID. Approximately more than 70% of the images
of each person are in different clothes. There are 1,052
IDs and 34,186 person images in Celeb-reID to make it
is the largest cloth change re-ID dataset so far.

• A well-designed ReIDCaps network is introduced to deal
with the challenge of cloth change in long-term person re-
ID. In addition, we integrate SEA and FSR mechanisms
to enhance the discrimination and generalization power
of our network.
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• A comprehensive evaluation is given to verify the ef-
fectiveness of our model. We outperform state-of-the-art
methods by a large margin (more than 10% in rank-1
accuracy) in the long-term re-ID scenario. In addition,
the robustness of our model is further verified on two
traditional short-term re-ID datasets. Finally, a robustness
score is defined to compare the performance of re-ID
approaches across different re-ID scenarios.

This paper is organized as follows. We first review related
works in Section II. In Section III, we introduce the Celeb-
reID dataset. Then, the architecture of the ReIDCaps network
is given in Section IV. Experiments are given in Section VI.
The conclusion is in Section VII.

II. RELATED WORK

In this section, we will review the current publicly available
person re-ID datasets, the existing person re-ID approaches,
and the capsule network.

A. Existing Person Re-ID Datasets

In past years, several person re-ID datasets are proposed. A
majority of them concentrate on the short-term scenario. We
will first discuss these short-term re-ID datasets in this section.
In addition, some cloth change re-ID datasets are introduced.

Existing short-term person re-ID datasets. Several person
re-ID datasets have been proposed along with the development
of re-ID researches. In general, most of them belong to the
short-term scenario. These dataset do not consider the change
of clothes. These datasets are mainly proposed to facilitate the
study of disturbances produced by the changes of illumina-
tions, poses, viewpoints, background clutters, and occlusions.
Amongst them, VIPeR [2], CUHK03 [3], Market1501 [4],
DukeMTMC-reID [5], etc., are most widely used datasets.
Compelling performance has achieved on these datasets.

However, current approaches are mainly designed for these
short-term scenarios, which may not be suitable for the long-
term scenario. To achieve a sophisticated re-ID system, the
cloth change problem should be explicitly considered for real-
world applications. Unfortunately, existing short-term re-ID
datasets do not involve such characteristics. Therefore, in
this paper, we introduce a long-term person re-ID dataset
to facilitate future researches. Tab. I shows the comparison
between our Celeb-reID dataset and other common short-term
re-ID datasets. It can be observed that the scale of our dataset
(particularly the number of images) is close to two popular
large-scale re-ID datasets: Market1501 [4] and DukeMTMC-
reID [5]. Currently, one huge-scale short-term re-ID dataset
MSMT17 [18] has been proposed. Compared with other short-
term re-ID datasets, MSMT17 contains the largest number
of IDs and images with more complex lighting variations.
However, a person in this dataset also does not change clothes.
We do not involve MSMT17 in the comparison because our
motivation is to introduce a new long-term re-ID dataset, but
not to compare the scale with any re-ID datasets.

To highlight certain special cases, a bike-person re-ID
dataset (BPReid) has been proposed [19]. In BPReid, a ma-
jority of persons are riding bikes rather than walking. The

BPReid dataset demonstrates a valuable research case for the
short-term scenario. However, it also does not consider the
change of clothes for the long-term re-ID scenario.

Existing cloth change re-ID datasets. To the best of
our knowledge, five small-scale datasets consider the cloth
change problem for person re-ID. They can be categorized
into two types: RGB-D and normal RGB video-based datasets.
To handle the challenge of cloth changes, the depth infor-
mation has been leveraged to extract additional 3D soft-
biometric beyond the RGB color cue. Accordingly, RGB-D
datasets such as PAVIS [6], BIWI [7], IAS-Lab [7], and DPI-
T [8] have been proposed using the Kinect camera under
controlled environments. We agree that these datasets are
helpful on proof of concept by exploiting 3D information using
depth information. However, RGB-D is not the mainstream in
surveillance applications. The proposed dataset is aligned with
the mainstream of person re-ID dataset setting for supporting
the research on long-term re-ID.

On the other hand, a video-based reID dataset [9] was
proposed to use gait cue for person re-ID. However, the
scale of this dataset is also too small, and the environment is
controlled under an indoor camera. Tab. I shows the compar-
ison between our Celeb-reID dataset and other datasets with
cloth changes. The number of ID in our Celeb-reID dataset
outperforms other cloth change datasets by a large margin. In
addition, these cloth change datasets are hard to satisfy the
requirement of practical long-term re-ID datasets since they
collected under a constrained environment rather than a highly
diverse environment with multiple camera views.

B. Person Re-ID Approaches

Deep learning has achieved great success in solving the
person re-ID problem [10], [11], [12], [13], [14], [15], [20],
[21], [22], [23], [16]. However, current CNN-based re-ID
approaches are mainly focused on the short-term scenario.
According to different granularities, we simply categorize
previous CNN-based re-ID methods into two types: coarse-
and fine-grained learning approaches.

In coarse-grained learning methods, a CNN network re-
ceives the whole images as inputs. Amongst them, one of
the classic ones is the ID-Discriminative Embedding (IDE)
model [10]. The IDE model considered person re-ID problem
as an ID classification task. The ImageNet-trained resnet-
50 was used as a feature extractor connecting with a cross-
entropy loss to classify different IDs in training. Following
this work, an IDE+ model was proposed to further improve
the re-ID accuracy by adding bottleneck layers [11], [12].
Moreover, in order to fully exploit middle and high semantic
level features, [13] extracted and fused both middle- and
high-level features in the ID classification architecture. Be-
yond classification models, a two-stream CNN network was
proposed by considering the classification and verification
signals simultaneously [14]. A multi-level factorization model
that factorized the visual appearance of a person into latent
discriminative factors was given in [15].

Currently, many fine-grained learning approaches which
utilize the body part cue are widely used in person re-ID [21],
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TABLE I
COMPARISON BETWEEN CELEB-REID AND OTHER PERSON RE-ID DATASETS.

