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A Transfer-based additive LS-SVM classifier for
handling missing data

Guanjin Wang, Jie Lu, Fellow, IEEE, Kup-Sze Choi, Guangquan Zhang

Abstract—The performance of a classifier might greatly de-
teriorate due to missing data. Many different techniques to
handle this problem have been developed. In this work, we solve
the problem of missing data using a novel transfer learning
perspective and show that when additive LS-SVM is adopted,
model transfer learning can be used to enhance classification
performance on incomplete training datasets. A novel transfer-
based additive LS-SVM classifier is accordingly proposed. This
method also simultaneously determines the influence of classi-
fication errors caused by each incomplete sample using a fast
leave-one-out cross validation strategy, as an alternative way to
clean the training data to further improve data quality. The
proposed method has been applied to seven public datasets.
The experimental results indicate that the proposed method
achieves at least comparable, if not better, performance than case
deletion, mean imputation, and k-nearest neighbor imputation
methods, followed by the standard LS-SVM and SVM classifiers.
Moreover, a case study on a community healthcare dataset using
the proposed method is presented in detail, which particularly
highlights the contributions and benefits of the proposed method
to this real world application.

Index Terms—missing data, transfer learning, classification,
data cleaning, support vector machine

I. INTRODUCTION

Lassification in artificial intelligence categorizes un-

known data into predefined classes through learning. A
supervised classifier discovers patterns in data with class labels
(training data) and then uses them to classify new data without
class labels (testing data). The rapid growth of classification
techniques has seen them successfully applied in various
fields such as computer science, engineering, finance, biology,
nursing, and so on. Relevant applications include remote
sensing, housing investment, cancer diagnosis, and to estimate
quality of life. However, data missing is a common issue,
and is attributed to various causes. For example, participants
might skip questions in surveys or drop out of experiments.
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Patients may not qualify for certain medical tests, or operators
may take incorrect measurements during data acquisition. Any
inappropriate treatment of missing data might consequently
deteriorate classification performance and, as such, the ability
to appropriately handle missing data in classification problems
has always been an essential demand.

There are many methods in the literature for dealing with
the classification of missing data. For example, Thirukumaran
et al. [1] explored the imputation technique for the missing
data. Razzaghi et al. [2] discussed a multilevel learning
paradigm of the cost-sensitive SVM on health care missing
data. Lorenzi et al. [3] designed a specific kernel combination
in a support vector regression, which demonstrates that only
few support vectors are needed to reconstruct a missing
area. Zhang et al. [4] adopted least squares support vector
machines to handle missing traffic flow data. Most of these
methods apply classifiers after the missing data have been
preprocessed, such as imputation. However, one category goes
beyond the traditional methods, and uses machine learning
solutions which work directly with the missing data instead
of hypothetically predicting missing values. Research work on
this topic is rapidly growing and many machine learning solu-
tions have achieved satisfactory performance. Nevertheless, so
far there are no reports of using transfer learning as part of an
approach. Additionally, most machine learning methods focus
on improving general performance on missing data, but little
attention has been given to how to detect or remove corrupt
and/or meaningless incomplete samples from the dataset for
a simultaneous and unbiased estimation guarantee quickly. If
this can be achieved, data consistency and quality can be
improved.

Missing data can occur in scenarios where every sample in
the dataset has one or more missing values, or where a portion
of samples in the dataset have missing values but others are
complete. In this work, we focus on the latter situation which is
very common in real world. Medical data is one such example.
We propose a novel additive least squares support vector ma-
chine (LS-SVM) classifier for directly handling missing data in
both the training and testing datasets from a transfer learning
perspective. It is assumed that the LS-SVM framework [5]
is adopted in both the source and target domains, where the
source domain represents the complete sample, while the target
domain represents the complete and incomplete samples with
the missing values in the whole training dataset. The proposed
method aims to leverage the learned model-based knowledge
from the source domain onto the target domain by finding
a correlation between the weight parameters of the source
and target domains within the LS-SVM framework. This work



makes the following contributions:

(1) A novel transfer-based additive LS-SVM classifier is
proposed for classification with missing data, by minimizing
disagreement between the source and target classifiers using
weight parameter consensus regularization terms.

(2) The proposed classifier provides distinct information for
data cleaning to guarantee data quality. By evaluating the
influence of classification errors caused by each incomplete
sample during the model’s construction, incomplete samples
with high error influence can be discovered and immediately
removed.

(3) The proposed classifier uses a fast leave-one-out cross val-
idation strategy to determine how much parameter knowledge
should be learnt from the source classifier and the influence
level of the classification errors caused by each incomplete
sample in the target domain unbiasedly and quickly.

The proposed classifier is applied to UCI public datasets with
various combinations of missing data rates and columns, and
its accuracy is compared to traditional missing data treatment
methods, including case deletion, mean imputation and KNN
imputation. Moreover, a case study on a real community
healthcare dataset is also presented. The experimental results
demonstrate the effectiveness of the proposed method.

The remainder of this paper is organized as follows. Related
work is introduced in Section II. In Section III the novel
transfer-based additive LS-SVM classifier is proposed. The
fast leave-one-out cross validation strategy for the parameters
is developed in Section IV. Section V presents the experimen-
tal results on the UCI public datasets, and Section VI reports
the case study on the real world community health dataset.
Finally, the conclusions and future work are given in VIL

II. RELATED WORK
A. Classification with missing data

Pattern classification involves two parts: handling missing
data and pattern classification. Generally, we can summarize
methods in literature into four categories [6].

Methods in the first category simply remove incomplete
samples, and use complete samples for classifier construction
[7]. However, deleting samples may cause loss of information
and introduce bias into the analysis, particularly when the
missing data are not entirely randomly distributed [7], [8].

Methods in the second category impute missing values
and construct classifiers using the recovered dataset. The
statistical imputation methods used include mean imputation
[5], regression imputation [7] and so on. Mean imputation is
the simplest: a missing value is filled by the average value of
the same feature. In regression imputation, the feature with
missing values is estimated by a regression model constructed
using non-missing features. The former method does not
consider the correlations between missing and non-missing
features [9] while the latter method only follows a single
regression curve limited by the inherent variation in the data
[7]. Imputation can also use machine learning techniques
such as k-nearest neighbour (KNN). In this method, the k-
nearest neighbours are selected from complete samples to
estimate the missing values. However, the performance of

KNN imputation is dependent on parameter settings, such
as the value of k, the distance function, and the weighting
function, and no theoretical approaches can directly determine
them. In addition, the search for the nearest neighbours, i.e.
the most similar samples, within the portion of complete data
is computationally expensive.

Methods in the third category estimate the data distributions
of the complete and incomplete data portions in the dataset
, and make use of them for pattern classification. In this
approach, an expectation maximization (EM) algorithm is
commonly used to estimate the data distribution, and Bayesian
decision theory is applied for classification [10]. However, the
methods in this category have massive computational costs.
Calculating standard errors for the estimates [11]and Monte
Carlo implementation of the EM algorithm (MCEM) to model
joint distribution of the covariates [12] is complicated and
limits the applicability of these methods.

Methods in the fourth category handle missing data and
construct the classifier at the same time. An increasing number
of studies in this category have attempted to improve the gen-
eralization ability, and many have demonstrated satisfactory
results [6]. In recent years, some works have concentrated
on SVM for handling missing data [13]-[17]. Pelckmans et
al. [13] presented an idea to integrate the uncertainty caused
by missing values into an appropriate risk function, and an
extension of this work was based on a formulation of an SVM
and LS-SVM classifier. In [14], SVM was incorporated into
a Gaussian process to handle missing data. In this approach,
how to estimate missing values is equivalent to finding efficient
optimization methods such as the EM algorithm. Chechik et
al. [15] proposed a maxmargin learning framework using a
geometrically-inspired objective function to directly classify
incomplete data with lower computational costs. Bi and Zhang
[16] were also inspired by the probability modelling approach,
and proposed a new SVM classification formulation, which
handles missing data with an intuitive geometric interpretation.
In [17], a standard SVM classifier was extended for missing
data classification using probabilistic classification constraints
instead of linear ones. Our proposed method belongs to this
category, and is extended to an additive LS-SVM classifier,
from a transfer learning perspective, to solve the classification
of missing data.

B. Transfer learning

Since our work is based on transfer learning, we first provide
a brief review of this field. Three important aspects should be
considered:

1) What to transfer: considers which part of the knowledge
can be transferred across domains and tasks. In different sce-
narios, leveraged knowledge can be categorized by instances,
feature representations, or model parameters [18].

Instance transfers The main idea in this category is that,
even though not all of the data in the source domain can be
reused directly, a certain portion can be re-weighted for use
in the target domain. In [19], Jiang et al. proposed a general
instance weighting framework to solve classification problems
across domains in natural language processing. Huang et.al.



[20] presented a non-parametric method which directly gen-
erates resampling weights without distribution estimations in
scenarios where the training and testing datasets are drawn
from different distributions.

Feature representation transfers In this category, the knowl-
edge transferred between domains is encoded into a shared
representative knowledge structure, and model construction in
the target domain is guided by the new feature space. In [21],
Jebara computed a common feature selection or kernel selec-
tion configuration for multiple SVM constructed in different
domains. In [22], Argyriou et al. proposed a framework to
learn the common structure of multi-tasks through regulariza-
tion with spectral functions of matrices. Another very simple
and easy approach was proposed in [23] for classification
across different domains by augmenting the feature space.
Raina et al. presented ’self-taught learning’ for the target
domain by constructing higher-level features on unsupervised
classification tasks.

