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There are now, in principle, a limitless number of hybrid van der Waals heterostructures that 

can be built from the rapidly growing number of two-dimensional layers. The key question is 

how to explore this vast parameter space in a practical way.  Computational methods can 

guide experimental work. However, even the most efficient electronic structure methods such 

as density functional theory, are too time consuming to explore more than a tiny fraction of all 

possible hybrid 2D materials. Here we demonstrate that a combination of DFT and machine 

learning techniques provide a practical method for exploring this parameter space much more 

efficiently than by DFT or experiment. As a proof of concept, we applied this methodology to 

predict the interlayer distance and band gap of bilayer heterostructures. Our methods quickly 

and accurately predicted these important properties for a large number of hybrid 2D materials. 

This work paves the way for rapid computational screening of the vast parameter space of van 

der Waals heterostructures to identify new hybrid materials with useful and interesting 

properties. 
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1. Introduction 

 

Materials constructed from the large number of 2D materials now identified[1] offer enormous 

possibilities for fundamental research, promising improved or even novel electronic or optical 

technologies.[2] Recently, there has been increased interest in the LEGO-like creation of few-

layer hybrid 2D heterostructures[3] for photovoltaic and photonic applications.[4,5,6,7,8] For 

example hybrid 2D heterostructures, in which the charge carriers move in the direction 

perpendicular to the plane of the 2D layers, have recently attracted attention as potential 

vertical p-n junctions. The 2D materials that have been investigated as p and n dopants 

include MoS2, MoSe2, WSe2. With the growing number of semiconducting van der Waals 

(vdW) materials, the number of possible hybrid bilayers (that is, heterostructure bilayers 

formed from two different monolayer species) that achieve p-n band alignment is increasing, 

and the prediction of the band gap of these bilayers using ML models would greatly support 

the search for new atomically thin p-n junction materials for optoelectronics applications. 

 

Bulk materials constructed from vdW 2D heterostructures offer an even larger range of 

properties than homostructures as they can be arranged in multiple layers consisting of 

different 2D materials in each layer. They could provide almost infinitely tuneable bespoke 

materials for almost any application. For example, a recent data mining study[1] reported the 

existence of 1,825 2D materials that could be exfoliated from known experimental inorganic 

compounds. This set can make ~1.7 million bilayer structures, around 109 trilayers. This 

quickly becomes an intractable problem for accurate but CPU-intensive computational 

methods like DFT to explore. Clearly, a method for rapidly predicting the properties of these 

structures without having to perform many expensive and time-consuming quantum chemical 

calculations is needed to efficient explore the properties these materials spaces offer.  We 

addressed this by applying several ML models, trained on data from a small number of DFT 
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calculations, to predict structural and electronic properties of layered vdW materials, 

specifically bilayer materials constructed from different 2D materials. The success of the ML 

approach using a small training set could potentially save a significant amount of 

experimental and computational time and cost, while retaining acceptable accuracy. 

 

In 2D materials, the interlayer vdW forces are essential to maintain the equilibrium structure. 

The key structural quantity that indicates the strength of the vdW force in these materials is 

the interlayer distance, and its related quantity, the layer binding energy. For DFT to 

accurately predict these two quantities, it needs to be corrected by incorporating a vdW 

correlation potential to the DFT correlation potential.[9,10] To this end, various forms of the 

vdW correlation have been proposed and applied to 2D materials, such as the Tkatchenko-

Scheffler (TS) method[11,12] and the SCAN+rVV10 method.[13], many of which displayed 

impressive accuracy. DFT databases, such as AFLOW and MaterialsProject, contain 

structures calculated using non-vdW corrected functionals. These non-dispersive correlation 

potentials can result in overestimates of the interlayer spacing, for example, MoS2-WS2 in 

which c = 22.37 Å.[14] The current work uses a dispersion-supported DFT method with the 

aim of constructing a data set of hybrid 2D vdW materials with realistic interlayer distances. 

 

However, a critical problem in the application of DFT to hybrid vdW structures is creating 

lattice-matching interfaces between noncommensurate 2D materials. Using DFT to study 

hybrid 2D materials requires the supercell describing the interface between two materials 

(whether parallel or perpendicular to the plane of the 2D materials) to have commensurate 

supercells for the two materials. One commonly adopted solution to this problem is searching 

for supercells that minimise the strain in each of the incommensurate monolayers. This is a 

non-trivial problem that often requires strains of a few percent to keep the size of the supercell 

reasonable. The use of ML largely alleviates this problem since DFT calculations are only 
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performed on a small subset of bilayers to generate the training and test sets for the ML 

models.  

 

Here, we describe a proof of concept study showing how parsimonious use of carefully 

corrected DFT calculations of the properties of hybrid bilayer vdW structures can be used to 

train ML models that predict the interlayer distance and the band gap of a larger set of hybrid 

materials with reasonable accuracy.  

