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Abstract

Decoupling of resource consumption from economic growth is a key principle in the transition towards

a circular economy. This study explores regional variation in the decoupling of waste generation from

mean income in the Australian state of New South Wales (NSW), following the Waste Kuznet’s Curve

(WKC) hypothesis. The WKC hypothesis tests for the existence of a relationship between waste and

economic indicators conforming to an inverted-U shape that may indicate decoupling. A geographically and

temporally weighted regression (GTWR) model is used to test the WKC hypothesis for municipal waste from

2011 to 2015. We identify municipalities conforming to the WKC hypothesis, and examine the socioeconomic

and urban morphological characteristics of these municipalities. Results show that waste policy must be

targeted to consider local variability in socioeconomics. Municipalities across rural NSW were found to

conform to the WKC over the time frame. WKC-conforming municipalities had higher per-capita rates of

waste generation, and lower mean incomes compared to non-conforming municipalities. Ratios of tipping

point (global maximum) to mean income for WKC conforming municipalities were estimated between 0.8

to 2, indicating that these municipalities are in stages of relative, rather than absolute, decoupling. This

study demonstrates the application of the WKC for examining decoupling, and highlights the importance

of considering variations in regional characteristics when assessing the decoupling of waste generation from

income. Findings also broadly suggest regionally specific policy making is required for circular economy

transitions in NSW.

Keywords: Kuznets curve, Municipal solid waste, Decoupling, Geographically and temporally weighted

regression

1. Introduction1

Historically when populations and economies grow, the amount of waste generated as a result of con-2

sumption and economic activity generally also increases. This presents a significant future challenge for the3
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sustainable management of wastes. The circular economy concept is one response to unsustainable levels of4

consumption, waste generation, and their associated environmental impacts that has received much atten-5

tion in recent years Kirchherr et al. (2017). In the context of sustainable waste management, the circular6

economy maintains the value of end-of-life materials and products in the economy for as long as possible by7

avoiding disposal. This is done through better product design and manufacturing, reuse, remanufacturing,8

and recycling, thereby minimising waste generation along the entire supply chain (Ellen MacArthur Founda-9

tion, 2015). This has important implications for waste management systems, which must provide the waste10

infrastructure and collection systems to enable the transition to the circular economy.11

A recognised key step in the transition towards the circular economy is the decoupling of resource con-12

sumption from economic growth (Suárez-Eiroa et al., 2019; Ellen MacArthur Foundation, 2015). Decoupling13

can generally be defined as either ‘relative’ or ‘absolute’ decoupling, and can occur at different levels of the14

economy. Relative decoupling sees economic growth occur at a faster pace than resource consumption, im-15

plying a gain in efficiency rather than a total delinking of economic performance and environmental impact16

(Ward et al., 2016). On the other hand, absolute decoupling sees a decrease in resource use despite increasing17

economic performance. Absolute decoupling can be an indication that environmental pressure is stable or18

falling, and is therefore an essential concept for sustainable economic growth (Montevecchi, 2016; Jackson,19

2009).20

Global economy wide data on domestic material consumption has implied that a relative, and in some21

cases absolute, decoupling has been achieved in a number of countries (OECD, 2018). However, findings in22

Wiedmann et al. (2016) indicate that when non-domestic sources of resource consumption such as imported23

consumer goods are taken into account, no level of decoupling, relative or absolute, has been achieved glob-24

ally. Whilst the viability of simultaneously pursuing economic growth and reduced environmental impacts25

remains contested (Fletcher & Rammelt, 2017; Ward et al., 2016), achieving an absolute decoupling of waste26

generation from economic growth is also an important objective to strive for, in light of increasing volumes27

and environmental impacts of waste generated annually that must be dealt with sustainably (Mazzanti &28

Nicolli, 2012).29

Where a decoupling between waste and economic performance exists, waste generation might follow an30

inverted-U shape relationship against economic indicators (Montevecchi, 2016; Ichinose et al., 2011). The31

economist Simon Kuznets first hypothesised this relationship between income levels and economic inequality32

which increases with income until reaching a ‘tipping point’ from where it begins to decrease (Kuznets, 1955).33

This ‘Kuznets curve’ relationship has since been applied in the form of the environmental Kuznets curve34

(EKC) to model decoupling behaviour between environmental impact and economic growth. In this context,35