Dataset #IDs #Images or #sequences Environments Type of cameras
Traditional Short-Term Person Re-ID Datasets (images)

VIPeR [2] 632 1,264 indoor+outdoor common RGB cameras
CUHK03 [3] 1467 13,164 campus common RGB cameras

Market1501 [4] 1501 32,217 campus common RGB cameras
DukeMTMC-reID [5] 1404 36,441 campus common RGB cameras

Cloth Change Datasets (video sequences)
PAVIS [6] 79 316 under controlled Kinect
BIWI [7] 50 50 under controlled Kinect

IAS-Lab [7] 11 33 under controlled Kinect
DPI-T [8] 12 300 under controlled Kinect

RGB Video-Based Dataset [9] 30 240 under controlled common RGB cameras
Ours (images)

Celeb-reID 1,052 34,186 highly diverse common RGB cameras

[22], [23], [20], [16]. Huang et al. [21] proposed three sub-
nets to learn differences between corresponding body parts on
original images, feature maps, and regional spatial variations,
respectively. Sah et al. [22] introduced a two-stream network
in which one stream was used for appearance map extraction,
and the other one was used for body part map extraction. Part-
aligned feature maps were obtained from the corresponding
local appearance. Li et al. [23] formulated a novel Harmonious
Attention CNN (HACNN) to joint learning of soft pixel
attention and hard regional attention on different local body
regions. Sun et al. [20] considered the content consistency
within each body part for the precise part location. The outliers
of different body parts were re-assigned in [20], and the
refined body parts resulted in performance gains. Recently, a
multiple granularities network was proposed to combine global
and local body information which integrated different regional
feature representations for person re-ID [16].

In addition to these deep learning methods, some metric
learning approaches also shown their feasibility in person re-
ID. Zhang et al. [24] embedded constraints on linear transfor-
mation matrix and proposed a weight learning strategy to learn
the relationships between different variables. Sun et al. [25]
introduced a pair of transformation matrices to capture the
intrinsic relationship of the same person under different camera
views for video-based person re-ID.

In experiments, we employ the above-mentioned deep learn-
ing methods on our new dataset Celeb-reID to verify the
robustness and feasibility of existing methods in the long-
term re-ID scenario. A comprehensive evaluation is given to
demonstrate the challenge exposed in our Celeb-reID dataset.

C. Capsule Network

In 2017s, capsule network was proposed for handwritten
digits recognition with a dynamic routing mechanism [17].
Capsule network has been successfully used in many com-
puter vision tasks, e.g., object segmentation [26], data gener-
ation [27], object classification [17], etc. Sabour et al. used
a group of neurons (vector) to represent a capsule whose
length expressed the existence of the entity and orientation
represented the properties of the entity. The proposed Dig-
itCaps model in [17] was moderately robust to small affine
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Fig. 2. The pipeline of our data acquisition. Four main steps are included.

transformations of the training data. In 2018s, another capsule-
based network was introduced that performed the routing-
by-agreement dynamic routing mechanism using expectation
maximization (EM) [28]. Unlike the previous work [17],
the newly proposed capsule in [28] is represented by pose
matrices. These capsules are specifically used to define ro-
tations and translations of objects for viewpoint changes.
Our Celeb-reID dataset is mainly suffered from the impact
of cloth changes. Compared with the pose matrix capsule,
the vector-based capsule proposed in [17] should be more
suitable for our case since it can perceive the properties cue
of each entity. Therefore, our ReIDCaps model is mainly
motivated by DigitCaps [17]. Beyond DigitCaps, ReIDCaps
integrates the ImageNet-trained CNN to extract the low-level
visual representations since CNN pre-trained on ImageNet has
performed promisingly on many re-ID tasks. To the best of our
knowledge, this is the first work that integrates capsules with
the ImageNet-trained CNN on complex data, particularly for
person re-ID.

III. CELEB-REID DATASET

In this section, we will introduce our Celeb-reID dataset.
Fig. 2 shows the pipeline of the data acquisition process. It
can be summarized into four steps:

1) Determine Name List. Since we use the street snap-
shots of celebrities to build our dataset, the first step
is to determine the name list of celebrities. We initially
collect 2,600 popular celebrities’ name from all over the
world on the Internet.

2) Crawl Data. Given the name of celebrities, we crawl
data of each celebrity on Google, Bing, and Baidu
Images using keywords: name + street snap-shot (e.g.,
Justin Bieber street snap-shot) with usage rights of free
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Fig. 3. The three rows represent three different IDs in our Celeb-reID dataset. For each ID, a great number of cloth changes can be found.
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Fig. 4. Statistic information of our Celeb-reID dataset. (a), (b), and (c)
respectively show the distributions of age, gender, and nationality.

to use and share. The first 100 images of each celebrity
are crawled. Finally, we obtain 2,600×100 candidate
street snap-shot images.

3) Filter Data. In this step, we filter images from the
crawled images to construct a candidate image set. The
annotation staff verifies the identity of images for each
celebrity. Any wrong returned result is discarded.

4) Pre-process Data. The last step is to crop the bounding
box of person body from the original image. We use
Mask-RCNN [29] to detect the bounding box. Pixel
paddings from the original image are used to ensure that
the ratio of height and width of each image is identical
to 2:1. We resize the final image size to 256×128.
Finally, 1,052 celebrities with a total of 34,186 images
are retained.

As the traditional setting of person re-ID datasets, we split

TABLE II
DATA SPLIT OF OUR CELEB-REID DATASET. IN THE TESTING SET,

AROUND 30% OF IMAGES OF THE 420 IDS BELONG TO THE QUERY SET,
THE OTHER 70% OF IMAGES BELONG TO THE GALLERY SET.

split training testing total
subsets training query gallery total

#ID 632 420 420 1,052
#images 20,208 2,972 11,006 34,186

Celeb-reID into three subsets, including training, gallery, and
query (see Tab. II). The query and gallery sets are used for
testing. Fig. 3 shows three IDs in our dataset. It is clear
to see that the cloth change brings about large appearance
changes. Notably, a person may wear the same cloth twice.
Specifically, more than 70% of the images of each person show
different clothes on average. In addition, people commonly
show the front view or profile. Only a few back view images
are included in our dataset. This is because we can only crawl a
few back view street snap-shots on the Internet. Fig. 4 gives the
statistic information of our dataset, including the distribution
of age, gender, and nationality of celebrities.