Model/parameter transfers This category can be further
divided into two subcategories, ensemble learning and domain
adaption, ensemble learning combines several classifiers from
different domains to achieve one ensemble classifier, while
domain adaption assumes that the source and target domains
share some parameters or prior distributions and is, nowadays,
regarded as a very promising approach. In [24], the pro-
posed method integrated both the global and local information
regarding the domains to transform the domain adaptation
problem into a bi-object optimization problem via the kernel-
based method. Uzair et al. [25] proposed a blind domain
adaptation method which does not require samples from target
domain for training, via unsupervised learning with a global
nonlinear extreme learning machine (ELM) model from the
source domain data. Yan et al. [26] proposed maximum
independence domain adaptation (MIDA) and semi-supervised
MIDA to solve discrete and continuous distributional changes
in the feature space.

2) How to transfer: After determining which knowledge to
transfer, a corresponding transfer learning model needs to be
built. Numerous techniques in computational intelligence have
been applied to this area, including neural network transfer
learning, Bayes transfer learning and fuzzy transfer learning
[27]. Liu et al. [28] applied a neural network to initialize the
weights of labelled data in the source domain. Each instance
in the source domain is placed into a neural network trained
by limited labelled target data to determine its contribution
level based on errors. In [29], a novel aggregation method
was defined for transfer learning that estimates and weights
the average confidence probability of the source task on its
similarity to the target task. Zuo et al. [30], [31] proposed
a transfer learning method by using deep learning to extract
hierarchical feature spaces, such that the knowledge in various
feature spaces with different levels of abstraction from source
domain can be explored and transferred to the target domain.
In [32], Behbood et al. developed a fuzzy refinement domain
adaptation method for long-term bank failure prediction by
using similarity/dissimilarity concepts to modify the label
values of samples in the target domain.

3) When to transfer: concerns circumstances in which
knowledge transfer can or cannot be done. For example, in
some scenarios, if the source and target domains are not
related, brute force transfers may not work or might even
damage the performance of learning in the target domain.
This is also known as 'negative transfer’ [33], [34]. An ideal
transfer learning method would benefit from related domains
or tasks but would avoid negative transfers. In this work,
since we only focus on handling datasets that contain both
complete and incomplete samples; the source domain is only
comprised of complete samples; and the target domain is the
entire dataset, the distributions of these two domains obviously
remain similar. The ideal classifier built on the target domain
should stay as similar as possible to the classifier built on the
source domain. In other words, a transfer learning method-
ology can be used for missing data classification, especially
in circumstances where it is easy to construct a classifier in
the source domain such that model transfer learning can be
applied.

Overall, this work expands on the three aspects discussed
above. We propose a model-based transfer learning method
that learns from the constructed model in the source domain
(what to transfer), then leverages that model knowledge onto
the target model (how to transfer). The similarity between the
two domains is guaranteed, and the correlation between these
two models is automatically evaluated (when to transfer).

III. A MODEL TRANSFER-BASED ADDITIVE LS-SVM
CLASSIFIER

A. Dataset Representation

In this work, the dataset is denoted as S with IV samples
in total. The input set is denoted as X, with the corresponding
output set as Y, where S = (x1,91), ..., (Tn,Yn), T =
(2f,2},..,2) e X cRYand y; € Y = {+1,—1}. The
input set X is associated with two classes labeled +1 and -1,
stored in the output set Y, and each sample x; contains d
features.

The dataset S consists of two data portions of data
(N = Nji 4+ N3), Ni includes the complete data samples
(1, x2,...,zN,) and Ny includes the incomplete data sam-
ples (TN, +1,TN, +2,---L N, +N,). We want to find a decision
function f : X — Y, that finds the matching y for any new
incoming sample y for any new incoming sample «. Fig. 1
describes the dataset S where missing values are denoted by
the symbol ?.

B. Framework of proposed classifier

The framework of the proposed transfer-based additive LS-
SVM is illustrated in Fig. 2. The source domain contains
complete data N1, and the target domain contains both N; and
incomplete data N,. We first construct an additive LS-SVM
for the source domain and then a transfer-based additive LS-
SVM classifier is constructed for classification in the target
domain containing the missing data.
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Fig. 2: Framework of the transfer-based additive LS-SVM

C. Adaptive Regularization

In order to find the function A in the hypothesis space
which approximates the unknown decision in the hypothesis
space, which approximates the unknown decision function
f, the described learning process can be formalized as an
optimization problem, which minimizes the structural risk:

nQ(f)+Remp(f(wl)ayl) (1)

where 77 > 0 is a regularization parameter which balances good
generalization performance with the smoothness or simplicity
enforced by a small Q(f). The empirical risk Re,,,(f) can be
those using squared loss or the e-insensitive loss. To maximize
the margin of classification in the feature space using the
regularization term 1 |w]|®, we get

1
§Hw||2+Remp(f($l),yl) 2

In our framework, the distribution Py in the source domain
and the distribution F; in the target domain are related, and the
model on each domain shares similarity to some extent. Thus,
the model knowledge learned from the source domain can be
leveraged to help the learning process in the target domain.
For example, we can first find the optimal w, by minimizing
Eq. (2) in the source domain. When we encounter a new target
domain, we can construct a model in which w; gets as close as

possible to the known w,. Through editing the regularization
term, the learning classification task becomes

1
5 we — ws||* + Remp(f (1), 1) 3)

where f(x;) on the target domain is parameterized in terms
of wy.

In addition, to evaluate the similarity between ws and wy
(when to transfer) in the optimization problem above, we
can further edit the regularization term into ||w; — Aws|| by
adding the weighting factor A.

D. Transfer-based additive LS-SVM classifier

To construct our proposed transfer-based additive LS-
SVM classifier for missing data, we use Awg as reference
in the regularization term in Eq. (3), and the square loss
Remp(f(z1), y1) = (f(21) — y1)?. Moreover, the upper bound
of the classification error caused by each incomplete sample
with missing values in the input space of the target domain is
denoted as ¢;. In this case, A and ¢; are treated as the learning
parameters. They are selected by the fast leave-one-out cross
validation strategy which will be discussed later. The objective
function based on LS-SVM framework is minimized to

N

1 , C ,
min §(w—)\ws) + 5;(& —q)
d “)
st. oy = ij(b(xé)ljl +b+&
j=1

1=1,2,..,N; + Na(= N)

where

1
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Since (x1, T2, ..., TN, ) is a group of the complete data, I]l- (=
1,2,..,Ny)issetto l,and ¢; (I =1,2,...,Ny) is set to O ac-

cordingly. Also, ¢(z1) = (¢(4), é(zh), ... o(}). ... o(a}))
and it is a feature mapping such that the kernel K below can
be adopted in Eq. (4).

if feature j of the [-th sample has value
if feature j of the [-th sample has no value

K(zy, @) = () dlzx) = Z k(ah,2f) ()

j=1
where
Tl ok ! k ;o
Bt ) = k(z;,27) both z and are not missing
7 0 otherwise
/::(a:é,mf) is a kernel function. In this study, a Gaussian
. —(zﬁ-—;?)"‘

function is used as the kernel, i.e., l;(xé,xj) =e =« ,
where o is the kernel width. It is obvious that K (x;, ) in
Eq. (5) is an additive Gaussian kernel [35].

The Lagrangian L of Eq. (4) is given by

L=1w-dw)+ S5V (6 —a)+ DY, ol — Xy wio) I —b - &) (6)

where a € R” is the vector of all Lagrangian multipliers.
With respect to w, &, b, «;, the optimality condition can be
calculated by
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oL
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Combining Eq. (7), Eq. (8) with Eq. (10), we get

SN S aulf L)o@t + b+ i /C =y~ AN wyll(at) — o

(1)

Based on a kernel trick in Eq. (5), we can replace
é(x))T d(xr,) by K(x;,x1). We can further write the linear
equation of Eq. (11) in matrix form:

K+ A 1] [a] [y—~
Nl
where A is a matrix in which each diagonal entry is one and

all other entries are zero, y is the real label vector of all the
samples in the training dataset and

(12)

/\EJ 111)51{; ]jv)
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7= )\Ef 1 SIM“M N1+2)+0N1+2

N
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J=1"3"j J 0 0 0
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pai luv;r\‘“*%(a;\“”) 0 1 0
0 0 1
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Since (x1,x2,...,xy, ) is a group of the complete data, ¢
(I=1,---,Ny) should be 0. Thus, we do not represent them
in the above formula. Our goal is to evaluate ¢; (I = Ny +
1,---,N) and X using the proposed fast leave-one-out cross
validation.