Mazzanti & Zoboli (2009) and Ichinose et al. (2011) define absolute decoupling as the descending part of36

the inverted-U shape, and relative decoupling as the ascending part of the inverted-U shape. Ichinose et al.37

(2011) furthers these definitions by defining absolute decoupling to occur only when the tipping point from38
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the estimated Kuznets curve is within the range of the economic indicator for the area under investigation,39

and relative decoupling where the estimated tipping point occurs outside this range. Such decoupling like40

behaviour may indicate an economy shifting away from manufacturing towards a more de-materialised,41

service based economy where environmental degradation might decrease (Ercolano et al., 2018), owing to42

reduced pressure on the environment.43

Recently, the EKC has been applied to examine solid waste generation (Ercolano et al., 2018; Jaligot &44

Chenal, 2018; Kim et al., 2018; Mazzanti et al., 2008). Despite the causal links between economic growth45

and waste generation, there is a lack of consensus on the existence of the ‘waste Kuznets curve’ (WKC).46

This demonstrates a need for further research on the application of the WKC for identifying decoupling47

like behaviour. Ercolano et al. (2018) identifies that studies that do support the WKC hypothesis are48

primarily at sub-national scales, which compared to cross-country analyses, allow for consideration of within49

country/region heterogeneity in waste generation and other driving factors. Analyses performed at a spatially50

disaggregated level require spatially explicit data, such as waste generation data for local government areas.51

Such data however often shows robust patterns of spatial dependency where for example nearby locations52

share similar attributes and influence each other, requiring spatiality to be a feature of analysis (Montello53

& Sutton, 2012; Goodchild, 1992).54

This paper explores regional variation in decoupling of municipal waste and mean income following the55

WKC hypothesis. A geographically and temporally weighted regression model (GTWR) is developed to56

explore this variation across municipalities in the Australian state of New South Wales (NSW), where a57

circular economy agenda has recently been put in place (NSW Government, 2018). This paper uses annual58

municipal per-capita waste generation data for local government areas (LGAs) in NSW for the years 201159

to 2015, in addition to relevant socioeconomic, demographic, and urban morphology variables derived from60

census data. The primary goal of this study is to identify local government areas (LGAs) within NSW that61

conform to the WKC hypothesis, and to examine locally varying determinants of per-capita waste generation62

in NSW. This study gives insights into the application of the WKC for assessing the status of decoupling63

between per-capita waste generation and mean income. We apply this approach to NSW for the first time,64

and the findings from this study may have important implications supporting regionally appropriate and65

targeted policy development towards more circular economy practices.66

2. Background67

2.1. The WKC hypothesis68

There is a lack of consensus on the existence of the WKC in the literature. Mazzanti et al. (2008) reviews69

studies undertaken from 1995 to 2007 to examine the existence of the WKC. Of the 13 studies reviewed70

in Mazzanti et al. (2008), 5 studies found evidence supporting the existence of the WKC. Berrens et al.71
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(1998) and Wang et al. (1998) found evidence of the WKC in studies undertaken across the United States,72

examining hazardous waste data across 3,141 counties. Concu (2000) found evidence of the WKC in their73

study in Sardinia, Italy for municipal waste generation. Fischer-Kowalski & Amann (2001) found evidence74

of the WKC across OECD countries, but for landfilled waste only, and not waste generation. Ercolano et al.75

(2018) identifies that the studies that do support the WKC hypothesis are primarily at the sub-national76

level, which better allows for the consideration of within country/region heterogeneity in waste generation77

and other factors due to the disaggregated nature of sub-national data (e.g., municipalities, counties, etc.).78

Sub-national level studies are much rarer in the literature compared to cross country analyses, where cross-79

country studies show little evidence supporting the WKC hypothesis (Ercolano et al., 2018). Recent research80

into the existence of the EKC and WKC has also examined regional effects at the sub-national level. Kim81

et al. (2018) employs a geographically weighted regression (GWR) approach to examine regional specific82

industrial pollutants (SO2 emissions, wastewater discharge, and solid waste generation) across 29 provinces83

in China. The authors find significant spatial variation in the existence of the EKC, with spatial patterns84

identified through the GWR attributed to regional policy making. Jaligot & Chenal (2018) use a panel85

regression model on waste generation data across 10 districts in the Swiss canton of Vaud, using tax point86

value (income) as an economic development proxy. Findings from Jaligot & Chenal (2018) indicate the87

existence of the WKC, and the trend emerges more strongly when additional socioeconomic factors are88

incorporated into the authors’ model. Mazzanti et al. (2008) perform a regression analysis on municipal89

waste generation data from municipalities in northern and southern Italy, using provincial value added90

per capita as an economic performance proxy, finding evidence of a WKC that varies across the regions91

investigated.92

This study builds on the existing literature by applying GTWR in the context of decoupling waste93

generation from economic performance to a region where the WKC hypothesis has yet to be examined.94