 

2. Computational details 

2.1. The first principles approach 

2D structures were selected from the large collection of 2D materials in the “2D atlas”.[15] All 

of the 2D hetero-structures in this work are bilayers consisting of a combination of any two of 

the 2D monolayers in our data set. A 12 Å vacuum gap is used to separate periodic images of 

the bilayer and to minimize interaction between these repeated images. We used VASP[16] to 

calculate atomic and electronic structures using the generalized gradient approximation based 

on the PBE parameterization.[17] We accounted for the vdW interaction by adding the 

Tkatchenko-Scheffler vdW correlation potential.[12] We applied a k-point space of 8 × 8 × 1 

for unit cells, and 3 × 3 × 1 for supercells, and an energy cut-off of 400 eV. For both the unit 

cells and for the smallest supercells, that is a 2x2 supercell, total energies are converged to 

better than 1 meV with the above k-point meshes. The energy minimization tolerance is 10-6 

eV, and the force tolerance is 10-2 eV/Å. For the 267 bilayers in the data set, we calculate the 

interlayer distance d as the distance separating the two layers (that is, the minimum distance 

between the two layers), and the band gap. Bilayers formed from one or more monolayers 

with zero bandgap also have a zero bandgap and are excluded from the data set used to train 

and test the ML algorithms.  Note that the application of VASP for the geometries provided in 

the “2D atlas” by Miro et al. [15] induces a small strain on the individual layers. However, the 
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presence of small planar strain has a small effect on d and the band gap.[18] 

 

For our training set, we perform DFT calculations for the bilayers assembled from 53 

monolayer structures, as shown in Table 1. In selecting these monolayers, we focused on 

structures that satisfy two criteria: (1) possess trigonal symmetry, and (2) do not suffer from 

lattice distortions arising from covalent interaction with the adjacent layers. For example, we 

remove the CdX and ZnX monolayers (X= S, Se, Te) because of the significant layer 

distortions they exhibit when stacked with other layered materials. 

 

2.2. The bilayer data set 

 

For two different 2D materials, their unit cells are generally different (that is, they have 

different values for the in-plane lattice parameters). Provided the ratio of lattice constants is 

not irrational the bilayer cell can, in principle be constructed by a suitable supercell, although 

in many cases this would be computationally prohibitive and the monolayers must be strained. 

We searched over all possible combinations of the 53 monolayers to find instances where the 

bilayer cell could be constructed from a 5x5 or smaller supercell of either monolayer with less 

than 2 % strain in either monolayer.[18] The number of bilayers we choose from this set is 267. 

These bilayers will be used for the prediction of the interlayer distance. 

 

For the prediction of the band gap, we took into consideration that 33 out of the 53 

monolayers are metallic (zero band gap) and excluded them from our data set. Within the set 

of 267 bilayers selected above, the number of bilayers formed from these 20 non-metallic 

monolayers is 49. 
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Table 1: The 53 2D monolayers used in the study.  

BN NbSe2 NiTe2 Silicene TaS2 TiS2 
CdO NbTe2 PdS2 SiC TaSe2 TiSe2 
GaS NiS2 PdSe2 †1T-HfS2 TaTe2 TiTe2 
GaSe NiSe2 PdTe2 1T-HfSe2 1T-NbS2 WCl2 
Graphene InSe PtS2 1T-HfTe2 1T-NbSe2 WS2 
HfS2 MoS2 PtSe2 1T-MoS2 1T-NbTe2 WSe2 
HfSe2 MoSe2 PtTe2 1T-MoSe2 1T-ReS2 WTe2 
HfTe2 MoTe2 ReS2 1T-MoTe2 1T-WS2 ZnO 
InS NbS2 ReSe2 ReTe2 TaCl2  

†1T prefix denotes the 1T polymorph of transition metal dichalcogenides (TMDCs). TMDCs 
without this prefix are of the 2H polymorph. 
 

The application of DFT methods with vdW correlation correction to layered materials has 

been demonstrated to yield accurate results for the interlayer distances and the binding 

energies.[9,19] We use the TS method which accurately predicts the values of interlayer 

distances compared with the available experimental values as accurately as the benchmark 

Random Phase Approximation (RPA) method.[19]  

 

Figure 1: Comparison between the c lattice parameter for 11 2D materials[19] predicted using 

the Tkatchenko-Scheffler (TS) vdW functional and experimental values.[9] 
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Figure 1 compares the values of the c lattice parameter for the 11 2D materials predicted 

using the TS vdW correlation RPA,[19] and the experimental values.[9] The DFT method is 

clearly able to accurately recapitulate the experimental lattice parameters. These values are for 

pristine bulk materials, not hybrid materials, however. The choice of the best method for 

hybrid multilayered materials is still an open problem, and is currently the subject of an 

ongoing theoretical investigation. 

 

To perform the DFT calculations on bilayers, the optimal stacking configuration for the 

bilayer must be found. There are two categories of stacked bilayers: those where the 

simulation cell is constructed from the unit cells of the two monolayers; and those where the 

cell needs to be constructed from a larger supercell of each monolayer. For the former, we 

obtain the stacking equilibria by performing a geometry relaxation for three stacking 

configurations AA, AB and AB'. These configurations are displayed in Figure 2. The structure 

with lowest energy is then taken as the equilibrium stacking configuration. For the 

incommensurate unit cells such as the boron nitride|silicon carbide bilayer (formed from 5 × 5 

boron nitride unit cells and 4 × 4 silicon carbide unit cells), sliding one monolayer over the 

other in such large bilayers does not significantly affect the binding energy. Hence, we do not 

search for equilibrium stacking configurations in these bilayers. 
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Figure 2: The three stacking configurations, AA, AB and AB' used for obtaining the lowest 

energy configuration. For boron nitride, we also added the AA' stacking sequene, which is 

similar to AA but has a nitrogen atom on one layer faced by a boron on the other. 

 

Figure 3 summarizes the number of bilayers in which a particular monolayer is a component. 

The figure identified monolayers that are over- or under-represented in the data set. Here, the 

InSe monolayer is only present as the bilayer InSe|InSe, and MoTe2 is the most connected 

(exists in 27 bilayers). 

