
“© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.”

RsyGAN: Generative Adversarial Network for
Recommender Systems

Ruiping Yin∗†, Kan Li∗, Jie Lu†, Guangquan Zhang†
∗School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
†Centre for Artificial Intelligence, University of Technology Sydney, Sydney, Australia

Emails: yrp@bit.edu.cn, likan@bit.edu.cn, Jie.Lu@uts.edu.au, Guangquan.Zhang@uts.edu.au

Abstract—Many recommender systems rely on the information
of user-item interactions to generate recommendations. In real
applications, the interaction matrix is usually very sparse, as a
result, the model cannot be optimised stably with different initial
parameters and the recommendation performance is unsatisfac-
tory. Many works attempted to solve this problem, however, the
parameters in their models may not be trained effectively due to
the sparse nature of the dataset which results in a lower quality
local optimum. In this paper, we propose a generative network for
making user recommendations and a discriminative network to
guide the training process. An adversarial training strategy is also
applied to train the model. Under the guidance of a discriminative
network, the generative network converges to an optimal solution
and achieves better recommendation performance on a sparse
dataset. We also show that the proposed method significantly
improves the precision of the recommendation performance on
several datasets.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Recommender systems have become increasingly important
in recent years due to the problem of information overload in
e-commerce [1]. The use of recommender systems allows indi-
vidual searches to be more effective by filtering information.
Many companies are also interested in using recommender
systems to target their customers and recommend products.
Recommender systems model the preferences of users through
their click history, purchase records or list of favourites.
The recommendation task is to predict missing user-item
preferences given the observations of these historic records
[2].

Existing methods for recommender systems can be divided
into three classes: content-based methods, collaborative filter-
ing (CF) methods, and hybrid methods. Many recommender
systems use collaborative filtering methods to make recom-
mendations [3]. The most successful CF methods try to learn
latent factors according to user-item interactions such as user-
item rating or user purchase history [4].

A severe problem with CF methods is that it is difficult to
train the model with sparse datasets. The collaborative filtering
approaches, especially matrix factorization methods, rely on
factorizing the user-item matrix into two latent factor matri-
ces to represent users and items. However, the factorization
could be very non-robust when the user-item matrix is very
sparse. It always causes a lower quality local optimum in the
experiments.

Many works attempted to address this problem. Several
authors have merged models to obtain more robust results. [5]
[5] combined latent factor models and neighbourhood models
to build a more accurate combined model. [6] employed an
autoencoder model to learn latent user preferences. These
methods try to learn the latent factors through user-item
interactions. But these methods cannot converge to an optimal
solution because of the severe sparsity of the dataset, which
results in an inability to provide ideal recommendation results.

There are also some methods use auxiliary information. Item
content information and an item-tag matrix are combined in
collaborative topic regression to address the sparsity problem
in [7]. A hierarchical Bayesian model has been proposed to
address the auxiliary information sparse problem [8]. However,
auxiliary information is unavailable in some scenarios.

In this paper, we develop a generative network and a
discriminative network inspired by generative adversarial net-
works [9] to train a property model for recommender systems.
The generative network is able to generate the missing prefer-
ences for users and the discriminative network is established
to evaluate the generative network and guide training process.
The model is trained using an adversarial training strategy.

In the experiments, our model demonstrates significant
improvements in performance on common datasets such as
movieLens [10] and Taobao. Our main contributions in this
paper are as follows:

• We propose a novel recommendation model in which
the adversarial training strategy is used for the first
time to improve the recommendation quality. We treat
recommendation generating as a generative process and
utilize a discriminator to help it escape from a lower
quality local optimum.

• We develop an efficient adversarial optimization algo-
rithm with two loss functions to ensure that this model
can be trained efficiently until it converged.

• We conduct experiments on three real-world datasets to
evaluate the effectiveness of our method. Experimental
results reveal that our method outperforms six state-of-
the-art methods in terms of precision, recall and mean
average precision metrics.

