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Abstract 4 

This study investigated responses of single-leg balance and landing and countermovement jump 5 

(CMJ) measures following rugby union training and the specific components of training load 6 

associated with test decrement. Twenty-seven professional rugby union players performed CMJ, 7 

single-leg balance and landing tests on a 1000Hz force plate at the beginning and end of training 8 

days. Internal load measures calculated were session RPE and Banister’s TRIMP. GPS based 9 

external load measures calculated were total distance, high-speed running distance (>5.5 m.s-1), 10 

average relative speed and bodyload. CMJ eccentric rate of force development (EccRFD) 11 

demonstrated moderate impairment post-training (ES ± 90%CL =  -0.79±0.29, MBI = almost 12 

certainly). CMJ height (-0.21±0.16, possible), concentric impulse (ConIMP) (-0.35 ± 0.17, 13 

likely) and single-leg balance sway velocity on the non-dominant leg (0.30 ± 0.26, possible) were 14 

also impaired. Regression analyses identified the strongest relationship between sRPE and 15 

impaired ConIMP (r = -0.68 ± 21, β = -0.68) whilst other load measures explained 27-50% of the 16 

variance in balance and CMJ changes. CMJ variables representing altered movement strategy 17 

(EccRFD and IMP) may be useful for assessing acute neuromuscular fatigue in rugby union, 18 

though single-leg balance sway velocity may be an alternative when maximal tests are 19 

impractical. 20 

 21 
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Introduction 27 

Rugby union is a collision-based team sport that results in substantial physical and perceptual 28 

fatigue from running, physical contact and the static efforts of rucks, scrums, and mauls (Duthie 29 

et al. 2003). Practitioners commonly utilize countermovement jump (CMJ) tests to identify 30 

impairments in force production and altered movement strategy to determine the extent of 31 

neuromuscular fatigue (NMF) and guide the planning of subsequent training and recovery (West 32 

et al. 2014; Oliver et al. 2015; Shearer et al. 2015). CMJ variables of height, mean power, peak 33 

power, and mean force demonstrate good reliability (Roe et al. 2015) and responsiveness (5-8%) 34 

following youth and professional rugby union matches (West et al. 2014; Oliver et al. 2015; 35 

Shearer et al. 2015; Roe et al. 2016). However, questions regarding the practicality of CMJ tests 36 

have arisen due to the maximal effort and required and challenges of athlete motivation and 37 

compliance (Insert Carling 2018), particularly in collision sports (Clarke et al. 2015). 38 

Consequently, tests of postural control based on balance and landing have been proposed as 39 

NMF monitoring tools given the minimal physical cost to athletes (Clarke et al. 2015) and 40 

sensitivity to proprioception and sensorimotor control (Pau et al. 2016). Further, understanding 41 

the fine motor control elements underpinning coordination and proprioception as related to NMF 42 

may help guide the planning of training to reduce injury risk and optimize recovery (Paillard 43 

2012). 44 

Postural control is defined as the ability to maintain the center of mass in relation to the center of 45 

pressure and incorporates synergistic performance of the neuromuscular and sensorimotor 46 

systems (Paillard 2012). Static and dynamic tests of postural control are often performed on a 47 

force plate through the assessment of balance and landing ability, respectively. Single-leg 48 

balance performance often is assessed by center of pressure measures such as sway velocity (SV) 49 
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(Panjan 2012); whilst single-leg landing tests commonly identify key ground reaction force 50 

measures of relative peak force (rPF), relative landing impulse (rIMP) and time to stabilisation 51 

(TTS) (Wikstrom et al. 2005). The reliability and sensitivity of these measures has been 52 

demonstrated across a variety of athletic and non-athletic populations (ICC = 0.65 – 0.95; CV = 53 

6 – 13%) as well as specific rugby union populations (ICC = 0.67 – 0.79; CV = 9 – 11%) 54 