Owing to the lack of consensus in previous studies to the existence of the WKC, there is value in examining95

the relationship in a new region, and such analysis might provide further evidence for or against its existence.96

2.2. Study area97

The study area is the Australian state of New South Wales, consisting of 128 local government areas (see98

Figure 1). The local government areas of NSW all operate independent waste management systems, with99

kerbside collection being the main form of municipal waste collection across the state. For this study, the100

‘Unincorporated Far West Region’ was excluded, as this area is not part of a local government area and is101

administered federally.102

The study area has a total population as of the 2016 census of 7,608,010. The vast majority of the103

population is located on the east coast around population centres such as the Sydney Metropolitan area,104

where approximately 60% of the total state’s population resides in an area less than 1% of the total state’s105
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Figure 1: Map showing the New South Wales study area highlighted, and the local government area boundaries

land area.106

The recent Chinese National Sword policy limiting waste imports into China (World Trade Organization,107

2017) has led to focused attention for regions in transitioning towards circular economic practices. The NSW108

Circular Economy Statement (NSW Government, 2018) specifically references decoupling economic growth109

from resource consumption as a core principle in the state’s circular economy transition. In this context,110

this research provides new information to support policy development by identifying areas of the state where111

material decoupling may be taking place, which may lead to more appropriately targetted policies in the112

transition to the circular economy, and could also be important for measuring progress in transitioning113

towards a circular economy.114

2.3. Data115

The dataset used includes data on 128 local government areas over the timeframe 2011 to 2015. Waste116

data were gathered from the NSW Environment Protection Authority annual Waste Avoidance and Resource117

Recovery reports, describing each local government area’s municipal waste generation for a given reporting118

year. The most recent published waste data for NSW is the 2014/15 financial year (NSW EPA, 2016).119

Figure 2 shows the distribution of municipal waste generation across the dataset. Average rates of per-capita120

generation are relatively consistent across the study timeframe. The proportion of recycling collected to total121
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waste collected per local government area was also collected, and used as a proxy for the performance of an122

area’s waste management system under the assumption that high rates of recycling collection infers a good-123

performing waste management system. Figure 3 shows the spatial distribution of average waste generated124

per capita across the study area and study timeframe, showing that there is some spatial heterogeneity in125

the average rates of MSW generated per capita.126
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Figure 2: Distribution of MSW generated per capita, 2011-2015

Figure 3: Spatial distribution of average per-capita MSW generation for 2011-2015 over the study area

Spatial data was gathered from the Australian Bureau of Statistics, which provides local government127

area boundaries. It is important to note that from 2015 some NSW local government areas were merged128

to form new, larger local government areas. Socioeconomic and demographic data collected for the 2016129
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Australian census is aligned to these new government boundaries. In order to align the datasets, waste130

data were aggregated from pre-merged council areas to the new local government boundaries using GIS and131

published weighting factors (Australian Bureau of Statistics, 2016).132

Demographic and socioeconomic data were collected from yearly data published by local government133

area across NSW (Australian Bureau of Statistics, 2018). This data spans from the 2011 Australian census134

to 2017. Only the 2011 to 2015 demographic and socioeconomic data were used to align with available waste135

data. Initial variables selected for this study were subject to availability and model selection, as data is not136

available for all socioeconomic and demographic factors that appear in each census conducted in 5-yearly137

intervals. Variables for analysis in this study are those that are published by the Australian Bureau of138