IV. ARCHITECTURE OF REIDCAPS

Our ReIDCaps can be divided into three main modules: 1)
Visual feature extraction module: We adopt the ImageNet-
trained model to extract the low-level visual features of each
image. These features are then fed into the capsule layers to
perceive the ID and dressing information. This step follows
the common practice of Capsule network in [17] which uses
several CNN layers to extract visual features of image before
these features forwarding to the capsule layers. 2) ID and
dressing perception module: We adopt capsule layers to
perceive the ID and dressing information of images. The ID
information is mainly perceived by the length of each VN.
The dressing information of each person is perceived by the
orientation of each VN. 3) Auxiliary module: The auxiliary
modules are used to further improve the discriminability of
features learned from our ReIDCaps modules. The architecture
of our ReIDCaps network is shown in Fig. 5. This section will
introduce each module in details.
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Fig. 5. Architecture of the proposed ReIDCaps network. Given an input image, an ImageNet-trained CNN backbone network (i.e., DenseNet-121 [30]) is
used to extract low-level visual features. The output of the backbone network is fed to three branches, including capsule modules (ID and dressing perception),
FSR and SEA (two auxiliary modules).

A. Visual Feature Extraction Module

Given an input image Ixn , where n is the index of an ID,
x represents the x-th image of ID n, an ImageNet-trained
CNN backbone network is used to extract low-level visual
features from the Ixn . We select the Densenet-121 [30] as the
backbone network in our experiment1. We denote the output
of the backbone as O(Ixn) ∈ R7×7×1024. The rest parts of
our ReIDCaps are divided into three branches: Capsule layers
(main), the FSR, and the SEA. We denote the loss of the three
branches as LCAPS , LFSR, and LSEA respectively. Amongst
the three branches, FSR and SEA are two auxiliary branches.
Both FSR and SEA dedicate to enhancing the performance of
CNN-based visual feature. Then, these well-learned features
can be utilized by the VN-based layers in a more efficient way.
The objective function of our ReIDCaps network is given as
follows:

L = LCAPS + γ ∗ (LFSR + LSEA), (1)

where γ is used to balance the weight between contributions
raised from capsule layers and auxiliary modules. We will
respectively introduce the three different branches in details:

B. ID and Dressing Perception Module

The Capsule layers. We propose to use VN capsules to
learn the property of cloth changes. In training, we expect
the length of vector capsule CL to reflect the likelihood of
an existing people ID while its orientation CO represents
different types of clothes of the same people ID. To achieve
this, we adopt two different capsule-based layers after O(Ixn),
including a Primary Capsules (P-Caps) layer and a Classifica-
tion Capsules (C-Caps) layer [17]. Both layers are proposed
in [17] for digital recognition. But in our design, we change
the parameter setting on both layers to adapt the re-ID task and
the ImageNet-trained CNN architecture. Specifically, given
O(Ixn), eight 32-channel convolutional operations (kernel size

1Other alternatives also can be used.

2× 2 and stride 2) are used to construct the P-Caps. Then, a
reshaped operation is used to concatenate the corresponding
channel of each block (8 blocks in total) in P-Caps. After
that, we can get 288 (3 × 3 × 32) VN capsules with 8D in
P-Caps layer. Finally, a non-linear Squashing Function is used
to ensure the length of each VN capsule being normalized:

v8Dk =

∥∥v8Dk ∥∥2
1 +

∥∥v8Dk ∥∥2 · v8Dk∥∥v8Dk ∥∥ , (2)

where v8Dk represents k-th 8D VN capsule in P-Caps, k ∈
[1, 288].

The C-Caps layer is followed by the P-Caps layer. There are
N ID capsules in the C-Caps layer; N represents the number
of ID in the training set. Each ID capsule in C-Caps is the
combination of all VN capsules in the P-Caps layer. Given an
8D VN v8Dk in P-Caps, we first map its dimension to 24D by:

v24Dk =Wk · v8Dk , (3)

where Wk ∈ R24×8 is a weight matrix; v24Dk is a 24D VN
capsule after mapping. Then an ID capsule (C24D

n ) in the C-
Caps layer can be calculated by:

C24D
n =

K∑
k=1

unk · v24Dk , (4)

where n ∈ [1, N ], unk represents the coupling coefficient which
is determined by a routing-by-agreement (R-by-A) process
between the P-Caps and the C-Caps layers. Notably, all the
C24D

n are normalized by the Squashing Function (refer to
Eq. 2).

The R-by-A process is a key technique to build the rela-
tionship between the P-Caps and C-Caps layers. The details
of R-by-A can refer to [17]. Our R-by-A process is similar
to [17]. The only difference is that we set the number of
routing iteration to four rather than three in [17]. We found
four iterations achieve better re-ID accuracy in experiments.



7

Given an input image Ixn , we use the Margin Loss for ID
existence:

LCAPS =

N∑
n=1

{yn ·max(0,m+ −
∥∥C24D

n

∥∥)2
+ λ · (1− yn) ·max(0,

∥∥C24D
n

∥∥−m−)2}, (5)

where yn represents the existence of ID for the input image
Ixn ; yn = 1 if Ixn belongs to ID n, otherwise yn = 0. λ = 0.5
is used to balance the weight between the two parts in LCAPS .
m+ and m− are used to control the length of C24D

n . If the
ID is present in Ixn , we expect the length of C24D

n should be
long, otherwise it should be short. We set m+ = N−1

N and
m− = 1

N .