(Birmingham 2000; Wikstrom et al. 2005; Troester et al. 2018). 55 

Previous research also reports impaired postural control following fatiguing exercise. In athletic 56 

populations, aerobic, anaerobic, and treadmill run to exhaustion protocols produced 15 – 47% 57 

increases in balance measures of SV (Fox et al. 2008; Zech et al. 2012; Steib et al. 2013). 58 

Similarly, soccer match and Canadian football game simulation resulted in 27.5% increase in SV 59 

and 95% increase in sway area, respectively (Brito et al. 2012; Clarke et al. 2015). Single-leg 60 

landing performance assessed by TTS demonstrated impairment following intermittent running 61 

tests (4-10%), functional movement protocols (11%), and youth soccer matches (28%) 62 

(Wikstrom et al. 2004; Steib et al. 2013; Pau et al. 2016). Whilst evidence exists for fatigue-63 

induced PC impairment, further understanding of the relationship to specific magnitudes and 64 

types of training loads would enable practitioners to optimize training and recovery to manage 65 

player fatigue. 66 

Therefore, the purpose of this study was to investigate the responsiveness of postural control 67 

measures of single-leg balance and landing to NMF, alongside traditional CMJ tests, following 68 

typical rugby union training days. A secondary aim was to investigate the magnitudes and types 69 

of training load that were associated with test decrement. It was hypothesized that single-leg 70 

balance and landing tests would exhibit NMF responses relevant to the magnitude of training 71 
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load and that all NMF tests would respond to variables representing internal and external load 72 

during rugby union training. 73 

Methods 74 

Experimental Approach to the Problem 75 

Measures of NMF were collected on a force plate before and after six separate training days 76 

throughout the season. Due to practical limitations of (post-training) data collection in a 77 

professional team setting, two testing dates for each test resulted in pre- and post-training 78 

observations for balance (n=34), landing (n=35), and CMJ (n=28), respectively. All testing days 79 

followed a mid-week rest day and had a similar training schedule consisting of three separate 80 

sessions; weight training, specific skills (kicking, passing, scrum, lineout) and team-based skills 81 

and conditioning, hereafter referred to as gym, skills, and rugby. Subjective and heart rate (HR) 82 

based internal training load measures as well as global positioning satellite (GPS) system based 83 

external load were also collected for each field-based session. Changes in postural control and 84 

CMJ tests and relationship with load measures were examined to further understand the 85 

components of training load associated with respective test decrement following rugby union 86 

training. 87 

 88 

Subjects 89 

Twenty-seven professional rugby union players (11 backs, 16 forwards) from the same Super 90 

Rugby team (age: 24±3 y, height: 187±7 cm, body mass: 104±12 kg, Super Rugby games: 91 

18±20) participated in this study. Participants were training in the professional rugby club and 92 
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had prior familiarity with all data collection methods as part of regular monitoring procedures. 93 

Participants were informed of the aims, requirements, and risks associated with the study prior to 94 

giving written informed consent to participate. Prior to commencing the study, approval was 95 

granted by the University Ethics Committee (UTS HREC REF NO. ETH16-0626). 96 

 97 

Procedures 98 

Tests of NMF were undertaken on a 1000 Hz force plate (9260AA6, Kistler Instruments, 99 

Winterthur, Switzerland) and analysed using commercially available software (SpartaTrac, 100 

Menlo Park, USA) that provides a select set of measures for use in applied sport settings.  Prior 101 

to testing the force plate was calibrated according to manufacturer’s specifications. Pre-testing 102 

was performed at the beginning of the training day between 8:00-10:00am with no prior activity, 103 

and post-testing occurred within 30 minutes of the final training session of the day (team rugby). 104 