Statistics based on yearly intervals only (Australian Bureau of Statistics, 2018), and include population,139

number of households, household occupancy, income, and population density. Tourism, which is noted as140

being a driver for waste generation (Oribe-Garcia et al., 2015), was not available over the timeframe or at141

a municipal level therefore was excluded from our analysis.142

The WKC hypothesis relates to economic growth and development, and an appropriate proxy for eco-143

nomic development must be selected. To the best of the authors’ knowledge, there are no published data144

on local government areas’ gross regional product (GRP) in the study timeframe, therefore other proxies145

for economic growth and development must be considered. Many studies in the literature have indicated146

the positive correlation between income and/or wealth with waste generation (Kannangara et al., 2018; Sun147

& Chungpaibulpatana, 2017; Trang et al., 2017; Khan et al., 2016; Oribe-Garcia et al., 2015; Keser et al.,148

2012; Dyson & Chang, 2005)). Ercolano et al. (2018) and Jaligot & Chenal (2018), Mazzanti et al. (2008)149

use the average tax return per person, tax point value (income), and value added per person respectively for150

economic development proxies. Kim et al. (2018), testing both the EKC and WKC hypotheses, uses GRP151

per capita as a proxy. For this study, we use the mean annual household income measure.152

Final variables to be used in the GTWR model were selected based on minimising multicollinearity153

between candidate independent variables, as GWR and GTWR models can be sensitive to multicollinearity.154

For this, the variance inflation factor (VIF) was calculated iteratively for each independent variable k ∈ K155

(Belsley et al., 1980) (Equation 1):156

VIFk = 1/(1−R2
k) (1)

The VIF is calculated by forming a regression model with the independent variable k acting as the dependent157

variable, regressed against the other potential independent variables. Variable screening is done by iteratively158

calculating the VIF for each independent variable, and removing potential variables from K whose VIF159

exceeds a cut-off threshold. For this study, the cut-off threshold was chosen as 1/(1−R2), where R2 is the160

coefficient of determination of the full regression model with K independent variables. Descriptive statistics161

of the final selected variables are tabulated in Table 1.162
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Figure 4: Spatial distribution of mean income, 2011-2015

Table 1: Descriptive statistics of the variables used in this study

Variable Mean Minimum Maximum SD

Per-capita waste generation [PCG] (kg/pers) 510.7 60.4 1,862.1 206.2

Mean income [INC] ($) 50,111.22 32,312 134,180 14,479.31

Pop. density [POP.DENS] (pers/km2) 731.5 0.04 8,055.3 1,582.8

Households [HHLDS] (num) 22960.1 749 143,549 27,764

Household size [HHLD.SIZE] (pers/hh) 2.3 1.4 3.7 0.4

Proportion recycling [PROP.REC] (dmnl) 0.38 0 0.73 0.2

Distance to urban [DIST.URBAN] (km) 44.77 0 396.59 66.71
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3. Method163

3.1. Overview of method164

We examine the existence of the WKC in NSW by first establishing a functional relationship between165

waste generation and selected socioeconomic and urban morphological variables. A number of different166

functional relationships have been utilised in the literature for testing the Kuznets curve relationship, most167

often using a regression based approach (Ercolano et al., 2018; Jaligot & Chenal, 2018; Kim et al., 2018;168

Mazzanti et al., 2008; Maddison, 2006). The general functional relationship for testing this hypothesis is in169

Equation 2:170

Y = β0 + β1X1 + β2X
2
1 + βkXk + ε (2)

where Y is the waste generation variable, ε is the error term, βi are regression coefficients to be estimated, X1171

is the economic development proxy variable, and Xk are other variables used to establish the relationship172

between waste generation and other socioeconomic drivers. Equation 2 is quadratic, which implies the173

dependent variable in Equation 2 tends to ±∞ as the independent variable(s) increases. Some studies such174

as Jaligot & Chenal (2018) use higher order polynomial functions in addition to the quadratic form to model175

more complex relationships (i.e., an N-shaped curve, where rebound occurs after decoupling) between the176

environmental variable and economic performance. For this study, we focus on the quadratic form of the177