 

Figure 3: Representation of monolayers within the bilayer data set.  The y-axis gives the 

number of  bilayers in which each monolayer (along the x-axis) is a component. 

 

A useful method for visualizing such high dimensionality data is the t-distributed Stochastic 

Neighbour Embedding (t-SNE)[20] algorithm that generates a 2D plot that clusters the data into 

groups labelled by values in the output vector. t-SNE is a non-linear dimensionality reduction 

algorithm used for exploring high-dimensional data. It maps multi-dimensional data to two 

dimensions suitable for human observation. Figure 4 shows a two-dimensional t-SNE 

projection mapping of chemical space of 267 hybrid 2D materials. Due to the selection of 

large number elements as building blocks, materials distribute in chemical space without 

forming well-defined clusters. However, we identified three broad regions with specific 

character: sulphides, tellurides, and CNSi (graphene, carbides, nitrides, and silicenes). On 
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average sulphide materials have a low interlayer distance of 2.1−2.7 Å. Tellurides typically 

have the highest at 3.2−3.8 Å. Two extreme materials PtS2-PtS2 and PdTe2-WTe2 are marked 

accordingly. 

 

Figure 4: The t-distributed Stochastic Neighbour Embedding (t-SNE) plot for the data set of 

267 bilayer structures based on the value of their interlayer distance. 

 

2.3. The descriptor vector 

 

The key to implementing successful machine learning model are descriptors, relevant 

mathematical representations of the structure and properties of materials. Fragment-based 

descriptors have demonstrated superior performance for ML models of molecules[21] and 

crystals.[22] In this work we adopt the method of Isayev et al., [22] the Property-Labelled 

Materials Fragments (PLMF), modified for 2D materials, composed of 1529 descriptors. In 

the PLMF approach a crystal structure is represented as a graph, with vertices labelled 

according to the reference properties of the atoms they represent and nodes are connecting 

topological neighbours using Voronoi tessellation. The adjacency matrix of this graph 
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determines the global topology for a given system, including interatomic bonds and contacts 

within a crystal. The final descriptor vector used to train the Machine Learning (ML) model is 

obtained by partitioning a full graph into smaller subgraphs, which we call fragments by the 

analogy with fragment-based descriptors in cheminformatics. Every fragment starts from a 

node (an atom and its properties) and captures a path in the graph through a collection of 

bonded atoms.[22]  

 

Given the monolayer descriptors, the next critical problem is how to represent each bilayer 

using the monolayer data. As the interaction between the monolayers in a bilayer is 

dispersive, it does not affect the structure of either of the constituting monolayers. Therefore, 

it is possible to use the monolayer descriptors to describe the monolayers in the bilayer. The 

next issue is how to construct the bilayer descriptor vector. An intuitive choice is to create a 

larger descriptor vector composed of PLMF vector descriptors for the two monolayers. The 

problem in this approach is that it is sensitive to the swapping of the bilayers; that is, the 

descriptor vector for the bilayer A-B, made from monolayers A and B, will be a different 

vector from that of the bilayer B-A, even though the two bilayers are physically identical.  We 

addressed this problem by generating the descriptor vectors in different two ways. 

 

Bilayer representation 1 (BR1). For each bilayer A-B we created two data records. One record 

has layer A descriptors concatenated to layer B descriptors and the other has layer B 

descriptors concatenated to layer A descriptors. This method of representing multiple 

representations of the same data item has been previously applied to organic molecules.[23] 

Using this representation for the prediction of d generates a data set with 482 = 267 × 2 − 52 

records (52 records are subtracted, instead of 53, because we have removed the PdS2|PdS2 

bilayer from the data set due to the appearance of covalent interaction between the S atoms of 

the adjacent layers). For the prediction of the band gap it generates 78 = 49 × 2 − 20 records.  
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Bilayer representation 2 (BR2). Instead of creating a descriptors vector that is double the size 

of the monolayer descriptor vector, we add the values of the descriptors in both monolayers, 

effectively averaging them. This method is intrinsically invariant to changes in the order of 

the monolayers and can be applied to supercells with more than two layers.  This generates a 

data set of 267 records for the prediction of d and 49 records for the prediction of the band 

gap. Due to the small number of records in BR2 for the band gap prediction, we do not 

perform machine learning on this set.   

 

With 1529 elements in a descriptor vector it is crucial to use a dimensionality reduction 

algorithm to avoid overfitting the models. We applied the least absolute shrinkage and 

selection operator (LASSO) algorithm to our datasets.[24] Since LASSO is a supervised 

dimensionality reduction algorithm it cannot be applied to the set of monolayer descriptors. 

We used LASSO on the BR2 descriptors in the bilayer data set for interlayer distance d 

model. To obtain the optimal number of descriptors we varied the value of  the sparsity 

parameter, and used the value of α and the sparse set of descriptors that yielded the highest R2 

value in the LASSO models. We then used these descriptors to predict properties using 

several ML methods (discussed below).  

 

2.4. The machine learning models 

As the relationships between the bilayer descriptors and the interlayer distance and band gap 

are  potentially nonlinear we used four ML algorithms to contract the property models. 

 

Feedforward Neural Network (NN)[25] These can generate nonlinear relationships between 

input and output variables and adaptively learn highly complex relationships. The input layer 
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receives the descriptor vector, the hidden layers composed of a number of neurons perform 

nonlinear computation, and the output layer generate the response variable. We used a fully 

connected network where each neuron in a layer is connected to all neurons in the previous 

layer. Each neuron operates on a weighted sum of the data it receives from the elements of the 

previous layer using an activation function i.e.  