Gym and skills sessions were performed in the morning and there were 3-4 hours of recovery 105 

prior to rugby sessions in the afternoon.  106 

 107 

Postural Control 108 

Single-leg balance and single-leg landing tests were performed in a secluded corner of the team 109 

training facility and resulting data was coded for dominant (D) and non-dominant (ND) legs 110 

based on preferred kicking leg (Pau et al. 2014). Single-leg balance tests were performed on the 111 

hard surface of the force plate with shoes off, eyes closed and hands on hips. Two 20 s trials 112 

were performed on each leg. Mean values for total sway velocity (SV) (cm.s-1) were calculated 113 
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based on the displacement of the centre of pressure divided by trial length. Single-leg landing 114 

tests were performed by dropping from a 30cm box with shoes off and hands on hips. Trials in 115 

which participants removed their hands from hips or touched the opposite leg were discarded. 116 

Mean values from three trials on each leg were calculated for relative peak landing force (rPF) 117 

(N.kg-1), relative landing impulse (rIMP) (N.s.kg-1), and time to stabilisation (TTS) (s) based on 118 

the time required for forces to equalise within 5% of baseline (Colby et al. 1999). Between day 119 

reliability has been previously reported for SV (CV = 9-12%), rPF (CV = 12-14%), rIMP (CV = 120 

7-8%), and TTS (CV = 13-21%) (Troester et al. 2018). 121 

 122 

CMJ 123 

Participants performed CMJs according to previously established methods (Nibali et al. 2015). 124 

Participants performed a standardised warm-up of dynamic mobility and plyometric exercises 125 

(approximately 5 min), followed by three countermovement jumps using arm swing and a self-126 

selected depth. Ten second rest intervals were provided between each jump, and the mean values 127 

from three jumps were calculated. Eccentric rate of force development (EccRFD) (N.s-1) was 128 

determined from the minimum and maximum forces between the point at which vertical ground 129 

reaction forces exceed body mass during the countermovement and the point of minimum 130 

displacement. Mean relative concentric force (ConMF) (N.kg-1) and relative concentric impulse 131 

(ConIMP) (N.s.kg-1) were calculated for the concentric portion of the jump (point of minimum 132 

displacement to take-off). Jump height (cm) was derived from takeoff velocity. Between day 133 

reliability has been previously reported for EccRFD (CV = 21.3%), ConPF (CV = 2.7%), 134 

ConIMP (CV = 2.7%), and jump height (CV = 3.5%) (Nibali et al. 2015). 135 
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 136 

Training Load 137 

Internal load measures were collected fortraining sessions using heart rate (HR) and session 138 

rating of perceived exertion (sRPE).Participants provided an RPE 15-30 min post training using 139 

the CR-10 scale (Borg 1998) which was then multiplied by session duration (min) resulting in 140 

measures of sRPE Training Load (sRPE-TL) in arbitrary units (AU) for gym, skills, and rugby 141 

sessions. Additionally, HR was recorded during rugby sessions (Firstbeat, Jyvaskyla, Finland) 142 

and Banister’s training impulse (bTRIMP) was calculated using individual thresholds determined 143 

during maximal fitness testing (Banister 1991). External load measures were collected for skills 144 

and rugby sessions using GPS units with integrated triaxial accelerometers (SPI-HPU - 15 Hz 145 

GPS, 16 g accelerometer) (GPSports, Canberra, Australia). GPS units were turned on 10 min 146 

prior to use to ensure adequate satellite connection, and worn between the shoulder blades in 147 

manufacturer provided vests. Data was downloaded and analysed using Team AMS software 148 

(GPSports, Canberra, Australia). GPS measures of total distance (m) (TD), high-speed running 149 

distance (m) (HSR) (>5.5 m.s-1), average relative speed (m.min-1) (ARS) and Bodyload (AU) 150 

(BL) were selected to quantify external training loads.  151 

The result is a battery of training load measures to describe volume and intensity of gym, skills, 152 

and rugby sessions across balance landing and CMJ testing days. The sole measure for gym 153 

training is sRPE-TLGym. The skills session is represented by sRPE-TLSkills, TDSkills, HSRSkills, 154 