C. Auxiliary module
FSR and SEA mechanisms. Before formally introducing

the two mechanisms, the Global Average Pooling (GAP) is
adopted to the output of the backbone (i.e., O(Ixn)) to obtain
a CNN representation F(Ixn) of the input image Ixn :

F(Ixn) =
1

H ×W

H∑
i=1

W∑
j=1

O(Ixn)(i, j), (6)

where H and W respectively represent the height and width of
O(Ixn) (H = 7 and W = 7 in our case). After GAP, we denote
the input of FSR and SEA as FFSR(I

x
n) and FSEA(I

x
n),

respectively.
In the FSR mechanism, we expect to enhance the general-

ization power of our CNN-based output to affect the learning
capability of the whole network. As is well-known, Dropout
has demonstrated its effectiveness to prevent the CNN network
from over-fitting by randomly dropping out neurons (set the
value to zero) in network training [31]. We simply adopt
the Dropout to make the FFSR(I

x
n) to become a sparse

representation. The generalization capability of FFSR(I
x
n)

can be transferred to O(Ixn) in backward propagation, which
potentially improves the robustness of the whole network
(particularly for all branches after O(Ixn)). We set the dropout
rate to 0.75 in FSR.

In the SEA mechanism, we aim to boost the discriminative
power of the backbone network by applying the Squeeze-
and-Excitation (SE) block [32] on O(Ixn). By doing so, we
can substantially highlight informative features and suppress
the useless ones in O(Ixn) which is the key link between
the CNN-based architecture and the capsule layers. In this
way, we can use the prior knowledge learned by Densenet-
121 in a more efficient way when the knowledge is fed into
the Caps Modules. We first use the GAP after O(Ixn) to
obtain FSEA(I

x
n). Then, we squeeze FSEA(I

x
n) by a fully-

connected layer to obtain a low-dimensional (1024/r-dim)
representation, where r is the reduction rate. After that, another
1024-dim fully-connected layer (F ′

SEA(I
x
n)) is linked after the

1024/r-dim layer. The final re-weight block is obtained by
rescaling O(Ixn) with F ′

SEA(I
x
n):

O
′
(Ixn) = F

′

SEA(I
x
n)⊗O(Ixn), (7)

where ⊗ represents channel-wise multiplication between
F ′

SEA(I
x
n) and O(Ixn). In SEA, we set the r = 16 (the

same as [32]). Relu and Sigmoid activation functions are
respectively used after the two fully-connected layers followed
by FSEA(I

x
n).

Finally, we use Cross-Entropy loss on both FSR (LFSR in
Eq. 1) and SEA (LSEA in Eq. 1) branches to classify the ID
of persons in the training set.

V. EXPERIMENTS

In this section, we first introduce four different datasets
we used in our experiments. Then, an experimental setup is
given. An ablation study of ReIDCaps is provided. Moreover,
quantitative and qualitative analyses will be given to verify the
effectiveness of VN capsules comparing with the traditional
SN. Finally, a comprehensive evaluation is carried out by
comparing our methods with other state-of-the-art methods.
Our experiments are mainly conducted on Celeb-reID since
the proposed method is particularly designed to tackle the
cloth change challenge exposed in the long-term person re-
ID scenario.

A. Person Re-ID Datasets

In this paper, we use four different datasets to evaluate
the proposed method mentioned in Section IV. Two of them
are built for the long-term person re-ID study. We also use
two traditional short-term person re-ID dataset Market1501 [4]
and DukeMTMC-reID [5] to evaluate our ReIDCaps network.
Although our method is specifically designed for the long-term
re-ID scenario, we also use these two datasets to further verify
its robustness in the common re-ID scenario. Notably, amongst
all the short-term re-ID datasets, we select Market1501 and
DukeMTMC-reID for evaluation because of two reasons. First,
both of them are widely used datasets to the community.
Second, many recently published state-of-the-art approaches
use the two datasets for evaluation.

Celeb-reID is introduced in Section III. We use this dataset
for long-term re-ID evaluation. Details of Celeb-reID can refer
to Tab. II. Notably, a person may wear the same clothes (the
ratio is less than 30% within each ID) in Celeb-reID.

Celeb-reID-light is a light version of Celeb-reID. Unlike
Celeb-reID, a person in Celeb-reID-light will not wear the
same cloth twice. We collect Celeb-reID-light from the candi-
date image set after data filtering (see Fig. 2). There are 590
persons. 490 IDs with 9,021 images are used for training, and
100 IDs with 1,821 images are used for testing. In the testing
set, 887 images are used as queries, and 934 images are used
as galleries. Although the scale of Celeb-reID-light is smaller
than Celeb-reID, it can be used to testify the robustness of
re-ID methods when a person is entirely in different clothes.

Market1501 is one of the widely used short-term person
re-ID dataset. There are 751 (12,936) and 750 (19,732) IDs
(images) in the training and testing sets respectively.

DukeMTMC-reID is another widely used short-term per-
son re-ID dataset. There are 702 IDs in the training and testing
sets respectively. The number of training images is 16,522
while the number of testing images is 19,889.
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B. Experimental Setup

The PyTorch package is used to implement our ReIDCaps
network. To be consistent, we do not change the network
design, but use two different training strategies for short-term
and long-term re-ID scenarios respectively. This is because,
for long-term re-ID, the new model needs to produce more
learnable parameters to accommodate additional information
about the cloth change. Thus, it may cause certain overfitting
issue when it is applied to a relatively simple case of short-
term re-ID where there is no cloth change. For the long-
term re-ID scenario, the initial learning rate is set to 1e-
4 in the ImageNet-trained DenseNet-121 and 1e-3 in new
layers after the DenseNet output (see Fig. 5). We name this
training strategy as TS1. In order to mitigate the possible
overfitting issue, for the short-term re-ID scenario, we pre-train
the backbone network (DenseNet-121) on common SN (refer
to Fig. 8). The SN-trained DenseNet-121 backbone network is
adopted in ReIDCaps. The initial learning rate is set to 1e-5
in the SN-trained DenseNet-121 and 1e-4 in new layers. We
name this training strategy as TS2.