The rest of this paper is organized as follows. In Section 2,
we review some of the relevant methods. Section 3 presents
our approach in detail. The experiments and results analysis

are demonstrated in Section 4. Lastly, conclusions and future
work are discussed in Section 5.

II. RELATED WORK

This section summarizes the existing collaborative filtering
approaches and the works on generative adversarial networks.

A. Collaborative Filtering Methods

Collaborative filtering (CF) methods help people to make
choices based on the preferences of other people who share
similar interests [1], [2]. Many previous works have concen-
trated on explicit feedback, e.g. in terms of ratings. Neverthe-
less, in real-world scenarios, implicit feedback is more com-
mon than explicit feedback [11], [12]. Implicit feedback, such
as clicks, shares, purchases, can be collected automatically
[13]. In this paper, we focus on making recommendations
according to implicit feedback.

Collaborative filtering (CF) methods can be divided into
two categories [14]: memory-based CF and model-based CF.
Memory-based CF is the first-generation CF technique which
makes recommendation by calculating the similarity values
between users or items [15], [16]. However, this type of
CF is unlikely to recommend unpopular items to users. It
also takes a long time to make a recommendation when the
dimension of the user-item matrix is high. The next generation
CF methods are model-based CF [17], [18]. The matrix fac-
torization method has been proven to be efficient and effective
in many recommender systems [19], [20]. A non-uniform item
sampler has been proposed to address the problem in which the
convergence of stochastic gradient descent learning algorithms
slows down if the item popularity has a tailed distribution
[11]. Because a good recommender particularly emphasizes
accuracy near the top of the ranked list, a new pairwise ranking
loss has been proposed to reduce computational complexity
[21].

In recent years, several efforts have been made to apply
deep learning models in recommender systems [22]. Restricted
Boltzmann machines (RBM) have been used to make rec-
ommendations to reduce the training time [3], [23]. The
collaborative deep learning method takes two different sources
of information into account by using a hierarchical Bayesian
model [8]. The autoencoder framework has been proven to
be compact and efficient [6], [24]. A similar method, the
collaborative denoising auto-encoder method, was proposed
by [25]. [26] propose a matrix factorization model with deep
neural network architecture using both explicit rating and non-
preference implicit feedback.

However, the sparse nature of dataset leads to a problem:
how can we train the models enough with too little data.

B. Generative Adversarial Networks

Recently, generative adversarial networks (GANs) and
GANs-based models have been successful in tasks like image
generation, text generation, feature extraction and so on [9],
[27]. Based on the adversarial training strategy, the generative
network is able to map input variables into another feature

space through minimax optimization with the discriminative
network. [28] propose a unifying generative and discrimina-
tive information retrieval model with minimax game strategy.
However, the two networks are completely separate in their
model, which results in a failure to effectively capture latent
features.

Inspired by the training strategy of GANs, we proposed
RsyGAN model and an adversarial training method to solve
the insufficient training problem resulted in a sparse dataset
and make more reliable recommendations.

III. GENERATIVE ADVERSARIAL NETWORK FOR
RECOMMENDER SYSTEMS

In this section, we first give the problem formulation of
the recommendation task. We then introduce our proposed
generative adversarial model (RsyGAN) and give details of the
loss functions, followed by the model optimization algorithm.

A. Problem Formulation

In this paper, we focus on making recommendation accord-
ing to implicit feedback. Suppose there are M users U =
{u1, . . . , uM}, N items V = {v1, . . . , vN}. Let R ∈ RM×N
denote the implicit feedback matrix, where Rij equals 1 when
interactions exist between user i and item j, and 0 otherwise.
The formulation Ri∗ can be used to represent a user feature
in which some elements are missing. Given a history of user
actions, the recommendation task tries to predict a list of
items which the user might like. A recommender system
is commonly formulated as the problem of estimating the
missing values in user feature vector Ri∗.

B. Proposed Model

Inspired by GAN, we combine a generative network and
a discriminative network to train a property model for the
recommendation task. Figure 1 illustrates our proposed model.