ARSSkills and BLSkills. The rugby session is described by sRPE-TLRugby, bTRIMPRugby, TDRugby, 155 

HSRRugby, ARSRugby and BLRugby. 156 

 157 
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Statistical Analyses 158 

Differences in load measures between testing days and pre- to post-training changes in postural 159 

control and CMJ measures where assessed using custom spreadsheets (Hopkins WG 2007) to 160 

determine effect size (ES), 90% confidence limits (CL), and qualitative inference of practical 161 

significance (Hopkins et al. 2009). Where non-uniformity of error were present data were log 162 

transformed. The threshold for smallest worthwhile change (SWC) was set at 0.2 x between 163 

subject standard deviation (SD), based on Cohen’s d ES principle. Quantitative chances of 164 

increase or decrease were assessed qualitatively as follows: <1%, almost certainly not; 1-5%, 165 

very unlikely; 5-25%, unlikely; 25-75%, possible; 75-95%, likely; 95-99, very likely; >99%, 166 

almost certain. If the chance of increase and decrease were both > 5%, the true effect was 167 

assessed as unclear (Hopkins et al. 2009). Effect sizes were further evaluated as trivial (0 – 168 

0.19), small (0.20 – 0.59), medium (0.60 – 1.19) and large (1.20 and greater) (Hopkins et al., 169 

2009).  170 

Stepwise multiple-regression analyses were used to investigate the relationship of internal and 171 

external load variables to variance (individual percent change) of single-leg balance, single-leg 172 

landing, and CMJ variables. Partial correlations and standardised coefficients with 95% CL, and 173 

level of significance for training load predictors of performance test variance were reported. 174 

Highly correlated predictor variables were removed from the model based on collinearity 175 

tolerance statistics whereby values < 0.10 indicate unacceptable collinearity. All regression 176 

analyses were conducted using SPSS software (SPSS v 23.0, IBM Corp, Chicago, IL). Statistical 177 

significance was set at p ≤ 0.05. 178 

 179 
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Results 180 

As a summary of results, there were trivial differences between testing days for total sRPE-TL 181 

and total distance. Balance testing days represented the highest rugby loads, but the lightest gym 182 

and skills loads. Landing testing days represented the lowest rugby loads, but the highest gym 183 

and skills loads. CMJ testing days represented moderate gym, skills, and rugby loads. Further 184 

detail is presented in Table 1.  185 

** Insert Table 1 near here ** 186 

Balance 187 

Results indicate a possibly small increase (6.2%) in sway velocity on the non-dominant leg (SV-188 

ND), indicating impaired performance (Table 2). However, a likely trivial change (0.4%) was 189 

evident on the dominant leg. Regression analysis (Table 3) revealed that variance in SV-ND (R² 190 

= .496, F(5,26) = 5.12, p = 0.01) could be explained by sRPE-TLGym, bTRIMPRugby, HSRSkills, 191 

ARSSkills, and TDRugby (y = 38.97 + .72 sRPE-TLGym - 1.09 bTRIMPRugby - .64 HSRSkills + .69 ARSSkills 192 

+ .92 TDRugby). The collinearity statistics for this model were acceptable with tolerance levels at 193 

0.31, 0.10, 0.31, 0.31, 0.13 for respective variables. 194 

 195 

Landing 196 

A likely small decrease (10.4%) of time to stabilisation on the dominant leg (TTS-D) indicates 197 

improved performance (Table 2) whilst the decrease of TTS on the non-dominant leg (TTS-ND) 198 

was likely trivial (1.7%). Furthermore, all other landing variables of relative peak force and 199 

relative impulse on either leg were trivial (0.8 – 2.2%). Regression analyses revealed no 200 
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significant predictors for changes in landing variables, and as a result are not presented in Table 201 