 

where  is the weight connecting neurons i and j, and  is the output of neuron i.    

The values of  are updated by a backpropagation learning algorithm. 

    

where  is the learning rate, C is the loss function,  is a stochastic term, and t is the 

propagation step. There are multiple choices available for the activation function associated 

with each neuron. We used the logistic sigmoid which is given by , where z is 

the quantity received by the neuron. We use the Keras[26] python platform to implement the 

NN model. The network we have used for BR1 representation has 35 × 2 = 70 input nodes, 5 

nodes in a single hidden layer, and one output node. In the BR2 representation, the input layer 

has 35 input nodes. The sigmoid activation function is used in the hidden layer, while the 

linear activation function is used for the input and output layers. The learning rate was 0.03. 

 

Support Vector Machine (SVM).[27,28] This is a supervised learning method first introduced 

for classification models[27] and then modified for regression problems. [28] The SVM 

classifier performs the classification of the data set from selected subsets of samples, called 

support vectors, in which the characteristic information on class distinction is compressed. In 

the linear support vector regression problem which we utilize in the present work, the aim is 
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to find the linear function  that approximates the output vector  with weights 

vector such that the primal function J is minimized, which is given by  

, 

with the constraints  and  for some small  and 

positive variables  and  (known as slack variables), for all n, where n is the data record, 

and N is the total number of records. Both C and  are input parameters to the model.   

 

Relevance Vector Machine (RVM).[29,30] This is a sparse version of the support vector 

machine which attempts to amend several of the shortcomings of SVM, [30] such as non-

probabilistic predictions, low sparsity causing a tendency to overfit data, and the presence of 

the two fitting parameters C and  which require cross validation. The RVM increases the 

sparsity of SVM and introduces a probabilistic weighting of the model weights based on 

Bayes' rule, assuming a Gaussian distribution of weights.    

 

Random Forest (RF).[31] This is an ensemble learning method for classification, regression, 

and other tasks that constructs an ensemble of decision trees from the training data and 

outputs a class membership that is the  mean prediction of the individual trees. The training in 

RFs is based on the feature aggregating[32] method. Given a training set x with output y, 

bagging repeatedly selects a random sample from x and y with replacement of the training set 

and fits decision trees to these samples. Once the training is complete, the prediction function 

operates by averaging the predictions from all the individual regression trees. The number of 

trees and the maximum tree depth are input parameters to the model.  
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The objective of ML methods is to build accurate prediction models. The quality of the model 

is determined by the ability of the model to predict the properties of new materials that the 

model has never encountered; – that is, how accurately can the model generalize to new 

outcomes based on its learning. This can be measured by splitting the data set into two parts: 

the training set used to build the ML model, and the test set used to test the quality of the 

model. The accuracy of the prediction is best judged by loss functions or measures of 

dispersion. We use the following statistical measures to assess the accuracy of the training:   

MSE = 1
𝑛𝑛
∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌𝚤𝚤�)2𝑁𝑁
𝑖𝑖=1 , 

MARE = 1
𝑛𝑛
∑ |𝑌𝑌𝑖𝑖−𝑌𝑌𝚤𝚤� |

𝑌𝑌𝑖𝑖
× 100𝑁𝑁

𝑖𝑖=1 , 

𝑅𝑅2 = 1 − ∑ (𝑌𝑌𝑖𝑖−𝑌𝑌𝚤𝚤�)2𝑁𝑁
𝑖𝑖=1
∑ (𝑌𝑌𝑖𝑖−𝑌𝑌�)2𝑁𝑁
𝑖𝑖=1

, 

 

where MSE is the mean square error, MARE is the mean absolute relative error (%), R2 is the 

coefficient of determination, Yi are the original test set outcomes (in our case, the DFT-

calculated interlayer distances for the bilayers),  are the predicted test set outcomes, and  

is the average of the original test set outcomes. The significance of R2 is that it expresses the 

proportion of the variance in  that can be predicted from the descriptor vector, and is an 

important measure of the ML model quality. However, its values are dependent on the size of 

the data set, and therefore we adopt the three quantities together, R2, MARE and MSE, to 

gauge the accuracy. For the case of the band gap prediction, we do not use the MARE because 

some of the values obtained are zero.  Thus, for each of the four models in this work, we train 

the model on 80% of the data set and use the remaining 20% as the test set. We construct the 

test set by applying the k-means clustering[33] to the data set (the set of bilayers in BR2), 

which yields 6 clusters by the Silhouettes analysis.[34] Then, we randomly choose 20% of each 

cluster and build our test set. In the NN model, the learning iteration stops when the MSE is 
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below 0.03 (for BR1) and 0.05 (for BR2). Then we compare the accuracy of the models based 

on the R2, the MSE and MARE values.   

 

Each of the four models involved in this work requires the tuning of a number of parameters 

to ensure optimal performance. We tune the NN parameters manually, and we use the 

GridSearch algorithm provided by the Python scikit-learn library (GridSearchCV) to tune the 

parameters of the SVM and RF models. GridSearchCV calculates the best parameter 

combination by performing a cross-validated grid-search over a parameter grid. The 

parameters which we optimize for the SVM are: the C and γ, while those of the RF are: 

number of estimators and maximum depth.  

