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Abstract 

The bridge infrastructures are subjecting to continuous degradation due to ageing, 
environmental and excess loading. Monitoring of these structures is a key part of any 
maintenance strategy as it can give early warning if a bridge is becoming unsafe. Most of the 
current approaches are using direct measurements that installed the sensors at different 
specific locations on the bridge to capture the dynamic characteristics of the structure under 
random input, such as wind loads, traffic loads and ground motions. Based on the assumption 
on the white noise characteristics of the random input, the structural properties of the bridge 
could be extracted from the bridge vibration responses only. However, the bridge is subjected 
to non-stationary traffic loads, and the frequency characteristics of vibrations are varied. 
Especially for short-span bridges, the non-stationary traffic load excitation is significant and 
the existing output-only structural identification methods could not be used to assess the 
bridge condition. It needs to develop the methods for bridge condition assessment using 
traffic load excitations. This study proposes a blind source separation (BSS) method based on 
short time Fourier transform (STFT) for the analysis of non-stationary measurements in time 
frequency (TF) domain. The proposed method is also capable of source component separation 
from response measurement for underdetermined problems when the number of 
independent measurements (sensors) is less than that of source component. The proposed 
method is first verified using the numerical results of a vehicle-bridge interaction model and 
further applied to a cable-stayed bridge in the field. 
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Introduction 

Vehicle-bridge interaction has a profound impact on the technologies of bridge structural 
health monitoring (SHM) (Sun, 2013). It is very difficult and even impossible to measure the 
operational excitation to the bridge (such as the wind load and traffic), thus output only 
analysis methods are very promising for bridge SHM. Based on the assumption on the white 
noise characteristics of the random input, the structural properties of the bridge could be 
extracted from the bridge vibration responses only. However, Most bridges are generally 
subjected to nonstationary excitations while in service (Kim and Kim, 2017). Study the non-
stationary properties of bridge vibration under passing vehicle has been an important topic 
in bridge SHM (Xiao et al., 2017). Blind source separation (BSS) techniques have been widely 
used for structural modal identification and health monitoring (Sadhu et al., 2017) which used 
to recover special source components from the measured data only. Second-order blind 
identification (SOBI) and independent component analysis (ICA) are two of the most used BSS 



methods that can provide promising results when the number of sensors are greater than the 
number of active source components of signal.  

Moreover, due to the large amount of the existing bridge that have no sensor 
instrumentation, it would be time-saving and cost-effective if only less sensors are used. 
However, under the circumstance where the measurement from sensors are less than the 
number of active vibration mode of the system, which is referred as underdetermined 
problem, the traditional BSS methods do not work, because the mixing matrix is not invertible. 
To solve the underdetermined blind source separation (UBSS) problems, sparse 
representation of the sources in some domain is seek and the separation is carried out in that 
domain to exploit sparseness. Time-frequency (TF) techniques, such as Hilbert-Huang 
transform, wavelet, and short time Fourier transform (STFT) etc., have been used to analyse 
non-stationary signals (Zhu et al., 2012). They have also been widely used to solve UBSS 
problem for output only modal identification and structural damage detection (Nagarajaiah 
and Basu, 2010; Nagarajaiah and Yang, 2014). The advantage of TF techniques is that they are 
signal based; hence, can be used for output only modal identification. The simplest feature 
based signal processing procedures in TF is via energy concentration. The idea is to analyse 
behaviour of the energy distribution, i.e., the concentration of energy at certain time instant 
or certain frequency band or more generally, in some particular time and frequency region. 
Signal processing using energy concentration as a feature in the TF domain essentially consists 
of evaluating a TFR of the given signal (Sejdić et al., 2009). One of the well-known time-
frequency representation and most used in practice is the short-time Fourier transform (STFT) 
(Aissa-El-Bey et al., 2007). In this study, a novel output only technique based on the 
spectrogram is proposed to perform the modal analysis for the bridge from the structural 
responses under traffic load. 

The remaining of this paper is organized as follows. The vehicle bridge interaction model is 
introduced. Then the signal model and assumptions along with TF representation for the UBSS 
are introduced. A novel output only technique using spectrogram is proposed. Numerical 
simulate is applied to verify the method. Last, the proposed is used for the condition 
assessment of a cable-stay field bridge.  