For both scenarios, all input images are resized to 224×224
and randomly flipped before training. The Adam stochastic op-
timization [33] is used with parameters β1 = 0.9, β2 = 0.999.
The learning rate is decayed by 10 times after 40 training
epochs, and we stop training after 50-th epochs. The number
of training IDs N = 632, 490, 751, and 702 for Celeb-
reID, Celeb-reID-light, Market1501, and DukeMTMC-reID
respectively.

In testing, the same procedure as previous works (e.g., [13],
[14], [20], [16]) is adopted. We use Eq. 6 to extract 1,024D
feature as the person’s description. This feature is used to
compare the similarity between any two images in query
and gallery sets using the Euclidean distance. The standard
rank-N and mAP re-ID evaluation protocols are used in our
experiments. The single query setting is adopted over the four
datasets in testing.

C. Ablation Study of ReIDCaps

An ablation study is given to verify some important settings
of ReIDCaps. The proposed Celeb-reID dataset is used.

1) Hyper-parameter Setting: We evaluate the parameter
γ in Eq. 1. The results are shown in Fig. 6 and Fig. 7,
respectively. When γ = 0 (i.e., without the help of auxiliary
modules), our ReIDCaps reduces to the baseline. It can be
observed that our method achieves the best performance on
both mAP and rank-1 accuracy when the γ = 0.5. Therefore,
we set γ = 0.5 in our experiment setting.

2) Number of Iterations by R-by-A: To get a proper number
of iterations between P-Caps and C-Caps by R-by-A, we use
the Caps modules and the backbone network of ReIDCaps.
In the original capsule network design [17], the R-by-A
algorithm uses 3 iterations between the P-Caps and C-Caps.
We also follow the same setting in our ReIDCaps network
(see Capsiter=3 in Tab. III). When we change the length of
C-Caps capsules to 16 (Capsiter=3,C16D

n
, as the same setting

in [17]) instead of 24 (our setting, see Fig. 5), we can get
a baseline performance (mAP: 7.8%, rank-1: 43.8%). After

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 6. Sensitivity to parameter γ in Eq. 1. The x-axis and y-axis respectively
represents the γ and mAP. Experiment is conducted on Celeb-reID.
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Fig. 7. Sensitivity to parameter γ in Eq. 1. The x-axis and y-axis respectively
represents the γ and rank-1 accuracy. Experiment is conducted on Celeb-reID.

TABLE III
ABLATION STUDY OF OUR REIDCAPS NETWORK. MAP AND RANK-N

(N=1, 5, AND 10) ARE LISTED. THE BEST PERFORMANCE IS
HIGHLIGHTED IN BLOD.

Methods Celeb-reID
mAP rank-1 rank-5 rank-10

Capsiter=3,C16D
n

7.8% 43.8% 59.2% 67.5%
Capsiter=3 8.7% 46.2% 62.1% 68.9%
Capsiter=4 9.0% 48.2% 62.7% 70.0%
Capsiter=5 8.7% 47.5% 62.4% 69.6%

Capsiter=4+0.5*FSR 9.2% 49.1% 63.1% 70.4%
Capsiter=4+0.5*SEA 9.5% 49.8% 63.8% 70.8%

Capsiter=4+0.5*(FSR+SEA) 9.8% 51.2% 65.4% 71.9%

changing the length of capsules from 16 to 24, the performance
can be improved from 43.8% to 46.2% in rank-1 accuracy.
Thus, we use the length of C-Caps capsules to 24 in the
follow-up experiments. It can be observed that compared with
Capsiter=3, we can achieve better re-ID accuracy when the
number of iteration is set to 4 (Capsiter=4, mAP=9.0%, rank-
1=48.2%). It can be clear to see that when iter=5 (Capsiter=5),
the performance is dropped again. Therefore, we choose iter=4
in the R-by-A algorithm.

3) Combination of Different Modules: We try to combine
different auxiliary modules (i.e., FSR and SEA) to verify the
effectiveness of them in enhancing the overall performance,
shown in Tab. III. We first combine FSR (SEA) (with the
weight is 0.5, refer to Sec. V-C1) with Capsiter=4, the re-
ID accuracy is improved from 48.2% to 49.1% (49.8%) in
rank-1 accuracy. This combination verifies the effectiveness of
different auxiliary modules. Moreover, we combine both FSR
and SEA with the weight of 0.5. The rank-1 accuracy gains 3%
comparing with single Capsiter=4 module. This result verifies
the combination of auxiliary modules (i.e., FSR and SEA) can
be useful in enhancing the overall performance.

4) Comparison of Different Training Strategies: In our
experimental setup, we use two different training strategies
in long-term and short-term re-ID scenarios respectively (see
Sec. V-B). We try to conduct the two training strategies
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TABLE IV
ABLATION STUDY OF DIFFERENT TRAINING STRATEGIES ON OUR

REIDCAPS MODEL OVER TWO DIFFERENT PERSON RE-ID SCENARIOS.

Training Strategies mAP rank-1 rank-5 rank-10
Celeb-reID (long-term)

TS1 9.8% 51.2% 65.4% 71.9%
TS2 9.5% 50.3% 64.9% 71.7%

Market1501 (short-term)
TS1 62.5% 84.8% 94.7% 98.1%
TS2 72.7% 89.0% 95.5% 96.9%

Input Image

(224*224)

DenseNet-121DenseNet-121 Caps Modules

Input Image

(224*224)

DenseNet-121DenseNet-121
GAP

1024 512

FC
BN+

ReLu

512

FC ... #ID

C-Caps

……
#ID

LCAPS

LCE

Fig. 8. The SN-based and VN capsule networks. The upper network uses VN
capsules. The lower one uses the tradition CNN layers. Both networks use the
same input image size and backbone network (i.e., the DenseNet-121). FC,
BN, ReLU, and LCE respectively represent the fully-connected layer, batch
normalization, ReLu activation function, and the Cross-Entropy loss.

over different re-ID scenarios to verify the function of them.
It can be observed in Tab. IV that, compared with TS1,
TS2 can improve the performance on Market1501 noticeably.
This result verify that using the SN-trained backbone can
effectively mitigate the overfitting problem produced by more
learnable parameters from VN. On the contrary, when different
training strategies are applied for the case of long-term re-ID,
the performance is barely affected. This comparison shows
that our method is robust to the long-term re-ID scenario
under different training strategies. Although Celeb-reID also
achieves comparable performance by TS2 which is more
suitable for the short-term re-ID scenario, we still follow our
experimental setup since Celeb-reID and Market1501 achieve
the best performance under TS1 and TS2 respectively.

