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The complexity-theoretic Bell inequality
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‘I am a quantum engineer, but on Sun-
days I have principles.’ John Stewart Bell
once started a colloquium with these
words. The Bell inequality, one of the
most important and fundamental results
of quantum physics, probably originates
from a flash of insight he had on a
Sunday afternoon around 1964. The in-
equality proves Einstein wrong and pro-
vides a concrete method to tell apart
quantum mechanics and classical the-
ories. A variant of the Bell inequality,
knownas theCHSHinequality namedaf-
ter John Clauser, Michael Horne, Abner
Shimony, and Richard Holt, states that
|S| ≤ 2 in any classical theories where
S = 〈A0B0 + A0B1 + A1B0 − A1B1〉,
and Ai, Bj are observables; however,
quantummechanically it is possible to vi-
olate the inequality and have |S| = 2

√
2.

Forty years later, a group of computer
scientists, Richard Cleve, Peter Høyer,
Ben Toner and John Watrous [1], pro-
vided a computer science perspective
on Bell inequalities in the framework
of multi-player one-round games. In a
multi-player one-round game, a referee
samples and asks questions to multiple
non-communicating players and checks
the validity of the answers according
to some rule. The classical value of the
game is the maximum success probabil-
ity with which the players can pass the
referee’s check. Multi-player one-round
games form a well-studied topic in the-
oretical computer science and have con-
nections to constraint satisfaction prob-
lems, interactive proof systems, proba-
bilistically checkable proof (PCP) and
the celebrated PCP theorem. Cleve et al.
reformulated Bell inequalities as multi-

player one-round games such that the
players can achieve a higher success prob-
ability, called the quantum value, when
they measure a shared entangled state to
obtain the answers.They also pointed out
that shared entanglement may cause the
so-called soundness problem in quantum
interactive proof systems, an intriguing
phenomenon that leads to a series of in-
vestigations on the limitation and power
of entanglement in multi-player games.

It is well known that it is NP-hard to
approximate the classical value of a game
to inverse polynomial precision where
NP stands for nondeterministic polyno-
mial time. Just how hard is it to approx-
imate the quantum value of a game? We
do not know the answer after a decade
of research efforts, mainly because the
players measure on an arbitrarily high di-
mensional quantum system. Because of
the soundness problem pointed out by
Cleve et al., we did not even know how to
establish that the quantum value is NP-
hard until Kempe et al. finally proved it
in 2007 [2]. Very recently, the author
established that the quantum value of a
game isNEXP-hard to approximate [3,4]
where NEXP stands for nondeterminis-
tic exponential time. This can be seen as
a complexity-theoretic Bell inequality. The
standard Bell inequality tells us that the
classical and quantum values can be dif-
ferent for a fixed game; our result instead
establishes that the computational com-
plexities for approximating the classical
and quantum values are different, since
NP �=NEXP.

The complexity of Bell inequalities or
the quantum values of multi-player one-
round games has deep connections to

quantum physics and theoretical com-
puter science as we have already dis-
cussed. It is also related to the Connes
embedding conjecture in mathematics.
Using a group theory approach, Slofs-
tra proved that the problem of deter-
mining whether a game has quantum
value 1 or not is undecidable [5]. Is the
quantum value approximation problem
also undecidable or can we establish any
complexity upper bound? Only time will
tell.
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