We can rewrite Eq. (12) into

K'*‘T%A 1 jof _ jy— Ay —enyids —enypods — - — enI Ny
1 0f|0b 0
N
{y Z 2t 5111}
(14)
where 3 = (A, cny+1,CNy 42, ,CN ), and
21:11‘71.7'@(@}) 0 0 0
i LN (")
Z - 'u;RI,N’H@(xN’H 0 0 0
L= Zj:;u:;’lj“’“(ﬁ(zf"“ y o= =L, Is=10 |, 5 Ina= [0

0 -1 0

|
_

d N N
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Finally, we use H to represent the first matrix on the left
hand of Eq. (14), the model parameters can be calculated
simply using a matrix inversion:

ol

where Q = H™'. Also, if we can get §; for all the samples
with missing values, v and b can be calculated accordingly
from Eq. (15), and hereby w and b from Eq. (7) and Eq.
(10) respectively. Therefore, for a new input sample x;, we
can obtain the predicted label y; using the decision function
Y = 'qub(:ct) + b.

We can also extend the proposed additive LS-SVM classi-
fier explained above for multi-classification tasks. This one-
against-all strategy is used to find the multiple decision func-
tions that separate one class from the remaining classes. In the
end, the predicted label of the new input data sample x; is
determined by ,max g (x¢), where M denotes the number

15)

of the classes.

E. Decision Function

After determining the value of a in Eq. (12) with the
selected value of 3, the optimal solution becomes

N
w = 2w, + Y a(lig(z}), [1o(ah), .. Iip(xl))  (16)

=1

Therefore, the decision function for the new sample x; is

d
£z =Z<)\wsj+2alll ) o(x )+b

= (17)

()\wad) —|—Zoq[l J, x; >+b
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IV. FAST LEAVE-ONE-OUT CROSS VALIDATION FOR
PARAMETERS

A. Fast leave-one-out cross validation for parameters

From the last section, it is clear that the classification
performance of the proposed transfer-based additive LS-SVM
classifier relies on determining the parameter 3. Traditionally,
a cross-validation method is used as an unbiased estimator to
determine the parameters in the model, but this is computation-
ally expensive and time-consuming. In this work, we propose
a fast version of the leave-one-out cross-validation method to
find the optimal value of 3 in Eq. (15), and it is this approach
that is discussed in this section.

We decompose H into its block representation and isolate
the first row and first column, i.e.,

H- K+I%A 1] _[hn B
1 0 h H

a(_;) and b(_;y represents the model parameters in the i-th
iteration of the leave-one-out cross validation procedure. In

(18)



the first iteration, where the first training sample is excluded,
we have

Q-1 _

L(—l)] Qe [
where Q(_;) = H(ill) and y_,) = (yg,yg,...,yN,O)T. We
denote the predicted label on the ¢-th sample excluded from

the training dataset by y;, and the predicted label for the first
training sample becomes

Zl RGTY fTay

19)

Na+1

Z Biln
Na+1 Na+1
=h{ Q. <y(1) - Z 5111(—1)) + Z Biln
=1 =1

where Ij; represents the first element of I;. Considering the
last N equations in Eq. (12), we get [hy H_y)] [a” b]T =

(y(,l) - Z;\flﬂ 5115(—1)>, and

i =h{ [a( 1)}
(20)

No+1
. 706N7b]T+ Z Biln
=1 21

No+1

Qg, - aaNab}T+ Z 6lIll

From Eq. (12), the first equation of the system is y; —

N2+1 BlIll = h11a1 + hl [ag,ad, s LN, b]T, and hence
71 = y1 —ai(hyy — hl Q(_l)hl) Finally, by using Q = H!
and the block matrix inversion lemma we can obtain

vt —v hQ_, }
= 22
= oy o Qubine Ly, —vQnf| Y
where v = hy; — thQ(_l)hl. Since the system of linear

equations in Eq. (12) is insensitive to permutations of the
ordering of the equations, then

Ui = yi — i/ Qy
ot o] -

(23)

By defining {a/T,b/}T =

Q {IZT,O}, and o = a' — 2+1 ﬁlal , then we can get
! N2+1 "
Gi =y — by =L PO (24)
Qi; Qi

It can be seen from (24) that o and 3 has a linear rela-
tionship, which means that after determining 3, the learning
model can be obtained as well. The optimal 3 is supposed to
keep the same sign of y; and y; for all samples in the training
dataset. However, it might bring many local minima issues
due to non-convex formulation. Thus, in the end we adopt the
following loss function, which is similar to the hinge loss:

- proy,
Q7/L

where ||+ = max{0, z}. This is a convex upper bound to the
leave-one-out misclassification loss, and it prefers solutions in
which g; has an absolute value equal to or bigger than 1 and
the same sign as y;. Finally, the objective function is

(Ui, vi) = |1 — Gayil+ = (25)

+

Algorithm 1: Projected Sub-gradient Descent Algorithm

Input: a,, 0‘;@ and I
Initialize: 3 <— 0 and ¢ < 1
Repeat

No—+1
Dl/ Z 2 Bl lz

gi:yifQ Q ,i=1,2,..,N
di « {giy; >0}, i=1,2,...,N
17

BB — 27 iy Zyzg',l=1,2, W No+1
If ||B]|2 > D then 3 «+ HBHz

End if

ﬁl — max(/B170)’l = 1727 7d

t<—t+1

Until convergence

Output: 8

N
zl(ﬂi, Yi)

st [|Bll2<D

(26)

where D is a constant and || - ||2 is the Lo norm (Euclidean)
in the constraint. A regularization based on this can induce
numerical stability. This optimization process can be imple-
mented by a projected sub-gradient descent algorithm and the
pseudocode is given in Algorithm 1, in which 3; denotes A
in Eq. 4 and so 3, should be positive.

B. Computational complexity

One highlight in the proposed transfer-based additive SVM
classifier is its fast computational ability. Its computational
cost contains three parts, which can be represented as O(N? +
N3+ N(Ny+1)). The first part includes the model knowledge
obtained using LS-SVM on the source domain V. Therefore,
the complexity of this part is O(N3'), which is the complexity
of LS-SVM. The second part includes the calculation of the
matrix Q by the inverse related to the training dataset on
the target domain, and so the corresponding computational
complexity becomes O(N?). The third part includes the com-
putational complexity of each iteration in the Algorithm 1 to
optimize Eq. (26), which can be represented as O((Na+1)N).

Let us consider the traditional cross-validation strategy. If
a standard LS-SVM is adopted and T (> 3) grid values
for each parameter are simply considered, the whole time
complexity would become O(N7 + (N3 s N)T(N241)) —
O(N} + N4T(N2+1)) which is much more computationally
expensive, and even impractical, than O( N +N34+N(Ny+1))
occupied by the proposed fast cross-validation strategy.

C. Interpretation of parameter c; and data cleaning

The obtained parameter ¢; (I = N1+ 1, Ny +2,--- , N1+
N2) of each sample with missing value(s) tells us the relative
influence level of the classification error caused by those data
samples, which accordingly helps us to clean the training set
data.

If |¢| or

pJnax |cF| of the I-th incomplete sample is

greater than a given small positive threshold, the influence on
the classification error from this incomplete sample is serious

and should be cleaned from the dataset. Inversely, if |¢;| or



TABLE I: Dataset descriptions

Number

Dataset | - samples Features | Class | Class(%)
Surgery 470 17 "l; ?Z éé
Diabetic 1151 19 ? gg:g;
Pima 769 8 ! | Sass
Bupa 345 6 é gggg
Breast 699 9 i giié
Titanic 887 6 (1) gé?é
German | 1000 24 ) 2000

i min u |cF| of the I-th incomplete sample is less than a given
Sl

small positive threshold, the influence of the classification
error from this incomplete sample is tolerable and can remain
in the training dataset.

V. EXPERIMENTAL RESULTS
A. Datasets

In the experiments, seven public datasets (Surgery, Diabetic,
Pima, Bupa, Breast, Titanic and German) were adopted. The
original breast dataset has missing values, which were removed
during data processing in order to fully control the missing
data in our experiments. The rest of datasets are complete with
no missing data. Table I summarizes the datasets adopted in
this work.

B. Experimental Design

The main purpose of the experiments conducted in this
work is to evaluate the performance of the proposed transfer-
based additive LS-SVM classifier for missing data, compared
to traditional missing data classification methods, denoted as
follows:

(A) Case deletion all samples with missing values were
removed.

(B) Mean imputation missing values for a certain feature
were replaced with the mean of values of complete samples
for that feature.

(C) KNN imputation missing values were replaced with the
weighted mean of the k nearest-neighbour columns.

Using the proposed method, missing data was assembled
by constructing a classifier. Using the comparative methods
(A), (B) and (C), missing data were first manipulated, and
then both standard LS-SVM and SVM classifiers were used
on the processed data for model construction. To make the
comparison fair, we adopted the additive Gaussian kernel on
both proposed and comparative methods. We first calculated
the standard deviation of each feature in the dataset and then
took their average value as o. Accordingly, we established
a trade-off parameter C' and a Gaussian kernel parame-
ter o by searching C' € {1,10,50,100,1000,10000} and
o € {5/16,5/8,5/4,5/2,7,27,47,87,165}. Additionally,
we obtained w, from the source domain for the proposed

model transfer method in advance. Finding an optimal value
for the neighbouring parameter k£ for the method (C) was a
major issue. The missing values were filled using estimated
values from their 1, 3, 7, 9 and 10 nearest neighbours.
Due to the space limitations, we only show results from
the 3 and 10 nearest neighbours, identified as KNN3 and
KNNI10 respectively in this work. All the experiments were
implemented using 64-bit MATLAB on a computer with an
Intel Core 15-6300 2.40 GHz CPU and 8.00GB RAM.
Missing data were artificially inserted in different features
with different proportions into the public datasets. We first
selected the first, second and third most relevant feature(s)
using wrapper and filter techniques, then modified their values
to unknown. Doing this allowed us to consider that less
relevant or non relevant features might not contribute to
classifier construction or even compromise the experimental
analysis. We also inserted various proportions of missing data
in the datasets (10%, 20%, 30%, 40%, 50%, 60%) such that we
could analyse the corresponding performance of the classifiers.