D. Scalar Neuron vs. Vector Neuron: Brief Quantitative and
Qualitative Analyses

Network Architecture. We compare our VN capsules with
a SN solution. Network architectures are given in Fig. 8. Both
of them share the same input and backbone network (i.e.,
ImageNet-trained DenseNet-121). The VN capsules (Caps
modules in Fig. 2) and SN-based layers are followed by the
output of DenseNet-121 respectively. The SN-based network
(also called as IDE+, see Sec. II) is a widely used benchmark
for short-term person re-ID scenario. The result of SN-based
IDE+ is achieved by the Deep-Person-reID package2.

Quantitative Evaluation. Tab. V shows the quantitative
evaluation between our Capsiter=4 and the IDE+ models.
By using the VN capsules, our Capsiter=4 outperforms the
IDE+ by +3.1% (9.0% vs. 5.9%) on mAP and +5.3% (48.2%

2https://github.com/KaiyangZhou/deep-person-reid

TABLE V
PERFORMANCE COMPARISON BETWEEN THE SN-BASED IDE+ MODEL
(THE LOWER NETWORK IN FIG. 8) AND OUR CAPSiter=4 MODEL (THE

UPPER NETWORK IN FIG. 8).

Methods Celeb-reID
mAP rank-1 rank-5 rank-10

IDE+ 5.9% 42.9% 56.4% 63.4%
Capsiter=4 9.0% 48.2% 62.7% 70.0%

a1 a2 b1 b2 c1 c2 c3 d1 d2

a1

a2

b1

b2

c1

c2

c3

d1

d2

Fig. 9. Intra-class variation visualization using C-Caps. We select four types
of clothes (9 images) belonging to the same person (76 images in total) in
the training set of Celeb-reID. ‘a’ to ‘d’ represent different clothes and ‘1,
2, ...’ represents the index of sample images. The cosine similarity is used to
calculate the similarity between two images using the VN capsules in C-Caps
where the ID is presented. We use an activation map to represent the similarity
between any two images. The red and green color respectively represent the
most and the least similar pairs. Elements in the diagonal are self-similarity.

vs. 42.9%) in rank-1 accuracy. It is clear to see that the
VN capsules show their superiority in dealing with the cloth
change challenge for person re-ID. This is because in addi-
tion to distinguish the inter-class variation, VN capsule can
potentially perceive the intra-class variation when clothes of
the same person are changed.

Qualitative Evaluation. We visually illustrate the intra-
class variation of the same people ID using our Capsiter=4.
The cosine similarity is used to calculate the orientation
distance between two images. Specifically, given two images
(e.g., Ix1

nid
and Ix2

nid
) belonging to the same ID (e.g., nid),

we can extract VN capsules for this ID (i.e., C24D
nid

(Ix1
nid

) and
C24D

nid
(Ix2

nid
)) obtained by Eq. 4 (after training is completed)

to calculate the cosine distance between the two 24D VNs.
An activation map of similarity is used to illustrate the effec-
tiveness of our Caps Modules in perceiving the knowledge of
intra-class clothes changes. It can be observed in Fig. 9 that our
Capsiter=4 can potentially learn the cloth changes of the same
person. Although we do not use any clothing type labels in
training and add explicit constraints in our network, the same
types of clothes show higher similarity than different types to
some extent. This result demonstrates that the orientation of
VN can carry the information of clothes change of the same
person for the long-term person re-ID.
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TABLE VI
PERFORMANCE BY USING DIFFERENT WEIGHTS ON DIFFERENT BODY

PARTS. THE PART PARTITION CAN REFER TO FIG. 10. WE MAINLY
EVALUATE THE RESULT OF CELEB-REID. THE WEIGHT ASSIGNED TO

CELEB-REID-LIGHT IS SIMILAR TO CELEB-REID SINCE BOTH BELONG TO
THE LONG-TERM RE-ID SCENARIO. WE SIMPLY USE ANOTHER GROUP OF

WEIGHTS ON MARKET1501 BY CONSIDERING THE CONTRIBUTION OF
DIFFERENT BODY PARTS.

Methods Celeb-reID
mAP rank-1 rank-5

P11+P12+P13+P21+P22 13.6% 60.7% 74.2%
P11+P12+P13+P21+P22+G 14.2% 62.2% 75.2%
P11+0.9*(P12+P13)+P21+0.9(P22)+G 14.9% 62.6% 75.4%
P11+0.7*(P12+P13)+P21+0.7(P22)+G 15.4% 62.9% 76.3%
P11+0.5*(P12+P13)+P21+0.5(P22)+G 15.8% 63.0% 76.3%
P11+0.3*(P12+P13)+P21+0.3(P22)+G 15.8% 62.3% 75.7%
P11+0.1*(P12+P13)+P21+0.1(P22)+G 15.4% 61.4% 75.1%

Celeb-reID-light
P11+0.5*(P12+P13)+P21+0.5(P22)+G 19.0% 33.5% 63.3%

Market1501
0.25*(P11+P12+P13)+0.5(P21+P22)+G 78.0% 92.8% 97.6%

E. Comparison with State-of-The-Art Methods

We compare our proposed ReIDCaps method with sev-
eral state-of-the-art re-ID approaches. Our method is mainly
designed for the long-term re-ID scenario. It may not be
a universal solution to both long-term and short-term re-
ID scenarios. But we also evaluate the proposed method on
the case of short-term re-ID to verify its robustness under
different re-ID scenarios. Tab. VII lists the results. Four dif-
ferent coarse-grained re-ID approaches (i.e., IDE+ [11], [12],
ResNet-Mid [13], Two-Stream [14], MLFN [15]), and four
different fine-grained re-ID approaches (i.e., HACNN [23],
Part-Bilinear [22], PCB [20], and MGN [16]) are picked
up to evaluate the challenge exposed in the long-term re-ID
scenario. Coarse-grained methods leverage the whole image as
inputs while fine-grained methods take both global and body
parts information into consideration. All the methods we used
are recently published state-of-the-art methods which perform
promisingly in the traditional short-term re-ID scenario. In
these methods, the IDE+, ResNet-Mid, MLFN, and HACNN
are implemented by Deep-Person-Reid package with solid
performance. The rest methods are released by the authors
of original papers (i.e., Two-Stream, Part-Bilinear, PCB, and
MGN).