WKC relationship as expressed in Equation 2 due to the short timeframe of this study, where more complex178

behaviour may have yet to emerge. The WKC hypothesis can thus be tested by comparing the β1 and β2179

coefficients as per the relationships presented in Table 2.180

Table 2: WKC hypothesis framework

β coefficient values Relationship between environmental and economic indicator

β1 = β2 = 0 No relationship

β1 > 0 & β2 = 0 Linear increasing relationship between

β1 < 0 & β2 = 0 Linear decreasing relationship between

β1 < 0 & β2 > 0 Positive parabolic (U shaped) relationship

β1 > 0 & β2 < 0 Negative parabolic (inverted-U shape–the WKC) relationship

The relationships in Table 2 can be confirmed in Equation 2 if the β1 and β2 coefficients are found to be181

statistically significant. Moreover, β1 must be positive to ensure a positive tipping point can be estimated182

from the model.183

We use municipal waste generation per-capita and mean income as the waste and economic indicators184

respectively for our study. Other variables used and their selection are discussed previously. The functional185

relationship is examined firstly by using pooled OLS regression across NSW by pooling all LGAs, with the186
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WKC hypothesis being validated as per the framework presented in Table 2. This ‘global’ model (global in187

the sense that a single model relates to the entire study space) gives a baseline of statewide WKC conformity,188

and estimates a tipping point in annual mean income terms for all of NSW, used to compare with results189

from further regional analysis using GTWR. The global model is also used to assess spatial autocorrelation190

of the pooled OLS residuals, to ascertain the level of spatial association in the data. Assessing spatial191

autocorrelation, and evaluating the fit of the pooled OLS model provides further justification for the use of192

a spatial model (i.e., the GTWR model) to determine regional WKC conformity across NSW. The results193

of the GTWR model are analysed to identify the LGAs that conform with the WKC hypothesis for each194

year of the study, and to estimate individual tipping points for WKC conforming LGAs.195

3.2. Geographically and temporally weighted regression (GTWR)196

To analyse regional variation in the existence of the WKC, GTWR is used. GTWR is an extention of197

geographically weighted regression, with the addition of temporal non-stationarity being taken into account.198

GWR/GTWR are examples of spatially varying coefficient models, which extend OLS regression such that199

regression parameters can vary over space and are estimated locally (Du et al., 2018; Ma et al., 2018; Keser200

et al., 2012; Huang et al., 2010). Before describing GTWR, GWR is first introduced. A GWR model can201

be expressed as follows in Equation 3202

Yi = β0(ui, vi) +
∑
k

βk(ui, vi)Xik + εi i = 1, . . . , N (3)

where N is the number of locations, (ui, vi) are the coordinates of a regression point i (for this study, the203

geometric centroid of a local government area) in space, β0(ui, vi) is the intercept at location i, and βk(ui, vi)204

is the estimated coefficient of the kth variable Xk at location i.205

A limitation of GWR is that temporal nonstationarity is not considered. GTWR extends the GWR206

framework by considering temporal, in addition to spatial, non-stationarity by constructing an appropriate207

spatiotemporal weighting matrix to measure the distance between regression locations in both space and208

time. The GTWR model is presented in Equation 4:209

Yi = β0(ui, vi, ti) +
∑
k

βk(ui, vi, ti)Xik + εi i = 1, . . . , N (4)

For parameter estimation, it is assumed that observed data near the ith point would have a greater210

influence in the estimation of the βk(ui, vi, ti) parameters than data located further away in space and time211

from location i (Huang et al., 2010). Parameter estimation for βk(ui, vi, ti) is given by Equation 5212

β(ui, vi, ti) = [XTW(ui, vi, ti)X]−1XTW(ui, vi, ti)Y (5)

where W(ui, vi, ti) is an n× n matrix of spatiotemporal weights relative to the position of (ui, vi, ti), X is213

the vector of independent variables, and Y is the vector of dependent variable values. The weight matrix214
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W(ui, vi, ti) has zeros in its off-diagonal elements, and the spatiotemporal weighting of observation data for215

observation i in its diagonal elements (Huang et al., 2010):216

W(ui, vi, ti) = diag{Wi1,Wi2, . . . ,Win} (6)

The weighting matrix refers to the relative importance of each individual observation across the data set217

based on Tobler’s law, where nearer observations to i have greater influence on parameter estimation than218

observations further from i (Lewandowska-Gwarda, 2018). GTWR extends this by also considering that219

observations closer in time to i are also more influential than observations occuring further in the past.220