 

3. Results and Discussion 

 

3.1. Prediction of the interlayer distance 

  

Using the LASSO algorithm, the optimal number of descriptors for predicting d is 35 per 

bilayer. We summarize these descriptors in the Supporting Information.  We summarize the 

MSE, MARE and R2 values for the predictions of each ML model in Tables 2 for both bilayer 

representations BR1 and BR2. Comparing the MSE and MARE values of the test sets, it is 

clear that all ML models exhibit very similar accuracy in predicting the properties of materials 

in the test set not used to train the models. The MSE and MARE are similar for most models 

and for both classes of descriptors, BR1 and BR2. The RVM model using the BR1 descriptors 

is slightly less accurate in predicting the properties of the test set than the other three models.  

The SVM model using BR2 descriptors gives the lowest prediction accuracy, probably 

because it was overfitted. The NN model makes slightly better predictions, although the 

differences between all models are small. The relatively large difference between the training 
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and test set accuracies suggest that the SVM model is overfitted, a phenomenon that has been 

noted by others.[30]  

 

Table 2: The R2, mean square error (MSE), in Å2, and mean absolute relative error (MARE) 

(%) for each of the four ML models applied to the BR1 and BR2 bilayer representation. 

Descriptors  R2 MSE MARE % 
   Train Test Train Test Train Test 

BR1 

RF 0.96 0.82 0.005 0.024 1.8 3.9 
SVM 0.90 0.83 0.012 0.023 1.8 4.1 
RVM 0.87 0.79 0.017 0.028 3.4 4.5 
NN 0.84 0.82 0.020 0.025 3.5 4.0 

BR2 

RF 0.73 0.83 0.035 0.021 4.5 3.7 
SVM 0.99 0.67 0.001 0.041 0.6 5.0 
RVM 0.84 0.73 0.021 0.034 3.8 4.7 
NN 0.88 0.90 0.016 0.012 0.7 2.7 

 

Figure 5 Correlation between the predicted and the DFT-calculated interlayer spacing (d) for 

the bilayers in the test set using the four ML models trained on BR1 descriptors.  
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Figure 5: Comparison between the interlayer distances in the bilayers obtained using DFT, 

and those using (a) NN, (b) RF, (c) RVM and (d) SVM.  

 

 



  

20 
 

Figure 6: For each monolayer (vertical axis), the average (blue) and standard deviation 

(orange) of the MARE for the interlayer spacing for all bilayers containing that particular 

monolayer.  The four panels represent the different machine learning algorithms used to 

predict the interlayer spacing: (a) NN, (b) RF, (c) SVM and (d) RVM. All MARE values are 

percentages. 

 

An interesting feature in Figure 6 is that the presence of some component monolayers in 

bilayers leads to high d prediction errors, irrespective of the ML model used. For example, 

CdO and TiTe2 result in the largest prediction errors in all four ML models. Similarly, ReS2 

and PdTe2 are common higher prediction error components in the RF, SVM and RVM 

models. In addition, in all four models, the non-metallic monolayers graphene, boron nitride 

and silicon carbide have relatively low prediction errors.  GaSe, TaS2, and boron nitride also 

have some of the lowest prediction errors in the four models.  The distribution of monolayers 

within the bilayers shown in Figure 3 may contribute to the accuracy of the bilayer properties 

predictions (such as in the case of under-represented or over-represented monolayers). 

However, the trends of errors displayed in Figure 6 show that the accuracy of the models is 

relatively independent these factors.   

 

We used the four ML models, trained using the BR1 descriptors, to predict the interlayer 

distances of all 1431 possible bilayers (Table 3). Clearly the mean and standard deviation of 

the interspacing distance are the same for all models. The smallest minimum d is predicted by 

the RVM model (1.753 Å). The SVM gives the most accurate prediction for pristine bilayers 

(2.0%), followed by RF (2.9%).  

 

Table 3: The summary statistics of the interlayer distances predicted for all 1431 bilayers 

constructed from the 53 monolayers (values in Å).  The last row gives the MARE for 
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predicting interlayer spacing in bilayers made from identical monolayers (pristine bilayers). 

Note that virtually all the differences between the four ML models are smaller than the 

standard deviation. 

  NN RF RVM SVM 
Mean 3.00 3.03 3.04 3.02 
Standard deviation 0.28 0.24 0.27 0.26 
Minimum 2.10 2.12 1.75 2.02 
Maximum 3.68 3.72 3.80 3.74 
5% percentile 2.54 2.62 2.58 2.59 
50% percentile 3.02 3.02 3.04 3.02 
95% percentile 3.46 3.40 3.44 3.42 
Pristine bilayer 
MARE (%) 4.0 2.9 3.8 2.0 

 

Table 4: The bilayers with the smallest 5 and largest 5 predicted interlayer spacings. All 

values are in Å. 