 

Vehicle-bridge interaction model 

Considering a vehicle-bridge interaction system as shown in Error! Reference source not 
found., the vehicle is assumed to move over the simply supported bridge at a constant 
velocity v. The vehicle is a half-car model consisting of 4 degree of freedom (DOF). The 
equation of motion for the vehicle is obtained as 
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where   𝑚!  𝑚"  𝑚#, 𝑘"  𝑘#  𝑘$  𝑘%, 𝑐"  𝑐#  𝑐$  𝑐%  are vehicle parameters relating to the mass, 
stiffness and damping of each part of the vehicle (as shown in Figure 1), respectively. 𝐼! is the 
rotational stiffness and 	𝑏"	, 𝑏# are the distance between the axles and the gravity centre of 
the vehicle body. 𝑑", 𝑑#, 𝑑$, 𝑑% denote the vehicle displacements at each degree of freedom. 
𝑢", 𝑢# are the displacements of the contact points.  

 

Figure 1 Vehicle-bridge interaction model 

    The bridge is modelled as an Euler-Bernoulli beam. The equation of motion of the bridge is 
given as 

𝐌'�̈�' + 𝐂'�̇�' + 𝐊'𝐝' = 𝐅'()*                                                           (2)  

where	𝐌', 𝐂', 𝐊'  are the mass, damping and stiffness matrices of the bridge, respectively; 
𝐅'()*  is the vector of interaction forces acting on the bridge. 𝐝' , �̇�' , �̈�'  are the vectors of 
displacement, velocity and acceleration responses of the bridge respectively. The 
displacement of the bridge can be expressed as follows with the modal superposition method 

𝑑'(𝑥, 𝑡) = ∑ 𝜙+(𝑥),
+-" 𝑌+(𝑡)                                                             (3) 

where N is the number of modes considered. 𝜙+(𝑥), 𝑌+(𝑡) are the mode shape and modal 
response of the 𝑖𝑡ℎ mode, respectively. 

Substituting Eq. (3) into Eq. (2) and applying the orthogonality of vibration modes, Eq. (2) 
becomes:   

�̈�+ + 2𝜉+𝜔+�̇�+ + 𝜔+#𝑌+ = 𝐹#(𝑡)𝜙+|.-/0 + 𝐹"(𝑡)𝜙+|.-/01'               (4) 

where 𝜔+ , 𝜉+  are the natural frequency and the damping ratio of the 𝑖𝑡ℎ mode of the bridge 
and 𝑏 = 𝑏1 + 𝑏2; The interaction force acting on the bridge at the contact points is given as 
(Nguyen, 2015): 
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Signal model and assumptions 

Let 	s+(𝑡) ∈ ℂ(9×"), 𝑖 = 1,…𝑛 , be 𝑛  underlying source signals and denote 	𝐬(𝑡) =
[𝐬"(𝑡), 𝐬#(𝑡), … , 𝐬9(𝑡)]< . At the output of the sensor array are 𝑚  observed mixture 



signals	𝑥=(𝑡), where 𝑗 = 1… ,𝑚, that are represented by 𝐱(𝑡) = [𝒙"(𝑡), 𝒙#(𝑡) … , 𝒙2(𝑡)]< . 
Under the instantaneous linear mixture model, the mixture signals can be modelled as  

𝐱(𝑡) = 𝐀𝐬(𝑡) + 𝛈(𝑡)                                                                             (6) 

where the mixing matrix 𝐀 = [𝒂𝟏, 𝒂𝟐, … 𝒂𝑵] represents the transfer between the source and 
the mixture, and 𝛈(𝑡)  is additive noise vector. When n>m, it is said to be in the 
underdetermined case. Solving UBSS problem is to develop proper method to recover the 
sources and estimate the mixing matrix in Eq. (6), using only the information of the observed 
signals. Considering Eq. (3), it is to recover the mode shape matrix and the single-mode modal 
responses. Structural dynamic parameters, i.e. modal frequencies and damping rations, can 
then be extracted from the modal responses.  

   Two following assumptions are made for the signal model: the column vectors of matric A 
are assumed to be pairwise linearly independent; that is for all 𝑖 ≠ 𝑗, 𝐚+  and 𝐚=  are linearly 
independent. The second assumption is the sources are assumed to have different structures 
and localization properties in the TF domain. More precisely, it is assumed the sources to be 
disjoint in the TF domain.  