Fig. 1. The architecture of the RsyGAN model

Two networks have been contained in the boxes delineated
by a dashed line. The portrait box is a generative network and
the landscape box is a discriminative network. The input of
the generative network is the user feature vector Ri∗ and the
input of the discriminative network is the combination of real
user feature vector Ri∗ and the generated user feature by the
generative network.

The recommendation task attempts to predict the missing
elements in the feature vector. The generative network accepts
the feature vector with missing values and returns a similar
vector with all missing positions are filled. We can use the
output vector to predict the user preferences more accurately.

We apply an autoencoder neural network structure as the
generative network. Our network has a number of differences
from the classical autoencoder. In this neural network, the
feature vector with high dimension will be mapped into a
hidden layer which is a lower feature space. The process of
dimensionality reduction can be regarded as the extraction of
features for user embedding. The hidden layer is computed as
follows:

h(Ri∗, θh) = σ(Wg × g(Ri∗) + bg) (1)

where σ(·) is the activation function and θh = {Wg, bg}. g(·)
is the dropout function. The dropout function is required to
avoid over-fitting, because the dataset is too sparse.

We then use an output layer to recover the original user
feature vector from the hidden layer. The missing values in
the feature vector are filled in the output vector. The output
value R̃i∗ can be described as follows:

G(Ri∗, θ) = σ(W ′g × h(Ri∗, θh) + b′g) (2)

where θ = {W ′g, b′g, θh}. The reverse mapping may optionally
be constrained by tied weights where W = W ′ in the
autoencoder, but different weights are used in our method.

As mentioned in Section 1, we always get a lower quality
local optimum due to the sparsity of the dataset. We have
therefore designed a discriminative network as an quality
indicator of our recommendation model, the generative net-
work. It can be used to help the parameters be trained on the
property direction. Because the evaluation function, discrim-
inative network, can be updated according to the convergent
recommendation model to help the training algorithm escaping
from local optimum.

The discriminative network contains three layers: the input
layer, the hidden layer and the output layer. The discriminative
network can be described as follows:

D(Ri∗, φ) = σ(W ′d × σ(Wd ×Ri∗ + bd) + b′d) (3)

where φ = {Wd, bd,W
′
d, b
′
d} and σ(·) is also the activation

function.
We have attempted two activation functions which are

defined by the formulae (4) and (5). The impaction of the
activation functions is discussed in the experiments.

sigmoid(x) =
1

1 + e−x
(4)

ReLU(x) = max(0, x) (5)

C. Loss Function

Another key problem is to design a proper objective function
according to the input data and output values. In GANs,
the generative network samples synthetic data from a hidden
feature space represented by a multilayer perceptron. However,
it cannot be used directly in the recommendation task, because
this task is a prediction problem, therefore we employ the
incomplete user history as the input of the generative network.
The generative network can only be used to predict missing
values, whereas the discriminative network will try to distin-
guish between real users and users generated by the generative
network. Two different loss functions are utilized to conduct
the two step optimization.

In the discriminative network training process, we have:

JD = max
φ

M∑
i

logD(Ri∗, φ) + log(1−D(G∗(Ri∗, θ), φ))

(6)
where G∗(Ri∗, θ) = S(G(Ri∗, θ)), S(·) is a sample function
with Bernoulli distribution x ∼ B(1, R̃ij). The output of the
generative network is a vector containing continuous values in
which R̃ij ∈ (0, 1); however, the ground truth is the binary
value Rij ∈ {0, 1}.

We append JD into the loss function of the generative
network to influence the training of the model. The loss
function of the generative network is as follows:

JG = min
θ

M∑
i

(‖Wi∗ ◦ (Ri∗ −G(Ri∗, θ))‖2F

+ λD(logD(Ri∗, φ) + log(1−D(G∗(Ri∗, θ), φ)))) +
λθ
2
· ‖θ‖2F
(7)

where W ∈ {0, 1}M×N is a non-negative weight matrix.
Because there are positive examples in missing values, the
weight matrix means the confidence of the examples. In our
experiments, we set Wij = 1 if Rij = 1 and a low confidence
level Wij = 0.1 otherwise.