Deriving the weighting matrix is through either a fixed or adaptive kernel based weight function. For221

the adaptive kernel, distance is constant but the number of nearest neighbours to location i varies (Huang222

et al., 2010). For fixed, this case is reversed where the number of nearest neighbours is fixed, but distance223

varies.224

Typically, two potential kernels are used as weighting functions–Gaussian based functions, and the bi-225

square weighting function, although a wide range of other distance decay functions can be utilised (for226

example, the exponential function). For this study, the fixed bisquare kernel is used as it offered the greatest227

model fit, and is described as follows in Equation 7228

Wij =


[

1−
(

dST
ij

h

)2
]

if dST
ij < h

0 otherwise

(7)

where h is the bandwidth or distance threshold, and dST
ij is the spacetime distance between observations i229

and j.230

Estimating h regardless of the weighting regime chosen is done through optimisation against a goodness231

of fit statistic, such as cross-validation or the corrected Aikaike Information Criterion (AICc). Minimising232

the AICc provides greater accuracy for small sample sizes according to Kim et al. (2018), and is defined as233

follows in Equation 8234

AICc = 2n ln(σ̂2) + n ln(2π) + n

(
n+ tr(S)

n− 2− tr(S)

)
(8)

where σ̂2 is the estimated standard deviation of the error term, and tr(S) is the trace of the hat matrix235

which maps the vector of dependent variable values to the vector of fitted values.236

Estimating spatiotemporal distance dST is difficult due to distance and time being measured in different237

units (here, meters and years) and therefore have different scale effects (Huang et al., 2010). Given a spatial238

distance dS and a temporal distance dT , spatiotemporal distance dST can be calculated such that (Huang239

et al., 2010):240

dST = dS ⊗ dT (9)
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where ⊗ represents some operator. Du et al. (2018), Ma et al. (2018) and Huang et al. (2010) define ⊗241

as a simple linear combination of spatial and temporal distance, with scale parameters λ and µ to balance242

the different scale effects (e.g., if dS is much larger than dT , then spatial distance will dominate dST , and243

vice-versa (Wu et al., 2014)):244

dST = λdS + µdT (10)

For this study, we use the GWmodel (Gollini et al., 2015) implementation of GTWR in the R statistical245

computing language to estimate the GTWR model, which implements an improved GTWR model based on246

(Wu et al., 2014). Here, a more complex ⊗ operator is utilised to control the interaction of space and time247

effects, and to ensure that only previous ‘time neighbours’ (i.e., observations occurring in the past) (Wu248

et al., 2014) are taken into consideration:249 d
ST
ij = dSij ⊗ dTij = λdSij + µdTij + 2

√
λµdSijd

T
ij cos (ξ) tj < ti

dST
ij =∞ tj > ti

(11)

where λ and µ are adjustment parameters between 0 and 1 to scale the different scale effects (with µ = 1−λ250

as implemented by GWmodel). ξ is a parameter introduced by Wu et al. (2014) to control the interaction251

of space and time effects, and is between 0 and π. Selection of the λ and ξ parameters is done through252

optimisation of a goodness-of-fit statistic.253

4. Results & discussion254

The final functional relationship for this study is expressed as:255

̂PCGit = β0 + β1 log INCit + β2 log INCit
2 + β3PCGi,t−1

+ β4 logPOP.DENSit + β5HHLDSit + β6PROP.RECit

+ β7 logDIST.URBANi + β8HHLD.SIZEit + ε (12)

where PCG is per-capita municipal waste generation. A lagged per-capita waste generation term (PCGt−1)256

is included under the expectation that historical waste generation would influence waste management de-257

cision making, and thus be a determinant of future waste generation. INC is mean household income,258

POP.DENS is population density, HHLDS is the number of households, HHLD.SIZE is the size (occupancy)259

of households, PROP.REC is the proportion of municipal waste collected as recycling, and DIST.URBAN260

is the minimum distance from the geometric centroid of an LGA to the nearest significant urban area261

(Australian Bureau of Statistics, 2017). INC, POP.DENS and DIST.URBAN variables have been log262

transformed to account for skew in the data.263
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4.1. Global model results264