 

Time-frequency representation with STFT 

One of the well-known time-frequency representation (TFR) and most used in practice is the 
short-time Fourier transform. Let 𝑥(𝑡) denotes a complex signal and ℎ(𝑡) a complex window 
function, both functions of time t. the short-time Fourier transform can be presented as 

𝑋A(𝑡, 𝑓) = ∫ 𝑥(𝜏)ℎ(𝜏 − 𝑡)𝑒1=#BCDE
1E 𝑑𝜏                                              (7) 

The power spectral density (PSD) of the original signal 𝑥(𝑡) windowed by ℎ(𝑡), called the 
spectrogram, is given by 

𝑆A(𝑡, 𝑓) = |𝑋A(𝑡, 𝑓)|#    −∞ < 𝑡, 𝑓 < ∞                                             (8) 

The low cost of implementation for the STFT, hence for the spectrogram, together with the 
advantage of being free of cross terms, justifies the fact that the STFT is most used in practice 
(Aissa-El-Bey et al., 2007).  

 

Component separation algorithm for the UBSS  

A method for solving the UBSS problem using spectrogram (as illustrated in Figure 2) is 
introduced here consisting of the following four steps: 

1. Compute and spatial average the spectrogram of the observed signals based on Eqs. 
(7) and (8); 

 

2. Monocomponent extraction using “peak detection and tracking” approach 
 
For the component extraction, a technique similar to one of the proposed algorithms 
in (Barkat and Abed-Meraim, 2004) is proposed. The component separation algorithm 
assumes all components of the signal exist at almost all time instants. Various 



components are extracted based on their peaks in the time-frequency plane. The key 
stages of the technique are given as following:   
(1) The first step consists in noise thresholding to remove the undesired “low” energy 

peaks in the time-frequency domain. For each time-slice o𝑡F, 𝑓p of the TFR, apply 
a criterion for all the frequency points 𝑓G  belonging to this time-slice with a 
threshold ϵ" 
 

                    𝑆Ao𝑡F, 𝑓Gp = r𝑆Ao𝑡F, 𝑓Gp 𝑖𝑓	𝑆Ao𝑡F, 𝑓Gp > ϵ"	
0 																													𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

              (9) 

Typically, ϵ" = 5%  of the point with maximum energy ( max }𝑆𝑤o𝑡F , 𝑓p~)  is 
selected.   

(2) Peak detection to estimate the number of components.  
For a noiseless and cross-terms free TFR, the number of components at a given 
time instant 𝑡! can be estimated as the number of peaks of the TFD slice 𝑆A(𝑡!, 𝑓). 
By searching and counting the peaks of TFR, it ends up with a number d that yields 
an estimate of the number of components in the signal. 

(3) Component separation  
a. Assign an index to each of the d components in an orderly manner 
b. For each time instant t (starting from t=1), find the component frequencies as 

the peak positions of the TFR slice 𝑆Ao𝑡F, 𝑓p.  
 

3. Components clustering 
A classification procedure was proposed as the third stage. This component 
classification procedure groups the components from the second stage of the 
algorithm based on the minimum distance between any pair of components. If two 
components belong to the same actual component, their distance in the time-
frequency plane is going to be smaller than the distance between the considered 
component and any other component. Mathematically, it is decided 𝑆A(𝑡+ , 𝑓)  and 
𝑆A(𝑡= , 𝑓) to belong to the same class if 
 
𝑑(𝑆A(𝑡+ , 𝑓), 𝑆A(𝑡= , 𝑓)) < 𝜖#                                                 (10) 
 
where 𝜖# is a properly chosen positive scalar and d is a distance measure. By applying 
the classification procedure, one can group a certain number of components from the 
second phase. This last number corresponds to the actual number of components in 
the original signal. Based on clustering information, one can define a time-frequency 
binary mask to separate the (t,f) region where each source is present alone (Boashash 
and Aïssa-El-Bey, 2018). The TF binary masking operation is defined as: 
 
𝑆�H,+(𝑡, 𝑓) = 𝑆A(𝑡, 𝑓)Ω+(𝑡, 𝑓)                                                 (11) 
 
where 𝑆�H,+(𝑡, 𝑓) is the estimated TFR of the ith source, and where 

 Ω+(𝑡, 𝑓) 	= r1,									𝑖𝑓	(𝑡, 𝑓) ∈ ℂ+	0	,							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.																																								    (12) 

 



4. Signal synthesis using inverse Fourier transform is carried out to recover the original 
source waveforms from the separated (𝑡, 𝑓) components in last steps. 
 