Comparison with coarse-grained methods. It can be
observed in Tab. VII, by only using the global body cue,
our method outperforms other coarse-grained methods on both
Celeb-reID and Celeb-reID-light datasets. Compared with the
second best method ResNet-Mid, our ReIDCaps outperforms
it on Celeb-reID by a large margin in rank-1 accuracy (51.2%
vs. 43.3%). We also achieve the best performance on Celeb-
reID-light (mAP: 11.2%, rank-1: 20.3%). This result verifies
our ReIDCaps can best tackle the extreme case where a
person does not wear the same clothes twice. MLFN achieves
the best performance on Market1501 (mAP: 74.3%, rank-
1: 90.0%). However, it only obtains 6.0% mAP and 41.4%
rank-1 accuracy on Celeb-reID. Although our method is not
designed for the short-term re-ID scenario, we also try to
experiment with Market1501 (DukeMTMC-reID) and obtain

P11

P12

P13

P21

P22

G

Fig. 10. Body parts partitions. The whole image is denoted as G. P11, P12,
and P13 (also P21 and P22) are parts equally divided from G.

89.0% (81.2%) in rank-1 accuracy, which is a comparable
result comparing with other coarse-grained approaches.

Comparison with fine-grained methods. To compare with
fine-grained learning approaches, the body parts are utilized
in our experiments. We follow the same setting in [16] which
equally divides a person image into three and two parts
respectively. Fig. 10 shows the partition result. We simply train
and test our ReIDCaps on the five parts respectively. Tab. VII
shows the re-ID accuracy using different parts on four re-ID
datasets. The long-term re-ID datasets such as Celeb-Reid and
its light version involve appearance changes dramatically. Parts
such as P12, P13, and P22 show much lower re-ID accuracy
than P11 and P21 where present more robust appearance cues,
i.e., the upper body. However, short-term re-ID dataset, i.e.,
Market1501 and DukeMTMC-reID illustrate opposite results.
The P11 and P21 on Market1501 even show lower re-ID
accuracy comparing with other body parts. This is because,
without substantial appearance changes, cues such as color and
texture are more likely to be re-identified as significant factors.
When clothes are completely changed (Celeb-reID-light), the
appearance cues become even less reliable. However, with the
benefits of our ReIDCaps network, even the most difficult part
(P12) can play a certain role (mAP: 3.5%, rank-1: 5.3%) in
Celeb-reID-light.

As in [16], we integrate the five body parts and the global
body cue to get the final result (denoted as ReIDCaps∗). We
try to assign different weights to each part according to their
contributions. Tab. VI shows the performance. Considering
the discriminability of different body parts, we simply fix
the weight of P11, P21, and G to 1 because the three parts
are visually more recognizable than other parts (P12, P13,
and P22, refer to Fig. 10). Under this setting, the search
space (i.e., different combinations) can be greatly reduced. We
use the same weight on parts P12, P13, and P22, the weight
varies from 0.1 to 1 (gap 0.2). We find when the weight
equals to 0.5, our method achieves the best performance. Since
the Celeb-reID and Celeb-reID-light are all long-term re-ID
datasets, we use the same setting. We change the weight on
Market1501 and DukeMTMC-reID because each person in
both datasets does not change clothes. With the help of color
information on clothes, we can easily recognize each person
on Market1501 and DukeMTMC-reID with more body part
information. Therefore, we simply set the weight of the whole
body to 1, 0.5 for large body parts (P21 and P22), and 0.25
for small body parts (P11, P12, and P13).

It is clear to see in Tab. VII that our ReIDCaps∗ outperforms
other methods by a large margin on Celeb-reID and Celeb-
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TABLE VII
COMPARISON OF OUR RESULTS WITH THE PUBLISHED STATE-OF-THE-ART METHODS. THE BEST RESULT IS SHOWN IN BOLD. RANK-N ACCURACY AND

MAP ARE LISTED.

Methods
Long-Term Person Re-ID Short-Term Person Re-ID

Celeb-reID (New) Celeb-reID-light (New) Market1501 DukeMTMC-reID
mAP rank-1 rank-5 mAP rank-1 rank-5 mAP rank-1 mAP rank-1

Coarse-Grained Learning Approaches (without human body parts partition)
IDE+ (DenseNet-121) 5.9% 42.9% 56.4% 5.3% 10.5% 24.8% 68.0% 87.8% 57.5% 77.9%

ResNet-Mid [13] ArXiv17 5.8% 43.3% 54.6% 6.0% 10.3% 28.0% 75.6% 89.9% 64.0% 81.6%
Two-Stream [14] TOMM18 7.8% 36.3% 54.5% - - - 60.9% 80.3% 51.4% 72.6%

MLFN [15] CVPR18 6.0% 41.4% 54.7% 6.3% 10.6% 31.0% 74.3% 90.0% 63.2% 81.1%
ReIDCaps (Ours) 9.8% 51.2% 65.4% 11.2% 20.3% 48.2% 72.7% 89.0% 62.6% 81.2%

Fine-Grained Learning Approaches (with human body parts partition)
HACNN [23] CVPR18 9.5% 47.6% 63.3% 11.5% 16.2% 42.8% 75.7% 91.2% 63.2% 80.1%

Part-Bilinear [22] ECCV18 6.4% 19.4% 40.6% - - - 74.5% 88.8% 64.2% 82.1%
PCB [20] ECCV18 8.2% 37.1% 57.0% - - - 77.4% 92.3% 66.1% 81.8%