D. Optimization Algorithm

Our model contains two parts: the discriminative network
and the generative network. The parameters in both networks
are initialized randomly before training commences. During
the adversarial training stage, the generative network and the
discriminative network are trained alternately with Eqs. (6)
and (7).

The model for RsyGAN is built using Tensorflow and
trained with synchronous stochastic gradient descent updates.
We have also open-sourced our implementation on GitHub.

We describe the detailed optimization process in Algorithm
1.

Algorithm 1 Optimization Algorithm of the Proposed Model
Input: user-item matrix R
Output: approximated user-item matrix R̃
Initialize G(Ri∗, θ) and D(Ri∗, φ) with random weights θ,
φ.
repeat

for d-step do
Sample a batch Rt from training set R
Calculate the filled matrix R̃t using G(Ri∗, θ)
Sample from R̃t which is subjected to Bernoulli dis-
tribution
Update parameters φ by using Eq. (6)

end for
for g-step do

Sample a batch Rt from training set R
Update parameters θ using Eq. (7)

end for
until converges

IV. EXPERIMENTS

A. Datasets

Experiments are conducted on three datasets namely Movie-
Lens 1M, MovieLens 10M and Taobao. The basic statistics are
listed in Table I. We select 60% of records as the training set.
Some records contain explicit feedback such as ratings. As we
want to solve an implicit feedback task, we remove the ratings
from these datasets.

TABLE I
STATISTICS OF THE TWO DATASETS

users items feedback sparsity

ML-1M 6,040 3706 939,809 0.9580
ML-10M 69,878 10,677 104,000,054 0.9865
Taobao 8,349 5,701 321,976 0.9932

MovieLens is a widely used dataset in many researches, and
many versions have been released on the GroupLens website.
We choose MovieLens 1M (ML-1M) and MovieLens 10M
(ML-10M) to evaluate our method.

Taobao is a dataset for competitively matching clothing on
the Tianchi platform. It contains basic item data and data on
the historical behaviour of users. We use only the historical
behaviour data to make recommendations. We remove users
with less than 10 items (|Ri∗| < 10) and items with less than
20 users (|R∗j | < 20) from this dataset.

B. Evaluation for Recommendation

For top-k recommendation, we evaluate the performance
of each approach using metrics precision (Prec@k), recall
(Recall@k) and mean average precision (MAP@k).

Given a top-k recommendation result Ck, we can compute
precision and recall as follows:

Precision@k =

∑|U |
i=1 |Ck,i ∩ Ti|
|U | × k

(8)

recall@k =

∑|U |
i=1 |Ck,i ∩ Ti|∑|U |

i=1 |Ti|
(9)

where Ck,i is the top-k recommendation list of user i and Ti
is the items that user i has adopted in the test set.

Average precision (AP) is a ranked precision metric which
is used to score information retrieval. AP@k is the average
precision of all positions, which is defined as follows:

AP@k =

∑k
n=1 Precision@n× rel(n)

min{k, |Ti|}
(10)

where rel(n) is an indicator function equalling 1 if the item
at rank k is contained in the test set, otherwise 0. MAP is the
mean of the AP scores for all users.

It is difficult to optimize these metrics directly because they
are discontinuous. The loss function in our method is used in
learning to approximate these metrics. In our experiments, we
mainly show the result of top-k when k = {5, 10, 20, 50}.

C. Performance Comparison

In this subsection, we compare the proposed RsyGAN with
the methods below. As our proposed model aims to make
user recommendations by considering only the relationship
between users and items, we mainly compare RsyGAN with
user-item models.
• ItemPop: Always recommends the top-k most popular

items to users.
• ItemKNN: The classical memory-based collaborative fil-

tering method. Pearson correlation is used in our exper-
iment and the top 50 most similar users are selected as
the nearest neighborhood.

• BPR-MF: This is also a content-free algorithm based on
matrix factorization which is designed for top-k recom-
mendation tasks [18]. It optimizes pair-wise preferences
between observed and unobserved items.

• CDAE: Collaborative denoising auto-encoders [25] learn
latent representations of corrupted user-item preferences
which can reconstruct the full input. This model is similar
to our generative network.