3. 202 

* Insert Tables 2 and 3 near here ** 203 

CMJ 204 

CMJ height demonstrated a possibly small decrease (3.6%), EccRFD was almost certainly 205 

moderately decreased (22.7%), changes in ConMF were likely trivial (0.1%), and ConIMP 206 

demonstrated a likely small decrease (1.7%) (Table 2). Regression analysis (Table 3) revealed 207 

that variance in jump height (R² = .309, F(2,24) = 5.38, p = 0.01) could be explained by BLSkills, 208 

and BLRugby (y = 2.91 + .39 BLSkills – .61 BLRugby). The collinearity statistics for this model were 209 

acceptable with tolerance levels for each variable at 0.8. Likewise, variance in EccRFD (R² = 210 

.268, F(2,24) = 4.40, p = 0.02) could be explained by ARSRugby and BLRugby (y = -75.06 +.60 211 

ARSRugby –  .74 BLRugby). The collinearity statistics for this model were acceptable with tolerance 212 

levels for each variable at .48. Finally, variance in ConIMP (R² = .462, F(1,25) = 21.47, p = 213 

0.01) could be explained by sRPE-TLRugby alone (y = 2.29 - .68 sRPE-TLRugby).  214 

Discussion 215 

The purpose of this investigation was to identify the acute response of NMF tests of CMJ, single-216 

leg balance and landing to rugby union training and to identify the components of training load 217 

associated with impairment. CMJ EccRFD and ConIMP demonstrated the greatest impairment 218 

following rugby training whilst balance measures of SV-ND were impaired somewhat more than 219 

traditional measures of CMJ height. Of note, trivial changes were evident in most single-leg 220 

landing measures, though an improvement in TTS on the dominant leg was observed post-221 

training. Despite a large range of uncertainty, load measures of BLRugby and sRPERugby 222 
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demonstrate the largest association to CMJ impairment and could be considered for TL 223 

manipulation to manage player fatigue. CMJ force-time variables of EccRFD and ConIMP that 224 

may describe altered CMJ strategy demonstrate the largest impairment following a rugby union 225 

training day. However, when maximal testing is inappropriate, single-leg balance sway velocity 226 

may be a suitable alternative to traditional CMJ height testing. 227 

 228 

Balance 229 

Impaired balance on the non-dominant leg (6.2%) observed in the current investigation supports 230 

research demonstrating 5 – 35% decrements following fatigue-inducing protocols ranging from 2 231 

min anaerobic sprint intervals (Fox et al. 2008) to 90 min soccer matches (Brito et al. 2012). Of 232 

note, changes in the current study are lower than the reported variability (CV = 9-12%) (Troester 233 

et al. 2018); however, the possibly small changes may represent a bias toward impaired 234 

performance post-training. Although balance measures represent a static task, ankle musculature 235 

is reported as the biomechanical limiting factor to locomotor activities (particularly running  and 236 

sprinting), given the greater relative effort compared to knee extensor musculature (Kulmala et 237 

al. 2016) and represents the weakest link in this kinetic chain. Given the acute post-training 238 

responses noted here, single-leg non-dominant measures of balance may present a possible 239 

measure of NMF with the added benefit of less physical effort and injruy risk than landing and 240 

CMJ tests. 241 

 242 

The impairment of SV-ND post training can be best explained (R² = 0.496) by decreased sRPE-243 

TLGym, ARSSkills and TDRugby and increased HSRSkills and bTRIMPRugby. Such loads may 244 
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represent high-intensity efforts within training, such as tackling, grappling, and ruck 245 

involvements, that normally result in less distance but high internal strain ie increased HR 246 

(Dubois et al. 2017). Clarke et al. (2015) demonstrated similar impairment of postural sway and 247 