MGN [16] ACMMM18 10.8% 49.0% 64.9% 13.9% 21.5% 47.4% 86.9% 95.7% 78.4% 88.7%
ReIDCaps∗ (Ours) 15.8% 63.0% 76.3% 19.0% 33.5% 63.3% 78.0% 92.8% 67.8% 83.8%

Performance on Different Body Part using ReIDCaps
ReIDCaps: P11 11.5% 53.6% 69.2% 14.4% 24.5% 54.9% 29.2% 56.2% 38.7% 59.4%
ReIDCaps: P12 3.6% 33.7% 43.2% 3.5% 5.3% 19.2% 40.1% 65.3% 34.5% 56.6%
ReIDCaps: P13 3.7% 32.3% 43.2% 4.0% 7.5% 22.4% 22.9% 41.6% 20.8% 35.0%
ReIDCaps: P21 10.2% 50.9% 66.5% 13.1% 25.3% 51.8% 37.7% 65.4% 45.0% 66.6%
ReIDCaps: P22 4.3% 36.0% 48.0% 4.4% 8.5% 23.8% 45.5% 67.3% 32.9% 52.2%

reID-light. We obtain 15.8% mAP and 63.0% rank-1 accuracy
on Celeb-reID. The second best method MGN only achieves
10.8% mAP and 49.0% rank-1 accuracy. Even without using
any body part cue, our method (ReIDCaps) can outperform
MGN in rank-1 accuracy (51.2% vs. 49.0%). In the meantime,
we outperform MGN on Celeb-reID-light by 12.0% in rank-
1 accuracy (33.5% vs. 21.5%), which further verifies the
effectiveness of our method in dealing with the long-term re-
ID scenario.

Robustness Evaluation. To further verify the robustness of
re-ID approaches between the long-term and short-term re-
ID scenarios. In this paper, we define a Robustness Score
(RS∈ [0, 1]). It can be observed that MGN achieves the state-
of-the-art re-ID performance on both short-term re-ID datasets
(i.e., Market1501 and DukeMTMC-reID). This is because
MGN is elaborately designed for short-term re-ID based on
the appearance information of clothes. However, MGN is
still hard to tackle long-term re-ID challenge when people
can change their clothes. To get a quantitative comparison of
the robustness between different re-ID approaches, the RS is
defined as follows:

RS(P) =
√
scoreL(P)× scoreS(P)

|scoreL(P)− scoreS(P)|+ 1
, (8)

where scoreL and scoreS represent the long-term and short-
term re-ID accuracy respectively; P ∈ {mAP, rank −N}
represents different evaluation indexes. Given a re-ID model,
RS returns a large value if the score of both scoreL and scoreS
are high and close to each other. Tab. VIII shows the robustness
comparison results by using Eq. 8. We can observe that our
method has better robustness than MGN when the evaluation
is conducted on different re-ID scenarios.

Reliability of Head Information. Normally, person re-ID
(in existing researches) would like to use overall body infor-
mation rather than head/face information. In this experiment,
we want to clarify that the proposed dataset does not present

Market1501 Celeb-reID

Fig. 11. Pose estimation results (the bottom row). The head images (the top
row) are extracted according to the location of keypoint of the neck.

high-quality head/face information. Otherwise, any method
of person re-ID developed on such dataset may have bias
caused by strong head/face information. In order to verify
this point, the 2D human pose estimation approach [34] is
adopted to localize anatomical keypoints on the body of
persons. According to the keypoint of the neck, we can
extract the head part from the body. As shown in Fig. 11,
we obtain the head part (including the face) from our Celeb-
reID dataset and Market1501. It can be clear to see that, in
terms of head information, the proposed dataset shares the
same characteristics and presumption (i.e., head information
not useful) as other existing datasets for person re-ID research
such as Market1501. The Two-Stream [14] model, which
contains both identification and verification signals, is used
to train and test the re-ID performance when only the head
images are adopted. Tab. IX shows the result. It shows that
the quality of head information in the proposed dataset is
even worse than Market1501. This is because celebrities in
our dataset have a great chance to wear sunglasses or hats,
which makes them hard to be recognized.

VI. CONCLUSION

This paper introduces a new long-term person re-ID dataset
called “Celeb-reID” to the community. This dataset uses the
street snap-shots of celebrities as the resource. Compared with
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TABLE VIII
ROBUSTNESS SCORE EVALUATION BETWEEN LONG-TERM (CELEB-REID (C) OR CELEB-REID-LIGHT (C-L)) AND SHORT-TERM (MARKET1501 (M) OR

DUKEMTMT-REID (D)) RE-ID SCENARIOS USING THE RS (SEE EQ. 8). THE MAP AND RANK-1 (R1) ACCURACY (FROM TAB. VII) ARE USED AS
EVALUATION INDEXES TO THE RS.

Methods RS(mAP) RS(rank-1)
C & M C & D C-l & M C-l & D C & M C & D C-l & M C-l & D

MGN 0.17 0.17 0.20 0.20 0.47 0.47 0.26 0.26
ReIDCaps∗ (Ours) 0.22 0.22 0.24 0.24 0.59 0.60 0.35 0.35

TABLE IX
COMPARISON BETWEEN RE-ID PERFORMANCE WHEN ONLY HEAD IMAGES

ARE USED.

Methods rank-1 mAP
Celeb-reID (head)

Two-Stream [14] 27.9% 11.6%
Market1501 (head)

Two-Stream [14] 29.0% 13.2%

previous datasets, our dataset is the largest re-ID dataset with
the cloth change of the same people ID. A ReIDCaps model is
designed to tackle the cloth change challenge exposed in this
paper. Compared with the common SN-based CNN, we use
VN capsules to perceive the cloth change of the same person.
We integrate the capsule layers with an ImageNet-trained CNN
on complex person re-ID data. A comprehensive experiment
is given to demonstrate the superiority of our method in the
long-term re-ID scenario.
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