The global model serves as a baseline to compare the results of the estimated GTWR model to be265

discussed in the following section, and expresses the relationship between the independent and dependent266

variables for the entire state of NSW without consideration for spatial effects. Table 3 presents the results267

of the global model across the pooled LGA data.268

Table 3: Global regression model results

Variable β Estimate SE t value p−value

Intercept -43,440 13,040 -3.332 <0.000

logINC 8,024 2,379 3.373 <0.000

logINC 2 -365.3 108.3 -3.374 <0.000

PCGt−1 0.6538 0.0509 12.852 <0.000

logPOP.DENS -6.78 6.656 -1.019 0.309

HHLDS -0.0001 0.0004 -0.238 0.812

PROP.REC 171.7 53.75 3.194 0.001

logDIST.URBAN 1.239 3.893 0.318 0.750

HHLD.SIZE -0.602 31.10 -1.936 0.053

R2 0.2861

AIC 6789.946

p−value <0.000

Both mean income and its square are significant, with signs of each income term agreeing with the Kuznets269

curve hypothesis indicating that without consideration of LGA variation in the independent variables, there270

is a decoupling of waste generation and income over the state. In addition, PCGt−1 and PROP.REC are271

also statistically significant. From these results, we can calculate the tipping point from the values of the β272

coefficients for the two income terms (β1 and β2):273

exp (−β1/[2β2]) (13)

From Equation 13, the global tipping point is estimated as a mean income of AUD$58,839 (AUD =274

Australian Dollar, where AUD$1 = USD$0.69, as of June 2019). It was found that 22 LGAs had mean275

incomes above the estimated tipping point over the study time period, with 17 of these LGAs located within276

the Sydney Metropolitan Area (SMA). This result is expected, considering that economic activity is much277

greater within the SMA and therefore higher mean incomes compared to regional LGAs is likely. Figure 5278

the distribution of mean incomes and per-capita generation rates for LGAs, relative to the estimated tipping279

point.280
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Figure 5: Average LGA mean incomes vs. Average LGA per-capita waste generation, compared to global model tipping point

estimate

Overall model fit of the global pooled OLS model is poor, demonstrated by an adjusted-R2 value of281

0.286, however such a fit is consistent with similar models in the waste management literature. Lebersorger282

& Beigl (2011) for example note that in their review that coefficients of determination (R2) rarely exceed 0.5283

for regression models estimating waste generation, however Oribe-Garcia et al. (2015) for example obtained284

R2 values of between 0.279 and 0.980 for their regression models estimating waste generation in Biscay.285

Oribe-Garcia et al. (2015) cite several other similar studies (i.e., regression based models for estimating286

waste generation) in their paper, with R2 values ranging from 0.51 to 0.88.287

We test for spatial autocorrelation of model residuals from the global model by calculating Moran’s I,288

which is a measure of spatial autocorrelation taking values [−1, 1]. A Moran’s I between 0 and 1 indicates289

a clustering of values, whereas a Moran’s I between -1 and 0 indicates regular distribution of values. A290

Moran’s I of ≈0 indicates random distribution (i.e., no spatial association) of values being tested. Moran’s291

I can be calculated from the following (Bivand et al., 2008):292

I =
n
∑

i

∑
j 6=i wij(Yi − Ȳ )(Yj − Ȳ )

(
∑

i

∑
j 6=i wij)

∑
i(Yi − Ȳ )2

(14)

where Yn is the model residual for observation n from the global model, Ȳ is the mean model residual, and293

wij is the i, j-th element of the n× n spatial proximity matrix W , which provides a distance weighting for294

each pair of observation points i and j. Proximity is determined by the number of nearest neighbours to295

observation points i, which describes the maximum number of adjacent neighbours to i from which distance296

is measured. Statistical significance of the Moran’s I estimate is obtained by comparing the standard deviate297

of the Moran’s I statistic with the normal distribution (Bivand et al., 2008).298

The results from the Moran’s I analysis are presented in Table 4, indicating that spatial autocorrelation299
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of residuals exists for all levels of nearest neighbours tested (2 to 10 nearest neighbours), and that model300

residuals for the global OLS model are more clustered than random. The value of the Moran’s I shows a301

decreasing trend as the number of nearest neighbours increase. This is expected as the distance between302

observation points increase as additional neighbours are considered (Goovaerts, 1997). This is consistent303

with findings from Keser et al. (2012) who identified a similar pattern of spatial autocorrelation of residuals304

in their GWR study modelling waste generation in Turkey. The importance of this finding is that there is a305

spatial association between the dependent and independent variables, indicating that explicitly controlling306

for spatiality (for example, through GWR/GTWR) is appropriate for this study.307

Table 4: Results of Moran’s I test for spatial autocorrelation of residuals from global OLS model