CMJ following intermittent high-intensity efforts of a Canadian Football game simulation, 248 

although relationship to load measures was not an aim of that study. Regardless, the current 249 

results suggest that with all other variables being equal, a 1 SD increase in bTRIMPRugby (79 AU) 250 

would yield a 1.09 SD impairment (18%; 1.48 cm.s-1) in SV-ND. Accorodingly, single-leg 251 

balance on the non-dominant leg may be related to fatigue driven by high-intensity efforts 252 

represented by increased HSRSkills and bTRIMPRugby. 253 

 254 

Landing 255 

Post-training measures of TTS improved on the dominant leg (10.4%), whilst changes on the 256 

non-dominant leg  were minimal. This contrasts with existing research demonstrating increased 257 

TTS, and thus impaired dynamic postural control following treadmill running (Steib et al. 2013), 258 

functional movement protocols (Wikstrom et al. 2004; Brazen et al. 2010), and a 35 min soccer 259 

match (Pau et al. 2016). The improved dominant leg TTS could indicate a potentiating effect 260 

from training or a post-test practice effect, however results should be considered in relation to 261 

previously reported variablity (CV = 21%) on the dominant leg (Troester et al. 2018). Also of 262 

note are the differences in load during the landing testing days in which rugby sessions had the 263 

highest sRPE-TL, but likely lower HSR and ARS compared to balance and CMJ training days. 264 

Regression analysis did not reveal any relationships between load measures and improved 265 

landing, suggesting that high sRPE-TL was driven by elements other than the load measures 266 
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included in this study which may have impacted central and peripheral mechanisms that affect 267 

landing performance. 268 

 269 

The trivial changes identified for rPF and rIMP in the current study also contrast existing 270 

research. Some authors suggest that rPF increases post-fatigue due to alterations in landing 271 

strategy that favour reliance on passive structures (ligaments and joint capsule) rather than 272 

musculature for shock absorption (Wikstrom et al. 2004; Brazen et al. 2010). Alternatively, the 273 

majority of studies report decreased rPF and rIMP post-fatigue, indicating lag time in muscle 274 

contraction that diminishes force absorption and stability (Augustsson et al. 2006; Coventry et al. 275 

2006; Santamaria and Webster 2010; Zadpoor and Nikooyan 2012). The improvement of TTS-D 276 

in the current study, alongside mixed findings for rPF and rIMP in previous research may 277 

suggest some variability in the response of single-leg landing measures to different types of load 278 

which make the interpretation of post-fatigue landing performance challenging. 279 

 280 

CMJ 281 

CMJ performance demonstrated the largest post-training impairments in EccRFD (ES = -0.79) 282 

and ConIMP (ES = -0.35). Impairments in CMJ height (ES = -0.21; -3.6%) in the current 283 

investigation support existing research describing 5 - 7.5% decreases in jump height following 284 

rugby union matches and training (West et al. 2014; Johnston et al. 2016; Johnston et al. 2017; 285 

Kennedy and Drake 2017). The CMJ measures used in this study represent those available 286 

through commercial force plate testing software (SpartaTrac, Menlo Park, CA) and are not 287 

commonly reported in the literature. However, Gathercole et al. (2015) observed smaller 288 
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decreases in RFD (ES = -0.30) and increases in eccentric duration (ES = 0.29). Impairment of 289 

EccRFD and ConIMP variables in the current investigation may support conclusions of altered 290 

movement strategy in response to NMF (Cormack et al. 2008; Gathercole et al. 2015) and 291 

support existing research on the use duration-based GRF variables for identification of NMF in 292 

rugby union. 293 

 294 

The post-training decreases in CMJ variables can best be explained (R² = 0.268 to 0.462) by 295 

measures of BLSkills, BLRugby, ARSRugby, and sRPE-TLRugby. Positive correlations with BLSkills and 296 

ARSRugby and negative correltations with BLRugby and sRPE-TLRugby may suggests CMJ 297 

impairment is more related to change of direction, contact, and static exertion than absolute 298 

running intensity. As an example, stardized coefficients suggest that all other variables being 299 

equal, a 1 SD increase in sRPE-TLRugby (235 AU) would yield a 0.68 SD impairment in ConIMP 300 