• NCF: Neural network-based Collaborative Filtering
(NCF) is a general framework for replacing the inner
product with a neural architecture that can learn an
arbitrary function from data.

• RsyGAN: Our method proposed in this paper.
We cannot compare our method with RBM because the

result of RBM is a binary list. It cannot be evaluated by the
metrics in our experiments.

We carefully choose the hyper-parameters for each baseline
method. The overall performance of the compared approaches
is shown in Tables II.

We can see from the experimental results that RsyGAN
achieves significant improvements across all the evaluation
metrics and all the datasets. Note that the generative network
is similar to CDAE, but we obtain better performance than
it does. Our explanation is that there are too many local

TABLE II
RECOMMENDATION PERFORMANCES IN TERMS OF PRECISION AND RECALL

Precision Recall

Prec@5 Prec@10 Prec@20 Prec@50 Recall@5 Recall@10 Recall@20 Recall@50

ml-1m

POPRANK 0.2085 0.1911 0.1868 0.1506 0.0742 0.1211 0.1736 0.2530
ItemKNN 0.2466 0.2351 0.2263 0.2021 0.0833 0.1367 0.1978 0.2632
BPR-MF 0.4932 0.4617 0.4026 0.3224 0.0853 0.1495 0.2149 0.3058
CDAE 0.5699 0.5183 0.4876 0.4592 0.0900 0.1556 0.2472 0.3826
NCF 0.5920 0.5222 0.4895 0.4611 0.0920 0.1623 0.2676 0.3974
RsyGAN 0.6632 0.6105 0.5087 0.3918 0.1091 0.1775 0.2702 0.4072

ml-10m

POPRANK 0.1934 0.1873 0.1628 0.1347 0.0307 0.0743 0.1008 0.1941
ItemKNN 0.2404 0.2269 0.2124 0.1817 0.0384 0.0942 0.1392 0.2057
BPR-MF 0.4153 0.3892 0.3260 0.2287 0.0612 0.1266 0.1800 0.2928
CDAE 0.4674 0.4118 0.3643 0.2816 0.0752 0.1853 0.2200 0.3733
NCF 0.4962 0.4759 0.3993 0.3082 0.0782 0.1832 0.2342 0.3542
RsyGAN 0.5333 0.4854 0.4097 0.3007 0.0885 0.2094 0.2480 0.4023

Taobao

POPRANK 0.0040 0.0036 0.0030 0.0066 0.0024 0.0053 0.0069 0.0283
ItemKNN 0.0517 0.0501 0.0466 0.0194 0.0267 0.0376 0.0582 0.0416
BPR-MF 0.1047 0.0920 0.0897 0.0544 0.0408 0.0706 0.1370 0.2079
CDAE 0.0889 0.0766 0.0608 0.0367 0.0362 0.0585 0.1196 0.1565
NCF 0.1108 0.1023 0.0856 0.0586 0.0492 0.0774 0.1402 0.2152
RsyGAN 0.1392 0.1314 0.0937 0.0624 0.0544 0.1038 0.1428 0.2343

minimums in the solution space, and it is very easy to converge
to a lower quality local optimum in the CDAE method. The
discriminative network can be regarded as a strong constraint
for the generative network when the entire solution space is
searched.

We also observe that the results on MovieLens are much
better than those on Taobao, because Taobao dataset is sparser
than the MovieLens.

D. Components in RsyGAN

In this Section, we study the influence of several main
components, including the types of activation functions, the
number of hidden units, and the hyper-parameter λD.

TABLE III
PERFORMANCE COMPARISON OF THE ACTIVATIONS FUNCTION ON

MOVIELENS 1M

MAP@5 MAP@10 MAP@20 MAP@50

Sigmoid 0.4834 0.3973 0.3420 0.3176
ReLU 0.4561 0.3800 0.3315 0.2939

TABLE IV
PERFORMANCE COMPARISON OF THE ACTIVATIONS FUNCTION ON

MOVIELENS 10M

MAP@5 MAP@10 MAP@20 MAP@50

Sigmoid 0.4617 0.3804 0.3292 0.2919
ReLU 0.4401 0.3721 0.3122 0.2881

As mentioned in Section 3, we have two different types of
activation function. We study their influence separately on two
datasets. We show the results for the sigmoid function and the
ReLU function on the hidden layer in Tables III, IV and V.