C. Classification performances

The 10-fold cross validation strategy was used in the experi-
ments for performance evaluation, to ensure that every sample
from the dataset had a chance to be used in the training and
testing sets. Here, the dataset was randomly divided into ten
subsets. The model was built using nine subsets and tested on
the remaining one. This process was repeated 10 times, and
the mean and standard deviation of accuracy in the 10-fold
cross validation procedure was calculated.

Tables III-IX display the numerical experimental results

of the proposed and comparative methods on seven public
datasets in terms of accuracy. Figure 5 use line graphs to
further demonstrate the change tendencies of performances
with different missing data rates. In order to detect signif-
icant differences among the performances of the proposed
and comparative methods, we also carried out the Friedman
ranking test followed by Holm post-hoc test [36], [37] for
multiple comparisons on seven datasets. The Friedman ranking
test was used to evaluate whether there was a statistically
significant difference among all the methods. If the p-value
is smaller than 0.05, the null hypothesis is rejected and there
is significant difference. The Holm post-hoc test was used
to further verify if there was a statistical difference between
the best Friedman ranking method and each of the rest, and
the hypothesis of equivalence of the methods is rejected if
p < «/i. Tables XII and XIII list the corresponding statistical
results about Friedman ranking test and Holm post-hoc test,
respectively. According to these results, we make the following
observations:
(1) In most cases, our proposed classifier achieved better
classification performances than those using other compara-
tive methods. This indicates that our proposed classifier, by
leveraging the knowledge learned from the model on the
source domain to the target domain, has the ability to perform
classification with missing data and achieve advantageous
performances compared with the traditional missing data treat-
ments followed by LS-SVM or SVM.



(2) In very few cases, with a specific combination of the
missing data rate and missing feature(s), the performance
results of our proposed method were lower than those using the
case deletion method. For example, in Table VII, when there
were 40% missing data in the Breast dataset, (case deletion
+ SVM) achieved marginally higher accuracies than the other
methods. The similar situation occurs in Table IV, when there
were 20% missing data in the Diabetic dataset. This might be
due to the reason that those randomly selected missing data
coincidently had the noise and thus data removal enhanced
the classification performance, particularly of the SVM which
suffers from the noise sensitivity problem. Also, there are few
cases in Tables III and VI that the proposed method was
beaten by (KNN3+SVM) and (KNN10+SVM). We noticed
that these usually occurred when the missing data rate was
comparatively higher (> 30%), which may greatly fluctuate
the classification performance. In Tables XII and XIII, there
are significant differences between the proposed method and
all the comparative methods except (case deletion + SVM)
(0.171857 > 0.05) in terms of accuracy, we must notice
that the proposed classifier also has the advantage on data
cleaning via the fast leave-one-out cross validation strategy,
which case deletion and all other imputation methods cannot
achieve. Further details are discussed in the MIHC case study.

VI. A CASE STUDY
A. Data collection

A nurse-led mobile integrative health centre (MIHC) [38] in
Hong Kong provides free health screening services for elderly
people. They house a local database and server to provide a
computer service and store data for the clinic.

In August 2013, a dataset was collected which contains the
records of 444 patients, each made up of 33 features. Because
of the nature of both the tests performed and the patients’
themselves, some information is missing. For instance, certain
tests proved too physically or cognitively taxing for some el-
derly patients; sometimes language barriers prevent the nurses
from communicating clearly with the patients, etc. The dataset
contains demographic, socioeconomic, social relationship, and
social participation data. Additionally, information on the
patients’ health history, such as smoking and drinking habits,
chronic illnesses, and data from a series of health assessments
with descriptions is also included, as shown in TABLE II.

B. Data processing

The range of values recorded under the World Health
Organization questionnaire on quality of life: short form Hong
Kong version (WHOQOL-BREF(HK)) framework [39], [40]
lacked extreme values for an overall quality of life score on a 1
to 5 scale. Therefore, some data pre-processing was required.
To avoid unintended bias in the training set, these values
were re-mapped to a scale of 3, where "1" indicates poor,
"2" indicates neutral, and "3" indicates good quality of life.

C. The challenge

Using the 33 features inherent in the MIHC dataset, we
intended to construct a classifier to predict the quality of life

of elderly patients using the same scale mentioned above -
poor, neutral, and good. However, in this dataset 14 of the 33
features, and 159 of the 444 patient records, contain missing
values, which presents problems for constructing a prediction
model.

D. The solution and analysis

In this case study, the proposed transfer-based additive LS-
SVM classifier was applied to the dataset to predict quality
of life and the results are compared to the same methods
described in the Section V-B. Table X and Fig. 3 demonstrate
that the proposed classifier provided the best classification
performance with the accuracy 0.7258 among all the methods.
The running time of the proposed method which had the fast
leave-one-out cross validation was 4.03 seconds. Thus, in this
practical application, the proposed transfer-based additive LS-
SVM classifier outperforms both conventional methods and the
standard LS-SVM classifier for missing data classification.

Additionally, as discussed in IV-C, the influence of each
incomplete sample in the training dataset can be determined
by |¢;| (binary classification) or Jax, |cF| (the multi-class

classification) obtained during the classification process. We
performed data cleaning on the MIHC dataset and observed the
corresponding classification results on the cleaned dataset. Fig.
4 shows kmlagcg |cF| of each incomplete sample in the MIHC

training dataset. We can observe that the kmax |cF| ranged

from 0 to 1.8499. In fact, the A, |cF| of all the samples

were below 1 except one (1.8499), which indicated that this
incomplete sample had a comparatively big influence on the
classification error and must be removed. Based on the range
of these values, the threshold was set to 0.6, 0.65, 0.80, 1.00.
The I-th incomplete sample whose A, |cF| was bigger than

the chosen threshold was then removed and the corresponding
performance results were displayed in Table. XI. We observe
that the performance after data cleaning was maintained or
improved, to a certain extent, by given different thresholds.
The best classification accuracy achieved was 0.7327 when
the incomplete samples with kmlaéc‘3 |cl | greater than 0.8 were

removed. This result shows that the proposed method has the
ability to clean unnecessary incomplete samples in the dataset
based on the influence of classification errors in practical
applications.

E. Contribution

Due to the complex nature of the way the MIHC acquires
data, any automated predictive algorithm that could decrease
the workload for staff nurses would be valuable. More im-
portantly, given the patient type, it is highly likely that future
datasets from the MIHC will contain missing data and any
over-collection of data will only increase the likelihood of
missing features. As previously mentioned, a common reason
for missing features is a loss of patience by the patient or an
inability to communicate. Using the proposed method, it is
possible to perform classification directly on the missing data.
Moreover, unnecessary samples are automatically removed by



TABLE II: Health related assessments and questionnaire on

MIHC

Title

Description

Bio-measurements

Major vital signs of the patients were measured,
e.g. body temperature, pulse rate, oxygen saturation
(Sp0O2), blood pressure and waist-hip ratio (WHR).

Berg Balance
Scale (BBS)

Patient balance ability measured using a metric es-
tablished using 14 tests. These tests include having
the patient stand up from a sitting position and other
more taxing balance tests e.g. standing on one foot.
From this, a score between 0 to 4, with 4 being
the highest, is assigned to each completed test. This
gives an overall rating ranging from 0 to 56 for the
patients overall balance ability.

Timed Up and Go
Test (TUG)

A physical test to measure basic functional mobility,
this test is well known and has good reliability. This
test required that the patient would, starting from a
sitting position, rise from a chair and walk for 3
meters, then turn around and return to the original
sitting position. Patients were required to repeat the
task three times to establish a best time.

Visual Analogue
Scale (VAS) for
pain

A scale used to measure the extent of pain to which
a client felt localized at the most painful part of the
body. Using a 10 cm vertical line, patients indicate

visually somewhere from the lower end to upper
end of this line the extent of their experienced pain:
ranging from no pain to unbearable pain from top to
bottom of the line respectively.
Designed to test lower body strength and en-
durance, specifically when undertaking demanding
tasks found in daily life. Intended to measure the
patients ability to perform daily tasks such as climb-
ing stairs, getting up from chairs or out of the bath
tub. The test required that the patient repeatedly rise
from a chair to a fully standing position and then
sit down again. The number of times that the patient
was able to perform this task within a 30 second
window was recorded.
Used to determine patient levels of fitness and obe-
sity using body mass index (BMI), skeletal muscle
mass, body fat mass and body fat percentage (BFP).
Using a dynamometer the grip strength of both the
dominant and non-dominant hand were measured
taking the average over three trials. This test required
that the patient squeeze the device with maximum
effort from a standing position. A total of six trials,
three for each hand, was performed and the average
strength for both were recorded.
Quality of Life The QOL of the clients was measured using the
(QOL) WHOQOL-BREF(HK).