  NN RF RVM SVM 

Smallest 5 

PtS2|PtS2 2.10 PtS2|PtS2 2.12 PdS2|PdS2 1.75 PtS2|PtS2 2.02 

PdS2|PdS2 2.12 PdS2|PtS2 2.16 PdS2|NiS2 2.01 PdS2|PdS2 2.12 

PtS2|PtSe2 2.16 PdS2|PdS2 2.18 PtS2|PtS2 2.06 PdS2|NiS2 2.21 

PdS2|PtS2 2.22 PdSe2|PtS2 2.22 PdS2|NiTe2 2.09 PdS2|NbS2 2.27 

PdSe2|PtS2 2.22 PdSe2|PdS2 2.24 PdS2|NbS2 2.15 PdS2|1T-NbS2 2.28 

Largest 5 

GaSe|WTe2 3.63 MoTe2|MoTe2 3.63 MoTe2|TaTe2 3.66 WTe2|1T-MoTe2 3.65 

WTe2|WTe2 3.64 MoTe2|PdTe2 3.67 PdTe2|TaTe2 3.70 ReTe2|WTe2 3.66 

PdTe2|BoronNitride 3.65 MoTe2|WTe2 3.69 WTe2|WTe2 3.76 MoTe2|PdTe2 3.68 

PdTe2|Graphene 3.66 ReTe2|WTe2 3.70 MoTe2|PdTe2 3.77 WTe2|WTe2 3.73 

GaSe|WCl2 3.68 WTe2|WTe2 3.72 MoTe2|WTe2 3.80 MoTe2|WTe2 3.74 
 

  

Table 4 shows that the bilayers with lowest d contain Pt and Pd atoms that have very similar 

vdW radii and are associated with the group VI elements S or Se. The WTe2|WTe2 bilayer 

was predicted to have one of the largest d values by all models. As Te has a larger vdW radius 

than S or Se, this is intuitively sensible. Likewise, materials containing Se (vdW radius 

between Te and S) have intermediate values of d in 35, 26, 34 and 24 bilayers predicted by 

NN, RF, SVM and RVM respectively in the 5% percentile, compared with 12, 14, 16 and 16 
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bilayers predicted by NN, RF, SVM and RVM respectively in the 95% percentile. The main 

difference between the smallest and largest predicted d values is in the group VI atoms, where 

there is a significant trend in size from S < Se < Te, while the metals have similar vdW radii. 

 

3.1. Prediction of the band gap 

Given the success in predicting the interlayer distances for hybrid 2D materials using our 

combined DFT/ML approach, we also conducted a brief proof-of-concept experiment on 

whether we could predict properties more relevant to electrical or optical applications of 2D 

materials. We used DFT methods to calculate a relatively small number of band gaps for 

hybrid 2D materials.  For the band gap prediction, we applied the BR1 bilayer representation. 

Using the LASSO algorithm, we obtained 11 significant descriptors per bilayer (far fewer 

than the 35 descriptors used per bilayer for the d prediction). Those descriptors are listed in 

the Supporting Information. In calculating the band gaps, some DFT functionals are known to 

considerably underestimate the band gap.[35] For example, some functionals predict a bandgap 

of ~4.5 eV for hexagonal boron nitride, while its experimental band gap is ~6 eV.[36] To 

overcome this problem, hybrid functionals that mix the DFT exchange with an exact 

exchange component have been developed that offer impressive agreement with experimental 

band gaps.[37] However, the present implementations of hybrid functionals are very expensive. 

For the initial proof of concept work, we used cheaper, non-corrected DFT for the prediction 

of the band gap, to see whether the ML models could predict the property. If so, it follows that 

ML methods would be capable of predicting band gaps calculated using more accurate but 

expensive DFT hybrid functionals, with similar accuracy. The DFT band gap value for the 

boron nitride bilayer is 3.94 eV for the AB' stacking configuration, which is close to the value 

of 4.01 eV obtained for same stacking (though using a different vdW method) reported in a 

recent work.[38] These authors also reported the equilibrium stacking as AA', with a band gap 

of 4.34 eV. However, using the TS vdW method, the lowest energy stacking configuration is 
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AB', and is only 3 meV lower in energy than AA'. To ensure consistency, we adopt the 

minimum energy stacking of the TS method.  The band gap of each of the bilayers 

corresponds to a specific band gap alignment of the two constituting monolayers. While the 

alignments yield a band gap that is smaller than that of the monolayers, as is typically the case 

in semiconducting interfaces, the following 8 bilayers have a zero band gap: HfS2|MoTe2, 

HfS2|WTe2, MoSe2|TiS2, MoTe2|1T-HfS2, 1T-HfS2|WTe2, TiS2|WSe2, TiS2|ZnO, and 

TiSe2|WTe2. These bilayers are interesting because they exhibit a special kind of type III band 

alignment,[39] where two semiconducting interfaces form a metallic structure across the vdW 

vacuum. We will explore these structures in detail in a future contribution. We display the 

band alignment for two of these bilayers, namely HfS2|MoTe2 and MoSe2|TiS2, in Figure 

7(a,b). Here, the conduction band minimum (CBM) of one layer (HfS2 in Figure 7(a) and TiS2 

in Figure 7(b)) and the valence band maximum (VBM) of the other layer (MoTe2 in Figure 

7(a) and MoSe2 in Figure 7(b)) are aligned, leading to a zero band gap in an interface between 

two semiconductors. 
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Figure 7: Band alignment in (a) HfS2|MoTe2 and (b) MoSe2|TiS2 bilayers. These bilayers 

exhibit type III alignment in which the CBM of one layer (HfS2 in (a) and TiS2 in (b)), the 

VBM of the other layer (MoTe2 in (a) and MoSe2 in (b)) and the Fermi energy are all aligned, 

leading to a zero band gap in an interface between two semiconductors. Note that the VBM of 

TiS2 hybridizes with the MoSe2 states. The energy is shifted such that the Fermi energy 

corresponds to zero. 

 

The results of the ML predictions of the band gap are summarized in Table 5 and Figure 8. 