TABLE V
PERFORMANCE COMPARISON OF THE ACTIVATION FUNCTIONS ON

TAOBAO

MAP@5 MAP@10 MAP@20 MAP@50

Sigmoid 0.1018 0.0869 0.0715 0.0573
ReLU 0.0982 0.0827 0.0706 0.0416

We can see from the three tables that the sigmoid function
performs better than the ReLU method in each case in the
experiment, but that ReLU improves more on the larger
dataset than on the smaller dataset. One possible cause is
that the non-linear part in our model performs better in a
small dataset. However, the model with ReLU function can
be trained more efficiently, so if we have a very large dataset,
we should perhaps choose the ReLU function, and if we need
greater precision in a small dataset, we should choose the
sigmoid function. To overcome the weakness of the linear
activation function, we can also choose multiple layers for
model construction.

The number of hidden units is possibly another sensitive
parameter in addition to the activation function. In Figure 2,
we evaluate the performance of our method as the number of
hidden units varies. We observe that the best performance is
obtained when the number of hidden units is around 80 on the
Taobao dataset and 350 on the MovieLens 10M dataset. This
illustrates that the number of hidden units should increase with
the increase in the size of the dataset.

Lastly, we study the effect of λD in our proposed method.
We can see in Eqs. (6) and (7) that the value of the loss
function of the discriminator network is very small compared
to the loss function of the generative function. The output of
the discriminative network is just one value range from 0 to
1, and the output of the generative networks have N numbers

Fig. 2. MAP@k of RsyGAN showing variations in the number of hidden units

Fig. 3. The effects of parameter λD

ranging from 0 to 1, thus we times N when we apply λD.
Figure 3 shows the predictive performance for RsyGAN on
the two dataset.

We find that we obtain the best performance on Taobao
dataset when λD equals 0.8. In our extensive experiments, we
observe that the value of λD is same on MovieLens 10M.

Since adversarial training is widely regarded as an effective
but unstable technique, we further investigate the learning
trend of our proposed method. Figure 4 shows the learning
curves of the generative network and the discriminative net-
work on MovieLens 10M dataset. Here we only show the per-
formance measure by the value of the loss function. The results
show that while we cannot prove that the loss function will
ultimately converge, we can achieve better recommendation
performance than other methods.

V. CONCLUSIONS AND FURTHER STUDY

In this paper, we have introduced a novel method for
the top-k recommendation task which can be used in a real
recommendation scenario with sparse data. The model in our
method contains a generative network and a discriminative
network. We utilized the adversarial strategy to train this
model. The adversarial training framework takes advantage
of both networks: the generative network is guided by the
signals from the discriminative network, and the discriminative

network can be enhanced by the generative network. We also
conducted experiments on several datasets and compared the
results with state-of-the-art methods. Significant performance
gains were observed in each set of experiments.

We plan to combine auxiliary information into this model,
such as user profile, product brand information, and product
images. In future work, we aim to study how to make the
adversarial training process more effective and stable.

Fig. 4. Learning curves of RsyGAN on MovieLens 10M

ACKNOWLEDGMENT

This research was supported by National Key R&D Program
of China (No.2016YFB0801100), Beijing Natural Science
Foundation (No.4172054, No.L181010), and National Basic
Research Program of China (No.2013CB329605). This work
was also supported by the Australian Research Council (ARC)
under Grant [DP170101632].

REFERENCES

[1] J. Lu, D. Wu, M. Mao, W. Wang, and G. Zhang, “Recommender system
application developments: A survey,” Decision Support Systems, vol. 74,
pp. 12–32, 2015.

[2] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrezz, “Recommender
systems survey,” Knowledge-Based Systems, vol. 46, pp. 109–132, 2013.