The 30-second
Chair Stand Test
(30-s CST)

Body Composition
Analysis

Handgrip Strength

determining which samples have the least impact on the overall
accuracy of the classification when they are missing from the
dataset. Beyond assisting with data cleaning, determining a
classifier that effectively handles the corrupt or missing data
samples, may vastly improve the overall performance and
effectiveness of the MIHC itself. If patients and practitioners
are less concerned about fully complying with the rigours of
the tests, it is likely that stress levels and therefore test times
will decrease. As a result, interpersonal relationships improve,
leading to increased participation and better overall accuracy,
and the cycle perpetuates.

VII. CONCLUSIONS AND FURTHER STUDY

Missing data is an inevitable problem in many machine
learning processes. In this paper, we present a novel additive
LS-SVM classifier to handle missing data from a transfer
learning perspective. The proposed classifier has the ability
to learn model weights from the source domain of a dataset
- the complete portion of the dataset - and transfer them to
the target domain - the entire dataset with missing data. The
classifier also simultaneously determines the influence of the

Comparative results for MIHC dataset
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Fig. 3: Comparative results for the MIHC dataset

classification error caused by each incomplete sample in the
training dataset through a fast leave-one-out cross validation
strategy. This provides an alternative approach to data cleaning
to guarantee data quality. We compare our proposed classifier
to both traditional missing data treatments and the LS-SVM
classifier on seven public datasets. Experimental results con-
firm the effectiveness of the proposed method for classification
problems for a wide range of missing data rates and columns
in both training and testing datasets. Moreover, a case study
on a community health dataset is presented in detail, which
particularly highlights the benefits and contributions of the
proposed method to this real world application.

Even though the proposed method shows promising perfor-
mance, this study has some limitations which hold promise for
future work. For example, missing values were filled randomly
in this study. In future work, we can analyse the behaviour of
methods when missing values are not randomly distributed,
or randomly assigned, with different distributions. Using a
case study was advantageous, as it allows for situations with
a dataset with naturally occurring missing values, but it would
be worth investigating the nature of this distribution for further
indications as to how to later assign missing values into
complete public datasets.



TABLE III: Performance results for the Surgery dataset

Mlss'flg Missing feature - 1
rates
proposed method case deletion mean imputation KNN3 KNN10
LS-SVM SVM LS-SVM SVM LS-SVM SVM LS-SVM SVM
10% 0.8582+0.0123 0.840240.0356 | 0.846640.0270 | 0.844040.0123 | 0.84824+0.0146 | 0.8511£0.0208 | 0.8489+0.0174 | 0.8475+0.0250 | 0.8511+£0.0177
20% 0.8573+0.0217 0.837840.0262 | 0.837440.0275 | 0.843440.0178 | 0.842610.0279 | 0.8434+0.0227 | 0.8433+£0.0273 | 0.8463+0.0178 | 0.8539+0.0207
30% 0.853440.0291 0.826740.0298 | 0.838740.0343 | 0.842440.0139 | 0.8411+0.0174 | 0.8427+0.0244 | 0.8539+0.0201 | 0.8428+0.0071 | 0.8411+0.0253
40% 0.8485+0.0108 0.828240.0350 | 0.83734+0.0316 | 0.842740.0113 | 0.8455+0.0274 | 0.8440+0.0165 | 0.8376+0.0355 | 0.8400+0.0256 | 0.8439+0.0198
50% 0.8465+0.0261 0.833040.0351 | 0.838640.0390 | 0.834510.0225 | 0.84331+0.0218 | 0.8369+0.0188 | 0.8389+0.0272 | 0.8417+0.0108 | 0.8467-+0.0250
60% 0.8463+0.0178 0.838840.0365 | 0.837740.0389 | 0.836410.0108 | 0.8355+0.0208 | 0.8407+0.0148 | 0.8404+0.0239 | 0.8418+0.0183 | 0.8454+0.0081
Missing features - 1, 10
10% 0.8581+0.0191 0.836540.0267 | 0.845740.0324 | 0.843440.0108 | 0.8440+0.0198 | 0.8463+0.0148 | 0.8553+0.0146 | 0.8322+0.0249 | 0.8546+0.0244
20% 0.858240.0188 0.851440.0353 | 0.856640.0250 | 0.84714+0.0259 | 0.8511+0.0278 | 0.8440-+0.0225 | 0.8461+0.0307 | 0.8374+0.0227 | 0.8504-+0.0223
30% 0.8487+0.0148 0.836440.0222 | 0.837440.0355 | 0.841840.0205 | 0.845440.0281 | 0.8369+0.0309 | 0.8447+0.0244 | 0.8274+0.0228 | 0.8482+0.0280
40% 0.8463+0.0178 0.836540.0311 | 0.829310.0427 | 0.839240.0235 | 0.844010.0229 | 0.8369+0.0188 | 0.8411+£0.0215 | 0.8317+0.0148 | 0.8461=£0.0232
50% 0.8440+0.0142 0.835240.0326 | 0.834940.0414 | 0.8363+0.0205 | 0.8404+0.0227 | 0.8360-£0.0071 | 0.8405:+0.0230 | 0.8298+0.0213 | 0.8433£0.0178
60% 0.8436+0.0041 0.833240.0377 | 0.832640.0345 | 0.8358+0.0269 | 0.8324+0.0227 | 0.8329+0.0219 | 0.8433+0.0165 | 0.8334+0.0164 | 0.8424+0.0370
Missing features -1, 10, 11
10% 0.8576+0.0148 0.843340.0249 | 0.846040.0272 | 0.840610.0217 | 0.844010.0227 | 0.8369+0.0142 | 0.8454+0.0200 | 0.8440+0.0188 | 0.8475+0.0246
20% 0.857210.0256 0.853840.0306 | 0.849610.0262 | 0.834710.0108 | 0.8482+0.0328 | 0.8274+0.0148 | 0.8418+0.0223 | 0.8369=+0.0156 | 0.8433+0.0251
30% 0.8481+0.0164 0.825540.0364 | 0.826740.0318 | 0.8298+0.0071 | 0.8468+0.0161 | 0.8340+0.0195 | 0.8433+0.0253 | 0.8311+0.0275 | 0.8426+0.0402
40% 0.8445+0.0188 0.829940.0317 | 0.840040.0359 | 0.8180+0.0205 | 0.8389+0.0253 | 0.8337+0.0164 | 0.8440+0.0253 | 0.8394+0.0209 | 0.8400-£0.0252
50% 0.8500+0.0082 0.836540.0370 | 0.836640.0345 | 0.825240.0123 | 0.8369+0.0284 | 0.8302+0.0157 | 0.8411+£0.0255 | 0.8363+0.0148 | 0.8496+0.0271
60% 0.8419+0.0206 0.832940.0358 | 0.831240.0369 | 0.82344-0.0228 | 0.8354%0.0279 | 0.8323+0.0228 | 0.8355+0.0161 | 0.8382+0.0175 | 0.8428-+0.0227
TABLE IV: Performance results for the Diabetic dataset