Even with a small data set, the predictive power of all four ML models, assessed by the MSE 

values for the test sets not used to generate the band gaps models, are similar to those 

predicting the interlayer distances (Tables 2 and 3). For band gaps models, the RVM model 

was less accurate than the other three models, which showed similar accuracies to each other. 

The high training set accuracies of the SVM model suggest that it could be overfitted like the 

interlayer distance model, although the test set predictions are similar to those of the RF and 

NN models.  However, we must still be cautious using the band gap models that are based on 

a small data set, as they will not perform as well for bilayers that are well outside the domain 

of applicability of the model (defined by the training data). Figure 8 displays the correlation 

between the values of the band gap obtained by DFT and those obtained by each of the four 

ML models. The SVM and RVM greatly underestimate the band gap of boron nitride|MoS2, 

which is 1.867 eV by 0.6 eV and 0.7 eV, respectively. RF and NN, on the contrary, predict it 

within an error of 0.3 eV and 0.2 eV, respectively. 

 

Table 5: The R2 and mean square error (MSE), in eV, for prediction of the band gap by each 

of the four ML models applied to the BR1 bilayer representation. 

 R2 MSE 
  Train Test Train Test 
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RF 0.96 0.90 0.028 0.040 
SVM 0.99 0.90 0.001 0.040 
RVM 0.98 0.83 0.014 0.070 
NN 0.90 0.88 0.063 0.047 

 

 

 

 

Figure 8: Comparison between the band gaps for the bilayers in the test set obtained using 

DFT, and those predicted from (a) NN, (b) RF, (c) RVM and (d) SVM. All values are in eV. 

 

Using ML models trained using the BR1 representation, we predicted the band gaps for all of 

the possible 20 × 21/2 = 210 bilayers, based (summarized in Table 7). The NN, RVM and 

SVM all predict small negative values (−0.15 eV) for the minimum band gap, which is 

unphysical. These probably represent metallic bilayers and are due to extrapolation errors in 
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the models. The BN bilayer is consistently predicted by the NN, RVM and SVM models to 

have the largest band gap, but the RF model predicts a substantially lower band gap.  The 

distribution of the predicted band gaps varies significantly across the ML model, as can be 

seen in the percentile values. Unlike the interlayer distance predictions in Table 3, where very 

similar values were seen across the models, the larger standard deviation in Table 6 compared 

can be attributed to the small size of the data set that was used to train the models for band 

gap prediction.  

 

Table 6: The summary statistics of the band gaps predicted for all 210 bilayers constructed 

from the 20 semiconducting monolayers (values in eV). 

  NN RF RVM SVM 
Mean 0.56 0.88 0.55 0.88 
Standard 
deviation 0.40 0.38 0.40 0.40 
Minimum −0.15 0.07 −0.15 −0.05 
Maximum 3.92 3.34 3.92 3.93 
5% percentile 0.09 0.32 0.09 0.27 
50% percentile 0.47 0.89 0.47 0.93 
95% percentile 1.33 1.49 1.33 1.43 

 
 
4. Conclusions 

 

Hybrid materials built from 2D monolayers are gaining attention as novel materials with 

potentially more easily tuneable properties. The current bottle-neck in exploiting these 

materials is the vast space of possible materials combinations, difficulty in predicting which 

will be best for a given application, and the real-world experimental difficulties in 

synthesizing them.  While electronic structure calculations can make these predictions 

accurately, even the most efficient methods DFT are too time consuming to calculate the 

properties of every possible multilayer hybrid 2D material.   
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In the present work we have demonstrated how machine learning approaches can very 

effectively augment properties predicted by accurate but expensive DFT calculations. A 

selection of ML models could effectively predict structural and electronic properties of van 

der Waals heterostructures. The use of property labelled materials fragments[22] as descriptors 

for the monolayers proved to be effective, yielding relatively high and practically useful 

prediction accuracies for the interlayer spacing and bandgap. Fast prediction of these 

properties should also improve the synthesis bottleneck by predicting which materials are 

likely to function effectively and which are not worth synthesizing.  

 

The current results show substantial promise for a combined DFT/machine learning approach 

to solving the problem of designing bespoke materials for a new generation of electronic 

devices and technologies. Here we have been able to predict the properties of nearly 1500 

bilayer structures based on only 267 DFT calculations.  Given that the time spent in the ML 

calculations is negligible compared with the DFT calculations, this represents a speed-up by a 

factor of about 5 compared to using DFT calculations alone.  Moreover, it should now be 

possible to predict the properties of all 1.7 million bilayers built from the 1800 2D building 

blocks reported by Mounet et al.[1] using this same model.  This represents a speed-up of 

nearly 4 orders of magnitude. 

 

Supporting Information 
Supporting Information is available from the Wiley Online Library or from the author. 
 

Acknowledgements 
This work was supported by resources provided by the National Computational Infrastructure 

(NCI), and Pawsey Supercomputing Centre with funding from the Australian Government 

and the Government of Western Australia. This work is also supported by the Australian 

Research Council, ARC DP160101301. 



  

28 
 

 
Received: ((will be filled in by the editorial staff)) 
Revised: ((will be filled in by the editorial staff)) 

Published online: ((will be filled in by the editorial staff)) 
 

  



  

29 
 

References 

 [1]  N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, 

I.E. Castelli, A. Cepellotti, G. Pizzi, N. Marzari, Nat. Nano. 2018, 13, 246. 

[2] Jariwala, Deep, Tobin Marks, and Mark Hersam, Nature Materials 2017, 16, 155. 