(1.7%; 0.1 N.s·kg-1). Reduced CMJ height, EccRFD, and ConIMP here support existing research 301 

on the response of CMJ and movement strategy to NMF (Cormack et al. 2008; Gathercole et al. 302 

2015) which may resulting from rugby sessions emphasizing change of direction and static 303 

efforts that drive HR despite lower ARS. 304 

 305 

Several limitations of the current investigation warrant mentioning. Based on practical 306 

limitations of data collection in a professional team, data collection was performed across six 307 

different training days resulting in different loads for each day. Though regression analysis 308 

accounts for the influence of a range of loading parameters across subjects and testing days, any 309 

comparisons should be treated with caution. Secondly, the collinearity of load measures has been 310 
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dealt with by applying tollerance limits to the regression analysis, however such measures within 311 

a session are often highly interrelated and it may be impractical to interpret the impact of a 312 

change in one measure apart from related changes in other measures. Finally, post-testing was 313 

performed  15-30 minutes post-training of training when evidence of impaired postural control 314 

exists (Pau et al. 2016) Recovery rates of postural control may range from 13 – 30 min (Dickin 315 

and Doan 2008; Fox et al. 2008) and various levels of recovery may have existed between 316 

athletes, though individual fatgiue responses are beyond the scope of this investigation. 317 

Conclusions 318 

CMJ measures of EccRFD and ConIMP demonstrated the largest impairment post-training 319 

suggesting altered movement strategy. Single-leg balance SV-ND demonstrated greater 320 

sensitivity to post-training fatigue than traditional measurse of CMJ height. BL, sRPE-TL and 321 

bTRIMP may be the main contributing factors to CMJ and balance impairment. Practitioners 322 

may use this information to guide the planning of training and recovery. Whilst CMJ remains a 323 

valuable measure of NMF, single-leg balance measures of SV could provide an alternative in 324 

situations where maximal jump testing is impractical. 325 

 326 

  327 
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Table 1. Mean ± SD for training load measures on single-leg balance, single-leg landing and 425 
CMJ training days 426 

 Balance Landing CMJ 
sRPE-TLGym (AU) 231 ± 148 288 ± 164 280 ± 167 

 

sRPE-TLSkills (AU) 

 

198 ± 154 

 

218 ± 129 

 

227 ± 152 

DistanceSkills (m) 1220 ± 745 1328 ± 707 1269 ± 921 

HSRSkills (m) 25 ± 37 30 ± 40 33 ± 65 

Relative SpeedSkills (m.min-1) 29 ± 14*# 37 ± 21* 33 ± 16# 

BodyloadSkills (AU) 17 ± 14# 21 ± 15 27 ± 22# 

 

sRPE-TLRugby (AU) 

 

520 ± 214*# 

 

635 ± 168* 

 

550 ± 235# 

bTRIMPRugby (AU) 151 ± 79 154 ± 53 162 ± 62 

DistanceRugby (m) 5379 ± 1937* 4411 ± 688* 4647 ± 1103 

HSRRugby (m) 620 ± 423* 289 ± 131* 507 ± 341# 

Relative SpeedRugby (m.min-1) 98 ± 17*# 81 ± 8*^ 91 ± 14#^ 

BodyloadRugby (AU) 137 ± 57*# 103 ± 37* 106 ± 56# 

sRPE-TL = Training Load (RPE x duration); bTRIMP = Banister’s Heart Rate based Training Impulse; 427 
HSR = High Speed Running distance. 428 

 * = inference of likely difference between balance and landing load; # = inference of likely difference 429 
between balance and CMJ load; ^ = inference of likely difference between landing and CMJ load. 430 

 431 

 432 

 433 

 434 
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Table 2. Pre- and post- mean ± SD, effect size (± 90% CL), and qualitative inferences for 436 
changes in single-leg balance, single-leg landing, and CMJ performance 437 