Missing Missing feature - 2
rates
proposed method case deletion mean imputation KNN3 KNN10
LS-SVM SVM LS-SVM SVM LS-SVM SVM LS-SVM SVM
10% 0.7346+0.0061 0.732540.0148 | 0.733040.0168 | 0.71194+0.0109 | 0.7188+0.0138 | 0.7133+£0.0207 | 0.7194+0.0192 | 0.7235+0.0208 | 0.7254+0.0245
20% 0.7298+0.0200 0.725040.0314 | 0.727840.0287 | 0.70914+0.0234 | 0.7100+0.0226 | 0.7158+0.0174 | 0.7246+0.0228 | 0.7225+0.0145 | 0.7289+0.0148
30% 0.7268+0.0204 0.719440.0316 | 0.727340.0335 | 0.70744-0.0188 | 0.70484+0.0272 | 0.7093+0.0076 | 0.7159+0.0094 | 0.7126+0.0173 | 0.7179+0.0184
40% 0.7241+0.0191 0.720640.0293 | 0.722140.0199 | 0.703310.0017 | 0.70391+0.0304 | 0.6950+0.0152 | 0.7052+0.0288 | 0.7125+0.0252 | 0.7130£0.0121
50% 0.7182+0.0229 0.710240.0432 | 0.716540.0270 | 0.7000+0.0179 | 0.70254+0.0281 | 0.7008=£0.0155 | 0.7110+£0.0188 | 0.7062+0.0178 | 0.7142+0.0182
60% 0.7170+0.0282 0.702940.0302 | 0.703540.0298 | 0.691740.0093 | 0.6936+0.0225 | 0.7009+0.0261 | 0.7048+0.0236 | 0.7058+0.0188 | 0.7049+0.0229
Missing features - 2, 3
10% 0.7338+0.0116 0.731740.0189 | 0.730540.0219 | 0.700740.0106 | 0.70404+0.0116 | 0.7208+0.0150 | 0.7220+£0.0211 | 0.7110£0.0161 | 0.7208-+0.0255
20% 0.7244+0.0207 0.723740.0236 | 0.721640.0274 | 0.70331+0.0017 | 0.70832+0.0081 | 0.7119+0.0261 | 0.7127+£0.0153 | 0.7106=£0.0093 | 0.7142+0.0342
30% 0.725740.0020 0.723640.0283 | 0.72814+0.0117 | 0.7023+0.0017 | 0.7090+0.0251 | 0.7108+£0.0226 | 0.7032+0.0171 | 0.7100+0.0184 | 0.7055+0.0192
40% 0.7263+0.0225 0.721640.0307 | 0.72184+0.0367 | 0.67154+0.0188 | 0.6969+0.0181 | 0.6985+0.0145 | 0.7055+0.0232 | 0.7007+0.0207 | 0.7032+0.0182
50% 0.723240.0245 0.718540.0208 | 0.722040.0321 | 0.688840.0271 | 0.689940.0231 | 0.6878+0.0224 | 0.6982+0.0234 | 0.6991+0.0149 | 0.6910£0.0186
60% 0.7159+0.0261 0.696440.0301 | 0.694940.0306 | 0.686910.0204 | 0.68791+0.0244 | 0.6875+0.0174 | 0.6827+0.0187 | 0.6840+0.0206 | 0.6884+0.0228
Missing features - 2, 3, 9
10% 0.7290+0.0184 0.73024+0.0194 | 0.733040.0210 | 0.7110+0.0104 | 0.71244+0.0156 | 0.7129+0.0209 | 0.7243+£0.0290 | 0.7301+0.0185 | 0.7306=£0.0229
20% 0.725410.0204 0.723440.0269 | 0.71124+0.0282 | 0.71054+0.0167 | 0.7090+0.0160 | 0.7119+0.0104 | 0.7150+0.0194 | 0.7113+£0.0120 | 0.7208+0.0155
30% 0.7211+0.0225 0.712040.0284 | 0.719040.0256 | 0.698240.0213 | 0.6990+0.0139 | 0.7012+0.0060 | 0.7052+0.0170 | 0.7107£0.0253 | 0.7116+0.0271
40% 0.7206+0.0225 0.705840.0239 | 0.717940.0261 | 0.6900+0.0186 | 0.6935+0.0121 | 0.6965:+0.0100 | 0.6997+£0.0179 | 0.7004=+0.0159 | 0.7000+0.0211
50% 0.7199+0.0225 0.715040.0419 | 0.715610.0248 | 0.6843+0.0177 | 0.6870+0.0246 | 0.6917+0.0217 | 0.6879+0.0236 | 0.7018+0.0058 | 0.7068-+0.0276
60% 0.7038+0.0016 0.689140.0349 | 0.690640.0425 | 0.6840+0.0250 | 0.6824+0.0278 | 0.6850+0.0192 | 0.6827+0.0192 | 0.6802+0.0290 | 0.6856-0.0234
TABLE V: Performance results for the Pima dataset
Mlsm?g Missing feature - 2
rates
proposed method case deletion mean imputation KNN3 KNN10
LS-SVM SVM LS-SVM SVM LS-SVM SVM LS-SVM SVM
10% 0.77061-0.0087 0.762840.0202 | 0.763540.0236 | 0.748940.0115 | 0.751540.0178 | 0.7549+0.0043 | 0.7572£0.0202 | 0.757040.0066 | 0.758040.0253
20% 0.757610.0217 0.755740.0269 | 0.735140.0271 | 0.738840.0109 | 0.73424+0.0328 | 0.7401+0.0132 | 0.7411+£.0.0233 | 0.744640.0130 | 0.747240.0298
30% 0.75881-0.0263 0.75174+0.0304 | 0.740140.0349 | 0.733040.0238 | 0.7203+0.0248 | 0.7334+0.0174 | 0.7424+0.0218 | 0.71724+0.0100 | 0.730740.0230
40% 0.75051-0.0254 0.726140.0424 | 0.735540.0203 | 0.730440.0180 | 0.73254+0.0236 | 0.7204+0.0175 | 0.7212+0.0287 | 0.727440.0107 | 0.72384+0.0324
50% 0.7330+0.0136 0.72714£0.0388 | 0.7267£0.0187 | 0.7215£0.0222 | 0.7134+0.0266 | 0.7158+0.0254 | 0.7104+0.0333 | 0.7206+0.0075 | 0.7225+0.0253
60% 0.731710.0152 0.720140.0404 | 0.718340.0504 | 0.710840.0250 | 0.713440.0171 | 0.7085%0.0025 | 0.7113£0.0302 | 0.711740.0109 | 07229+0.0221
Missing features - 2, 6
10% 0.77631-0.0090 0.758740.0201 | 0.760140.0246 | 0.753240.0197 | 0.75544-0.0172 | 0.7504+0.0205 | 0.7528+0.0307 | 0.7556+0.0212 | 0.7563+0.0211
20% 0.756810.0225 0.7508+0.0333 | 0.742740.0306 | 0.734540.0246 | 0.74331+0.0247 | 0.73174+0.0288 | 0.7346+0.0250 | 0.7409+0.0109 | 0.7416+0.0181
30% 0.73584+0.0139 0.751240.0249 | 0.725940.0249 | 0.721740.0215 | 0.72124+0.0259 | 0.7140£0.0156 | 0.7169£0.0146 | 0.717440.0152 | 0.723440.0228
40% 0.7388+0.0132 0.725440.0415 | 0.723940.0308 | 0.720140.0214 | 0.719940.0190 | 0.7039+0.0152 | 0.7056=£0.0221 | 0.700340.0075 | 0.701340.0186
50% 0.727240.0207 0.719140.0567 | 0.722440.0526 | 0.713140.0238 | 0.716040.0216 | 0.6869+0.0200 | 0.6870+0.0198 | 0.6987+0.0163 | 0.6900+0.0391
60% 0.71724-0.0100 0.71664+0.0373 | 0.716940.0283 | 0.71004+0.0170 | 0.71224+0.0250 | 0.6797+0.0212 | 0.6732£0.0258 | 0.684940.0257 | 0.685740.0362
Missing features -1, 2, 6
10% 0.76191-0.0189 0.756240.0349 | 0.755340.0249 | 0.744840.0195 | 0.745940.0277 | 0.7480+0.0109 | 0.7403£0.0203 | 0.750940.0198 | 0.751540.0216
20% 0.7518+0.0218 0.749240.0254 | 0.746240.0269 | 0.733040.0200 | 0.731040.0332 | 0.7305%0.0307 | 0.7307=£0.0277 | 0.731740.0090 | 0.737240.0194
30% 0.735940.0229 0.7436+0.0293 | 0.72434+0.0276 | 0.71651+0.0109 | 0.7188+0.0264 | 0.7042+0.0205 | 0.7147+0.0209 | 0.715940.0154 | 0.711740.0366
40% 0.7201+0.0218 0.711440.0326 | 0.716940.0463 | 0.69484+0.0109 | 0.7088+0.0208 | 0.7043+0.0198 | 0.7027+0.0322 | 0.70024+0.0149 | 0.690540.0184
50% 0.71484+0.0222 0.71714+0.0469 | 0.7141£0.0422 | 0.6984+0.0238 | 0.7030+0.0247 | 0.6812+0.0152 | 0.6827+0.0280 | 0.6827+0.0189 | 0.6861+0.0260
60% 0.712810.0107 0.710640.0359 | 0.710440.0258 | 0.708240.0259 | 0.706510.0343 | 0.6782+0.0090 | 0.6727+0.0272 | 0.671440.0090 | 0.681440.0243