[3] K. Georgiev and P. Nakov, “A non-IID frameworkfor collaborative
filtering with restricted boltzmann machines,” in ICML, vol. 28, 2013,
pp. 1–9.

[4] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Advances in Artificial Intelligence, vol. 2009, pp. 4:2—-
4:2, 2009.

[5] Y. Koren, P. Ave, F. Park, H. D. Management, and D. Applications,
“Factorization meets the neighborhood: a multifaceted collaborative
filtering model,” in SIGKDD, 2008, pp. 426–434.

[6] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “AutoRec : Autoen-
coders meet collaborative filtering,” in WWW, 2015, pp. 111–112.

[7] H. Wang, B. Chen, and W. J. Li, “Collaborative topic regression with
social regularization for tag recommendation,” in IJCAI, 2013, pp. 2719–
2725.

[8] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learning for
recommender systems,” in SIGKDD, 2015, pp. 1235–1244.

[9] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
in NIPS, 2014, pp. 1–9.

[10] F. M. Harper and J. A. Konstan, “The MovieLens datasets: History and
context,” ACM Trans. Interact. Intell. Syst., vol. 5, pp. 19:1—-19:19,
2015.

[11] S. Rendle and C. Freudenthaler, “Improving pairwise learning for item
recommendation from implicit feedback,” in WSDM, 2014, pp. 273–282.

[12] W. Wang, G. Zhang, and J. Lu, “Member contribution-based group
recommender system,” Decision Support Systems, vol. 87, pp. 80–93,
2015.

[13] Y. Zhang, L. Pang, L. Shi, and B. Wang, “Large scale purchase
prediction with historical user actions on B2C online retail platform,”
in RecSys, 2014, pp. 5–8.

[14] J. Breese and D. Heckerman, “Empirical analysis of predictive algo-
rithms for collaborative filtering,” in UAI, 1998, pp. 43–52.

[15] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang,
“One-class collaborative filtering,” in ICDM, 2008, pp. 502–511.

[16] D. Wu, G. Zhang, and J. Lu, “A fuzzy preference tree-based recom-
mender system for personalized business-to-business e-services,” IEEE
Transactions on Fuzzy Systems, vol. 23, pp. 29–43, 2015.

[17] D. Liang, J. Altosaar, L. Charlin, and D. M. Blei, “Factorization meets
the item embedding: regularizing matrix factorization with item co-
occurrance,” in RecSys, 2016, pp. 59–66.

[18] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “BPR:
Bayesian personalized ranking from implicit feedback,” in UAI, 2009,
pp. 452–461.

[19] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, pp. 42–49, 2009.

[20] P. Symeonidis, “Matrix and tensor decomposition in recommender
systems,” in RecSys, 2016, pp. 429–430.

[21] F. Yuan, G. Guo, J. M. Jose, and L. Chen, “LambdaFM : Learning
optimal ranking with factorization machines using lambda surrogates,”
in CIKM, 2016, pp. 227–236.

[22] G. Trigeorgis, K. Bousmalis, S. Zafeiriou, and B. W. Schuller, “A deep
matrix factorization method for learning attribute representations,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39, pp.
417–429, 2017.

[23] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann
machines for collaborative filtering,” in ICML, 2007, pp. 791–798.

[24] F. Strub, J. Mary, and R. Gaudel, “Hybrid collaborative filtering with
autoencoders,” arXiv, 2016.

[25] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, “Collaborative denoising
auto-encoders for Top-N recommender systems,” in WSDM, 2016, pp.
153–162.

[26] H. J. Xue, X. Y. Dai, J. Zhang, S. Huang, and J. Chen, “Deep matrix
factorization models for recommender systems,” in IJCAI, 2017, pp.
3203–3209.

[27] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv,
2017.

[28] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang,
and D. Zhang, “IRGAN: A minimax game for unifying generative
and discriminative information retrieval models,” in CEUR Workshop
Proceedings, vol. 1691, 2017, pp. 64–66.

	2019 IEEE
	696397