 

Figure 2 Flowchart of the proposed algorithm 

 

Numerical example 

Numerical simulations are performed with the following parameters of the bridge: 	𝐿 =
50𝑚, 𝜌 = 15710 𝑘𝑔 𝑚⁄ , 𝐼 = 0.67𝑚%, 𝐸 = 210𝐺𝑃𝑎 . The damping ratio of the bridge for 
each order is 0.01. The first three natural frequencies of the bridge are 1.88, 7.50 and 16.88 
Hz, respectively. The properties for the vehicle are: 𝑚! = 12404𝑘g,𝑚" = 𝑚# =
725.4𝑘𝑔, 𝑘" = 1969034𝑘𝑁/𝑚, 𝑘# = 727812𝑘𝑁/𝑚	, 𝑘$ = 4735000𝑘𝑁/𝑚, 𝑘% =
1972900𝑘𝑁/𝑚, 𝑐" = 7181.8, 𝑐# = 2189.6, 𝑐$ = 𝑐% = 0 . 𝑏" = 𝑏# = 3𝑚 . The moving 
speed of the vehicle is constant at 10𝑚 𝑠⁄  and the time step is set as 0.001s in the simulation.  
The Class A bridge surface roughness is used. Dynamic measurements on the locations of 
2.8m, 8.3m and 13.9m from the bridge left support are simulated from vehicle-bridge 
interaction model using Newmark beta method. 5% noise is added to the calculated results 
to consider measurement noise. Figure 3 shows the simulated dynamic response on the 
location of 8.3m and the spectrum. The first four bridge modal frequencies can be seen in the 
spectrum. The measurements from those three locations are input to the proposed method 
with a window length 1501 for analysis. The separated response components and the 
corresponding spectra are presented in Figure 4. It can be seen that five response 
components are recovered from the measurements of three sensors. 



  

                                     (a) Dynamic response                                          (b) Spectrum 

Figure 3. Dynamic response and its spectrum on the second location of the bridge 

   

                      (a)  Separated components                                                              (b) Spectra 

Figure 4. Separated response components and their spectra 

 

Modal frequency assessment of a field cable-stay bridge 

A long-term monitoring system has been installed on a cable-stayed bridge (as shown in 
Figure 16(a)). It is a single lane highway bridge with a span 46m and a width 5m.  There are 
24 accelerometers on bridge deck and Figure 16(b) shows the sensor locations. A data 
acquisition system continuously records the data from sensors with the sampling rate 600Hz. 
In this study, the vehicle-induced bridge responses are used to further verify the proposed 
method. Three traffic cases have been considered using the full-scale field bridge monitoring 
system, i.e. Case 2: there is no vehicle passing over the bridge; Case 2: there is a light vehicle 
passing over the bridge and Case 3: there is a heavy vehicle passing the bridge. The time of 
record is 12 seconds for each case. Figure 6 shows the acceleration response for these three 
cases and the corresponding Fourier spectra from sensor A7. From Figure 6(b), only the first 
bridge frequency at 2.00Hz can be identified for Case I and the first three modes can be clearly 
identified for Cases II and III as 2.00Hz, 3.57Hz, 5.74Hz. The passing vehicle is an effective tool 



to excite the bridge for extracting the bridge frequencies. Response measurements under 
different cases from sensor A7, A11, A14 and A18 are used for analysis using proposed 
method. The response source components and their spectra for Case 1 and 2 are given in 
Figures 7 and 8, respectively. From Figure 7, it can be seen that three bridge modal response 
components are extracted from bridge responses. For Case 2, six bridge modal response 
components are extracted from the measurement of four sensors which further 
demonstrates the effectiveness of proposed method for solving UBSS problems. The results 
for Case 3 are very similar to that of Case 2, thus only the identify frequencies are provided 
and summarized in Table 1 together with other two cases.  

 

(a) The cable-stayed bridge 

 

(b) Sensor location 

Figure 5 Long-term monitoring of a cable-stayed bridge 

    

                                     (a) Dynamic responses                                          (b) Spectra 

Figure 6 Dynamic responses and spectra from sensor A7 under different traffic cases  



 

  

               (a)  Separated components                                                              (b) Spectra 

Figure 7    Separated response components and their spectra for Case 1 

 

  

                (a)  Separated components                                                              (b) Spectra 

Figure 8    Separated response components and their spectra for Case 2 

 

 

                Table 1 identified frequencies of response components for different cases  

 Frequency 
 1st 2nd 3rd 4th 5th 6th 
Case 1 2.04  5.95   11.23 
Case 2 2.03 3.63 5.74 8.14 8.89 11.76 
Case 3 2.01 3.61 5.79 8.11 8.84 11.74 

 

 



 

Conclusion 

This study introduces a new method for the analysis of nonstationary signals in time 
frequency domain using spectrogram. Bridge modal responses and frequencies under traffic 
excitation are extracted from bridge measurements. The proposed method is also capable of 
solving the underdetermined problems. Numerical simulation and actual field measurement 
of a filed bridge illustrate the effective of the algorithm.  
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