TABLE VI: Performance results for the Bupa dataset

Mlss'flg Missing feature - 5
rates
proposed method case deletion mean imputation KNN3 KNN10
LS-SVM SVM LS-SVM SVM LS-SVM SVM LS-SVM SVM
10% 0.721240.0333 0.687640.0464 | 0.690310.0220 | 0.681040.0314 | 0.6888+0.0449 | 0.7040+0.0468 | 0.6837+0.0426 | 0.6865+0.0329 | 0.6865+0.0529
20% 0.7147+0.0350 0.694840.0403 | 0.696410.0275 | 0.6790+0.0114 | 0.6700+0.0351 | 0.6865+0.0389 | 0.6654+0.0506 | 0.6869+0.0427 | 0.6721£0.0312
30% 0.6955+0.0347 0.69234+0.0411 | 0.69324+0.0224 | 0.67714+0.0282 | 0.6772+0.0225 | 0.6881£0.0399 | 0.6779+0.0452 | 0.6831+0.0394 | 0.6856-+0.0385
40% 0.6945+0.0317 0.683140.0383 | 0.685740.0305 | 0.675040.0361 | 0.6763+0.0284 | 0.6775+0.0369 | 0.6625+0.0426 | 0.6713+0.0434 | 0.6712+0.0518
50% 0.6763+0.0242 0.658140.0390 | 0.665440.0383 | 0.657540.0378 | 0.65384+0.0319 | 0.6665+0.0369 | 0.6683+0.0590 | 0.6735+0.0422 | 0.6692+0.0517
60% 0.6744+0.0296 0.659040.0476 | 0.666710.0376 | 0.664410.0402 | 0.66924+0.0344 | 0.6721£0.0403 | 0.6788+0.0294 | 0.6705+0.0167 | 0.6865+0.0382
Missing features - 3, 5
10% 0.7051+0.0242 0.684640.0430 | 0.686010.0360 | 0.683740.0426 | 0.6885+0.0260 | 0.6840-+0.0374 | 0.6837+0.0309 | 0.6935+0.0356 | 0.6894+0.0531
20% 0.7019+0.0192 0.692840.0426 | 0.69124+0.0238 | 0.68561+0.0428 | 0.6692+0.0251 | 0.6598+0.0350 | 0.6596+0.0418 | 0.6810+0.0428 | 0.6673+0.0495
30% 0.7008+0.0304 0.671240.0467 | 0.673240.0209 | 0.677540.0411 | 0.67854+0.0161 | 0.6608+0.0386 | 0.6692+0.0467 | 0.6810+0.0421 | 0.6808-+0.0477
40% 0.6795+0.0294 0.672040.0447 | 0.67624+0.0181 | 0.658840.0357 | 0.6558+0.0275 | 0.6308+0.0432 | 0.6471£0.0408 | 0.6515+0.0343 | 0.6269=+0.0486
50% 0.6787+0.0211 0.647440.0111 | 0.648540.0359 | 0.6683+0.0357 | 0.6692+0.0439 | 0.6383+0.0399 | 0.6260-£0.0383 | 0.6179+0.0409 | 0.6087-+0.0484
60% 0.6674+0.0344 0.642940.0391 | 0.641940.0281 | 0.6606+0.0444 | 0.6619+0.0251 | 0.6337+0.0446 | 0.6375+0.0453 | 0.6275+0.0473 | 0.6154-+0.0260
Missing features -3, 5, 6
10% 0.6963+0.0284 0.687440.0393 | 0.688640.0258 | 0.689540.0309 | 0.692310.0251 | 0.6917+£0.0353 | 0.6856+£0.0253 | 0.6927+0.0438 | 0.6837+0.0404
20% 0.6951+0.0156 0.691840.0170 | 0.692940.0252 | 0.686740.0462 | 0.6831+0.0331 | 0.6621£0.0323 | 0.6712+0.0384 | 0.6740+0.0311 | 0.6750=0.0506
30% 0.6763+0.0200 0.685910.0419 | 0.67131+0.0288 | 0.67401+0.0416 | 0.6731+0.0240 | 0.6565:+0.0358 | 0.6653+0.0456 | 0.6742+0.0361 | 0.6654+0.0455
40% 0.6699+0.0334 0.650240.0330 | 0.66354+0.0379 | 0.6468+0.0452 | 0.6454+0.0225 | 0.6285+0.0358 | 0.6308+0.0398 | 0.6338+0.0358 | 0.6404-+0.0228
50% 0.6663+0.0338 0.647840.0294 | 0.6400+£0.0229 | 0.6611£0.0415 | 0.6446+0.0228 | 0.6163+0.0412 | 0.61734+0.0381 | 0.6169+0.0387 | 0.615440.0377
60% 0.6699+0.0242 0.642940.0238 | 0.643310.0219 | 0.645010.0332 | 0.6492+0.0233 | 0.6090£0.0056 | 0.6115£0.0645 | 0.5942+0.0367 | 0.6087=+0.0301
TABLE VII: Performance results for the Breast dataset
Missing Missing feature - 2
rates
proposed method case deletion mean imputation KNN3 KNN10
LS-SVM SVM LS-SVM SVM LS-SVM SVM LS-SVM SVM
10% 0.975610.0109 | 0.9741+0.0117 | 0.9744+0.0104 | 0.9711£0.0077 | 0.9678+0.0056 | 0.9702+0.0103 | 0.97124+0.0087 | 0.9699+0.0101 0.970240.0084
20% 0.97074+0.0049 | 0.9678+0.0114 | 0.9637+0.0111 | 0.9699+0.0085 | 0.9620£0.0011 | 0.9696+0.0117 | 0.9634+0.0098 | 0.96744+0.0113 0.965440.0123
30% 0.970310.0098 | 0.9658+0.0106 | 0.9611£0.0167 | 0.9687£0.0104 | 0.9698+0.0094 | 0.9688+0.0102 | 0.963940.0126 | 0.969840.0101 0.962040.0085
40% 0.970740.0049 0.974040.0092 | 0.975510.0093 | 0.9701£0.0090 | 0.9727+0.0117 | 0.9706=£0.0115 | 0.9605+00049 | 0.9700£0.0104 | 0.970740.0098
50% 0.971140.0075 0.970510.0139 | 0.9689+0.0081 | 0.9704+0.0114 | 0.9707+0.0114 | 0.9690-£0.0094 | 0.9683£0.0098 | 0.9694+0.0118 0.9668+0.0136
60% 0.9690+0.0076 | 0.9563+0.0122 | 0.9634+0.0149 | 0.9673£0.0100 | 0.9668+0.0111 | 0.9683+0.0111 | 0.9678+0.0132 | 0.968740.0093 0.968040.0306
Missing features - 2, 6
10% 0.975040.0056 | 0.9732+0.0117 | 0.9719£0.0140 | 0.9687£0.0097 | 0.9680+0.0164 | 0.9686+0.0106 | 0.9688+0.0158 | 0.968640.0089 0.965940.0126
20% 0.97244-0.0065 0.967410.0104 | 0.9610+0.0111 | 0.9683£0.0093 | 0.9649+0.0106 | 0.9668=+0.0108 | 0.9693£0.0069 | 0.9654+0.0085 | 0.9665pm0.0067
30% 0.970110.0049 | 0.9643+0.0117 | 0.9608+0.0103 | 0.9683£0.0100 | 0.9688+0.0089 | 0.9684+0.0092 | 0.9663+0.0101 | 0.968640.0088 0.960540.0074
40% 0.969140.0028 0.9650+0.0111 | 0.9706+0.0136 | 0.9671+0.0111 | 0.9629+0.0112 | 0.9650+0.0108 | 0.9644+0.0138 | 0.9644+0.0104 | 0.95714+0.0136
50% 0.970740.0123 | 0.9659+0.0106 | 0.9689+0.0221 | 0.9691£0.0100 | 0.9659£0.0069 | 0.9683+0.0106 | 0.9673+0.0110 | 0.967640.0104 | 0.9595+0.0103
60% 0.968840.0146 | 0.9556+0.0195 | 0.9585+0.0118 | 0.9681£0.0087 | 0.9639£0.0117 | 0.9682+0.0108 | 0.9639+0.0118 | 0.967310.0108 0.968340.0120
Missing features -2, 6, 1
10% 0.974940.0098 | 0.9728+0.0117 | 0.9708+0.0082 | 0.9676+0.0109 | 0.9688+0.0112 | 0.9694+0.0106 | 0.9663+0.0120 | 0.964740.0102 0.969340.0130
20% 0.96954+0.0123 | 0.9659+0.0126 | 0.9625+0.0033 | 0.9692+0.0097 | 0.9668+0.0080 | 0.9648+0.0096 | 0.9595+0.0103 | 0.9645+0.0129 0.96154+0.0099
30% 0.97074+0.0176 | 0.9653£0.0110 | 0.9610£0.0079 | 0.9681£0.0096 | 0.9608+0.0168 | 0.9674+0.0104 | 0.965440.0137 | 0.965040.0096 | 0.9639+0.0113
40% 0.968540.0102 | 0.9675+0.0129 | 0.69910.0068 | 0.9675+0.0114 | 0.9629+0.0101 | 0.9625+0.0122 | 0.9649+0.0110 | 0.9637+0.0084 | 0.963440.0111
50% 0.969110.0075 0.9648+0.0139 | 0.9689+0.0081 | 0.9670+0.0088 | 0.9610+0.0150 | 0.9633+£0.0107 | 0.9527+0.0100 | 0.9611£0.0118 0.962440.0153
60% 0.965940.0049 | 0.9366:+0.0208 | 0.9585+0.0139 | 0.9652£0.0097 | 0.9651£0.0199 | 0.9639+0.0086 | 0.96154+0.0081 | 0.96154+0.0096 | 0.9610+0.0142
TABLE VIII: Performance results for the Titanic dataset
Mlssu?g Missing feature - 2
rates
proposed method case deletion mean imputation KNN3 KNN10
LS-SVM SVM LS-SVM SVM LS-SVM SVM LS-SVM SVM
10% 0.8115+0.0232 0.806740.0224 | 0.802540.0339 | 0.805240.0112 | 0.792540.0187 | 0.7953+£0.0206 | 0.8007+0.0287 | 0.7905+0.0216 | 0.7869+0.0217
20% 0.7878+0.0204 0.780940.0071 | 0.782240.0188 | 0.772840.0238 | 0.7760+0.0236 | 0.7578=+0.0132 | 0.7610£0.0229 | 0.7609=+0.0151 | 0.7674+0.0191
30% 0.7851+0.0142 0.759440.0108 | 0.775440.0151 | 0.77084+0.0226 | 0.7715+0.0221 | 0.7503+£0.0238 | 0.7536+£0.0326 | 0.7415+0.0195 | 0.7427+0.0277
40% 0.7828+0.0198 0.75334+0.0072 | 0.7666+0.0215 | 0.7640+0.0262 | 0.75614+0.0239 | 0.7466+£0.0108 | 0.7534+0.0198 | 0.7428+0.0142 | 0.7482+0.0257
50% 0.7740+0.0192 0.746940.0189 | 0.7654+0.0505 | 0.7409+0.0078 | 0.7416£0.0384 | 0.7219+0.0213 | 0.722140.0208 | 0.7303+0.0132 | 0.730740.0226
60% 0.7461+0.0244 0.743240.0270 | 0.7402+0.0357 | 0.7419£0.0205 | 0.7446+0.0144 | 0.7141£0.0150 | 0.7161+0.0225 | 0.7116+0.0120 | 0.713940.0201
Missing features - 2, 6
10% 0.7940+0.0112 0.78534+0.0192 | 0.786740.0254 | 0.78154+0.0078 | 0.7790+0.0211 | 0.7809+0.0163 | 0.7820+0.0198 | 0.7802+0.0206 | 0.7818+0.0153
20% 0.7881+0.0276 0.780040.0194 | 0.785040.0160 | 0.76284+0.0284 | 0.7753+0.0191 | 0.7540-£0.0185 | 0.7638+0.0188 | 0.7627+0.0233 | 0.7667+0.0185
30% 0.7740+0.0213 0.753340.0218 | 0.764240.0246 | 0.761540.0244 | 0.77031+0.0174 | 0.7590+£0.0057 | 0.7596£0.0217 | 0.7403£0.0099 | 0.7488-+0.0308
40% 0.7747+0.0206 0.753040.0122 | 0.766940.0229 | 0.76184+0.0120 | 0.7326+0.0248 | 0.7458+0.0214 | 0.7506£0.0249 | 0.7415+0.0173 | 0.7498=+0.0245
50% 0.7703+0.0213 0.75134+0.0205 | 0.763610.0303 | 0.746540.0228 | 0.7408+0.0192 | 0.7216£0.0255 | 0.7494+0.0239 | 0.7301+£0.0132 | 0.7364+0.0183
60% 0.7701+0.0156 0.745040.0207 | 0.760640.0299 | 0.74054+0.0150 | 0.74234+0.0302 | 0.71284+0.0135 | 0.7464+0.0262 | 0.7139+0.0216 | 0.7479+0.0150
Missing features -2, 6, 1
10% 0.784240.0228 0.781740.0199 | 0.782640.0205 | 0.766540.0213 | 0.769340.0252 | 0.7790+£0.0209 | 0.7798+0.0266 | 0.7753£0.0281 | 0.7809+0.0209
20% 0.7828+0.0169 0.780240.0187 | 0.780840.0270 | 0.761840.0132 | 0.7588+0.0279 | 0.7527+0.0086 | 0.7629+0.0189 | 0.7440=0.0099 | 0.7464-+0.0266
30% 0.7640+0.0163 0.75284+0.0196 | 0.760540.0121 | 0.75284+0.0172 | 0.75384+0.0154 | 0.7466+£0.0249 | 0.7610+0.0247 | 0.7409+0.0065 | 0.7385+0.0186
40% 0.7541+0.0189 0.748340.0232 | 0.746940.0266 | 0.75054+0.0120 | 0.7348+0.0114 | 0.7441+£0.0173 | 0.7367+0.0209 | 0.7378+0.0182 | 0.7315+0.0213
50% 0.7516+0.0212 0.744240.0130 | 0.7450£0.0202 | 0.7319£0.0250 | 0.7363£0.0115 | 0.7206+0.0264 | 0.7330+0.0175 | 0.72144+0.0142 | 0.7206+0.0236
60% 0.759240.0057 0.744940.0196 | 0.750440.0302 | 0.707940.0192 | 0.694420.0210 | 0.7116£0.0163 | 0.6918+0.0285 | 0.7089+0.0234 | 0.6940=£0.0292