[3] A.K. Geim, I.V. Grigorieva, Nature 2013, 499, 419. 

[4] Y. Jin, D.H. Keum, S.J. An, J. Kim, H.S. Lee, Y.H. Lee, Adv. Mater. 2015, 27, 5534. 

[5] N. Flory, A. Jain, P. Bharadwaj, M. Parzefall, T. Taniguchi, K.Watanabe, L. Novotny, 

Appl. Phys. Lett. 2015, 107, 123106. 

[6] J.S. Ross, P. Rivera, J. Schaibley, E. Lee-Wong, H. Yu, T. Taniguchi, K. Watanabe, J. 

Yan, D. Mandrus, D. Cobden, W. Yao, Nano Lett. 2017, 17, 638. 

[7] C.H. Lee, G.H. Lee, A.M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. 

Nuckolls, T.F. Heinz, J. Guo, Nat. Nanotech. 2014, 9, 676. 

[8] M.S. Choi, D. Qu, D. Lee, X. Liu, K. Watanabe, T. Taniguchi, W.J. Yoo, ACS Nano 

2014, 8, 9332. 

[9] T. Bjorkman, A. Gulans, A.V. Krasheninnikov, R.M. Nieminen, Phys. Rev. Lett. 2012, 

108, 235502. 

[10] J. Paul, A.K. Singh, Z. Dong, H. Zhuang, B.C. Revard, B. Rijal, M. Ashton, A. 

Linscheid, M. N. Blonsky, D. Gluhovic,  J. Guo, R.G. Hennig, J. Phys.: Condens. Matt. 

2017, 29, 473001. 

[11] V.V. Gobre, A. Tkatchenko, Nat. Comm. 2013, 4, 2341. 

[12] A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 2009, 102, 073005.  

[13] H. Peng, Z.-H. Yang, J.P. Perdew, J. Sun, Phys. Rev. X 2016, 6, 041005. 

[14] I. Leven, T. Maaravi, I. Azuri, L. Kronik, O. Hod, J. Chem. Theory Comput. 2016, 12, 

2896. 

[15] P. Miro, M. Audiffred, T. Heine, Chem. Soc. Rev. 2014, 43, 6537.  

[16] G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169. 



  

30 
 

[17] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865. 

[18] Y. Cai, G. Zhang, Y. Zhang, J. Phys. Chem. C 2015, 119, 13929. 

[19] S.A. Tawfik, T. Gould, C. Stampfl, M.J. Ford, Phys. Rev. Mater. 2018, 2, 034005. 

[20] L. van der Maaten, G. Hinton, J Mach. Learn. Res. 2008, 9, 2579. 

[21] R. Gómez-Bombarelli, J.N. Wei, D. Duvenaud, J.M. Hernández-Lobato, B. Sánchez-

Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T.D. Hirzel, R.P. Adams, A. Aspuru-

Guzik, ACS Cent. Sci. 2018, 4, 268. 

[22] O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, A. Tropsha, Nat. Comm. 2017, 8, 

15679. 

[23] K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, A. von Lilienfeld, 

A. Tkatchenko, K. Muller, J. Chem. Theory. Comput. 2013, 9, 3404. 

[24] R. Tibshirani, J. Roy. Stat. Soc. Ser. B 1996, 51, 267. 

[25] C. M. Bishop, Pattern Recognition and Machine Learning, Springer 2006. 

[26] Francois Chollet, Keras, 2015, https://github.com/keras-team/keras. 

[27] V. Vapnik, The nature of statistical learning theory, Springer New York, 1995. 

[28] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, V. Vapnik, in Advances in neural 

information processing systems, 1997, (pp. 155-161). 

[29] M.E. Tipping, J. Mach. Learn. Res. 2001, 1, 211. 

[30] D.A. Winkler, F.R. Burden, J. Chem. Inf. Model. 2015, 55, 1529. 

[31] T.K. Ho, Random Decision Forests, Proceedings of the 3rd International Conference on 

Document Analysis and Recognition, Montreal, QC 1995, 14, 278. 

[3] T.K. Ho, IEEE Trans. Patt. Anal. Mach. Intell. 1998, 20, 832. 

[33] K. M. Faraoun, A. Boukelif, INFOCOMP 2006, 3, 28. 

[34] P.J. Rousseeuw, Comput. Appl. Math. 1987, 20, 53. 

[35] A.J. Cohen, P. Mori-Sanchez, W. Yang, Chem. Rev. 2011, 112, 289. 

[36] G. Cassabois, P. Valvin B. Gil, Nat. Phot. 2016, 10, 262. 



  

31 
 

[37] J.P. Perdew, MRS Bull. 2013, 38, 743. 

[38] Y. Fujimoto, S. Saito, Phys. Rev. B 2016, 94, 245427. 

[39] H. Kroemer, Rev. Mod. Phys. 2001, 73, 783. 

 
 


	This is the peer reviewed version of the following article
	article_revised
	Article type: Full Paper
	Dr. Sherif Abdulkader Tawfik, Prof. Michael J. Ford
	Prof. David A. Winkler
	Keywords: machine learning, van der Waals materials
	Figure 3: Representation of monolayers within the bilayer data set.  The y-axis gives the number of  bilayers in which each monolayer (along the x-axis) is a component.
	Table 4: The bilayers with the smallest 5 and largest 5 predicted interlayer spacings. All values are in Å.
	Supporting Information
	Supporting Information is available from the Wiley Online Library or from the author.
	Acknowledgements
	References