  
Pre 

 
Post 

ES 
 (± 90% CL) 

Qualitative 
Inference 

Balance     

SV – D (cm.s-1) 8.18 ± 1.56 8.17 ± 1.33 -0.01 ± 0.20 Likely Trivial 

SV – ND (cm.s-1) 7.85 ± 1.56 8.33 ± 1.51 0.30 ± 0.26 Possibly Small 

Landing     

rPF – D (N.kg-1) 3.37 ± 0.63 3.42 ± 0.51 0.07 ± 0.20 Likely Trivial 

rPF – ND (N.kg-1) 3.28 ± 0.56 3.25 ± 0.52 -0.06 ± 0.24 Likely Trivial 

rIMP – D (N.s.kg-1) 1.36 ± 0.19 1.39 ± 0.17 0.14 ± 0.22 Possibly Trivial 

rIMP – ND (N.s.kg-1) 1.34 ± 0.17 1.32 ± .18 -0.12 ± 0.22 Possibly Trivial 

TTS – D (s) 0.46 ± 0.09 0.41 ± 008 -0.51 ± 0.31 Likely Small 

TTS – ND (s) 0.44 ± 0.10 0.44 ± 0.09 -0.09 ± 0.23 Likely Trivial 

CMJ     

Jump Height (cm) 47.81 ± 7.46 46.26 ± 7.93 -0.21 ± 0.16 Possibly Small 

EccRFD (N.s-1) 6447 ± 1658 5136 ± 1506 -0.79 ± 0.29 Almost Certainly 

Moderate 

ConMF (N.Kg-1) 19.67 ± 1.44 19.69 ± 1.56 0.01 ± 0.19 Likely Trivial 

ConIMP (N.s.Kg-1) 6.11 ± 0.29 6.01 ± 0.33 -0.35 ± 0.17 Likely Small 

SV = sway velocity; rPF = relative Peak Force; rIMP = relative Impulse; TTS = Time to Stabilization; 438 
EccRFD = Eccentric Rate of Force Development; ConMF = Concentric Mean Force; ConIMP = 439 
Concentric Impulse; D = dominant leg; ND = non-dominant leg; ES = Effect size; CL = Confidence 440 
limits 441 

 442 

 443 
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Table 3. Partial correlations (± 95% CL), standardized coefficients (β), and level of significance 445 
(p) for training load predictors of variance (% change) in single-leg balance, and CMJ variables 446 

 Partial Correlation 
 ± 95% CL 

β P 

Sway Velocity – ND    

sRPE-TLGym (AU) 0.49 ± 0.26 0.72 .008* 

bTRIMPRugby (AU) -0.44 ± 0.28 -1.09 .021* 

HSRSkills (m) -0.47 ± 0.27 -0.64 .017* 

Relative SpeedSkills (m.min-1) 0.48 ± 0.27 0.69 .001* 

DistanceRugby (m) 0.42 ± 0.28 0.92 .027* 

Jump Height    

BodyloadSkills (AU) 0.39 ± 0.32 0.39 .049* 

BodyloadRugby (AU) -0.55 ± 0.27 -0.61 .004* 

EccRFD    

Relative SpeedRugby (m.min-1) 0.44 ± 0.31 0.60 .024* 

BodyloadRugby (AU) -0.51 ± 0.29 -0.74 .007* 

ConIMP    

sRPE-TLRugby (AU) -0.68 ± 0.21 -0.68 .001* 

sRPE-TL = Training Load (RPE x duration); bTRIMP = Banister’s Heart Rate based Training Impulse; 447 
HSR = High Speed Running distance; EccRFD = Eccentric Rate of Force Development; ConPF = 448 
Concentric Peak Force; ConIMP = Concentric Impulse; ND = non-dominant leg; CL = confidence 449 
limits; * indicates significance (p < 0.05) 450 

 451 