TABLE IX: Performance results for the German dataset

Missin: Missing feature(s) - 1
rla:elsg Proposed method case deletion mean imputation KNN3 KNNI0
P LS-SVM SVM LS-SVM SVM LS-SVM SVM LS-SVM SVM
10% 0.7667£0.0165 | 0.755620.0120 | 0.7600£0.0109 | 0.7757£0.0171 | 0.7670£0.0105 | 0.7567£0.0202 | 0.7547%0.0219 | 0.7573£0.0225 | 0.7640£0.0132
20% 0.764410.0255 | 0.753320.0231 | 0.7558%£0.0172 | 0.7583£0.0300 | 0.7587£0.0166 | 0.753040.0229 | 0.7520£0.0204 | 0.7607£0.0168 | 0.7633£0.0233
30% 0.7589£0.0158 | 0.739320.0227 | 0.7361£0.0212 | 0.7473£0.0173 | 0.7480£0.0206 | 0.7400£0.0091 | 0.7420£0.0150 | 0.7420£0.0344 | 0.7427£0.0055
40% 0.7533+0.0209 0.738940.0226 | 0.740840.0120 | 0.740740.0159 | 0.742740.0210 | 0.742940.0209 | 0.7423+0.0077 | 0.7423+£0.0088 | 0.7413+£0.0250
508 0.7478£0.0287 | 0.736720.0223 | 0.7385£0.0203 | 0.7296+0.0139 | 0.7350£0.0215 | 0.7411£0.0336 | 0.7393%£0.0174 | 0.7267£0.0338 | 0.7307£0.0218
60% 0.7322£0.0212 | 0.7127£0.0201 | 0.7188%£0.0212 | 0.7083£0.0171 | 0.7107£0.0112 | 0.7144£0.0393 | 0.7213%£0.0186 | 0.7189£0.0550 | 0.7183£0.0256
Missing features - 1, 2
10% 0.764440.0115 0.760040.0190 | 0.763040.0128 | 0.76701+0.0170 | 0.763040.0175 | 0.75434+0.0221 | 0.7553+0.0279 | 0.7650+£0.0203 | 0.7667+0.0122
20% 0.7598+0.0126 0.755040.0212 | 0.758340.0056 | 0.753040.0228 | 0.75331+0.0171 | 0.746040.0253 | 0.7477+0.0215 | 0.7530+£0.0203 | 0.7573+£0.0028
30% 0.7588£0.0242 | 0.7430£0.0150 | 0.7469£0.0122 | 0.7477£0.0236 | 0.7487£0.0201 | 0.7407£0.0251 | 0.7467%0.0213 | 0.7460£0.0225 | 0.7420£0.0084
0% 0.74660.0084 | 0.7322£0.0160 | 0.740940.0203 | 0.7313£0.0234 | 0.7320£0.0222 | 0.7344£0.0139 | 0.734740.0238 | 0.7448%£0.0019 | 0.7390+£0.0208
50% 0.7344£0.0204 | 0.7260£0.0335 | 0.7333£0.0206 | 0.72640.0184 | 0.7307£0.0106 | 0.7342£0.0096 | 0.7293%£0.0202 | 0.7222%£0.0168 | 0.7280£0.0281
60% 0.7356+0.0184 0.706740.0162 | 0.710040.0156 | 0.70224+0.0184 | 0.71404+0.0140 | 0.7133+0.0150 | 0.7137+£0.0214 | 0.7149+0.0151 0.713840.187
Missing features - 1, 2, 3
10% 0.7600£0.0209 | 0.7497£0.0156 | 0.7570£0.0184 | 0.7587£0.0142 [ 0.7580£0.0208 | 0.7497£0.0175 | 0.7560£0.0130 | 0.7557%£0.0246 | 0.7547£0.0090
20% 0.7589+£0.0038 | 0.7525+0.0197 | 0.7558%0.0088 | 0.7500£0.0174 | 0.7547£0.0207 | 0.7313£0.0159 | 0.736740.0103 | 0.7487%£0.0224 | 0.7447£0.0107
30% 0.7567£0.0233 | 0.736620.0210 | 0.7389E£0.0217 | 0.7443£0.0166 | 0.7410£0.0201 | 0.7353£0.0168 | 0.7253£0.0266 | 0.7428E0.0078 | 0.7430£0.0267
40% 0.7411+0.0215 0.73334+0.0120 | 0.738940.0116 | 0.738740.0164 | 0.737040.0222 | 0.734740.0058 | 0.7380+£0.0201 | 0.7311+£0.0334 | 0.7380=£0.0180
50% 0.7322£0.0139 | 0.7207£0.0115 | 0.7293£0.0218 | 0.7267£0.0167 | 0.7273£0.0203 | 0.72672£0.0145 | 0.7240£0.0192 | 0.7219£0.0051 | 0.7260£0.0195
60% 0.7244£0.0254 | 0.710540.0205 | 0.7167£0.0129 | 0.7037£0.0122 | 0.7073£0.0205 | 0.711240.0069 | 0.7160£0.0158 | 0.71560.0051 | 0.7133£0.0211
TABLE X: Performance results for the MIHC dataset
Missing Missing - ) )
Dataset features rate rate Proposed method Case deletion Mean imputation KNN3 KNN10
MIHC 39.399% 35.81% LS-SVM SVM LS-SVM SVM LS-SVM SVM LS-SVM SVM
) o7 00 0.725810.0289 0.6954F0.0479 I 0.7023F0.031 0.714710.0330 I 0.7164F0.0271 0.711010.0229 I 0.718710.0211 0.7190F0.0305 I 0.7229+0.023
TABLE XI: Performance results after data cleaning for the MIHC dataset
Threshold 0.60 0.65 0.80 1.00
Performance | 0.7265+0.0212 | 0.728840.0210 | 0.7327+0.0098 | 0.7300+0.0331
TABLE XII: Average rankings of the proposed and compar-
ative methods on seven public datasets in terms of average 9 -
accuracy (p-value=0.000704) i +
Methods Ranking
Proposed method 1 L8
case deletion + SVM 3 14t
mean imputation + SVM 5
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