Num. nearest neighbours Morans I p−value

2 0.5339 <0.000

3 0.5880 <0.000

4 0.6627 <0.000

5 0.6627 <0.000

6 0.4887 <0.000

7 0.3754 <0.000

8 0.2875 <0.000

9 0.2198 <0.000

10 0.2198 <0.000

4.2. GTWR local model results308

The GTWR model uses the same functional relationship as the pooled OLS global model expressed309

in Equation 12, with estimated regression coefficients varying across LGAs, as per Equation 4. λ and310

ξ parameters were selected using a Monte-Carlo simulation approach with λ and ξ values sampled from311

a uniform distribution of candidate values (λ ∈ [0, 1]; ξ ∈ [0, π]). The GTWR model with the highest312

adjusted coefficient of determination was selected as the final model from 10,000 iterations. Figure 6 shows313

the results of these simulations. From these results, model fit is highly sensitive to variations in λ above314

a certain threshold. Adjusted R2 values increase monotonically with λ until λ ≈ 0.6, from which point315

adjusted R2 values are erratic. For λ <≈ 0.6, values of ξ appear to not have a significant impact on the316

model fit, indicating that there is little interaction between spatial and temporal effects for λ <≈ 0.6, and317

that coefficient estimates are more heavily weighted towards spatial effects than temporal for models with318

high R2 values. Table 5 shows the selected parameter values for the final GTWR model. Appendix Appendix319

A shows β coefficient estimates and t-values for the two mean income variables in the final GTWR model320
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for different levels of λ.321

Figure 6: Results of Monte-Carlo simulation for selection of ξ and λ GTWR parameters

Table 5: Selected GTWR parameter values

Parameter Value

λ 0.61

ξ 0.02

Table 6 summarises coefficient estimates for all LGAs and years from the GTWR model, exhibiting322

variation over the study space. Comparing with results from the global model in Table 3, GTWR estimates323

fluctuate around those given from the global model, however variation is large indicating that the global324

model lacks the complexity given by considering spatiality.325

Confirming the spatial and temporal nonstationarity of GTWR coefficient estimates further justifies the326

use of GTWR over the global OLS model (Ma et al., 2018). Ma et al. (2018) confirm the spatiotemporal327

nonstationarity of GTWR coefficient estimates following Fotheringham et al. (2015) and Fotheringham328

et al. (2002) by comparing the interquartile range from the GTWR estimates for each variable with twice329

the standard error of the pooled OLS model estimates for each variable. For this paper, we also examine the330

spatiotemporal heterogeneity of the GTWR estimates by comparing with the global pooled OLS estimates331

under the null hypothesis that coefficient estimates from the GTWR model are not significantly different332

from the pooled OLS estimates (i.e., spatiotemporal nonstationarity does not exist), using the nonparametric333

Wilcoxon signed-rank test. Results for both of these analyses are presented in Table 7. These results show334
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Table 6: Results of the GTWR local model

Variable Mean Minimum First Quartile Third Quartile Maximum

Intercept -45,620.043 -1.31e+06 -32,232.804 14.781 1.73e+06

logINC 8,142.385 -328,968.73 16.759 5,758 242,580.403

logINC 2 -361.056 -11,196.324 -260.319 3.19 15,518.116

PCGt−1 0.6 -1.228 0.517 0.693 1.546

logPOP.DENS 44.497 -7,565.399 -38.774 36.681 8,122.298

HHLDS -0.012 -1.056 -0.002 0.001 1.825

PROP.REC -18.666 -1,922.000 -125.812 135.705 1,509.057

logDIST.URB 52.808 -9,907.817 -5.52 8.483 10,347.847

HHLD.SIZE -60.038 -2,828.026 -158.458 33.241 3,314.306

that the coefficient estimates from the GTWR exhibit spatiotemporal nonstationarity, indicating that locally335

weighted GTWR coefficients significantly differ from those produced from the global pooled OLS model.336

Table 7: Summary of spatial nonstationarity of GTWR coefficient estimates results

Variable Interquartile (GTWR) 2× SE (OLS) Wilcoxon test statistic p-value

Intercept 32,247.58 26,073.11 0.49 0.000

lnINC 5,742.17 4,757.62 0.50 0.000

lnINC 2 263.51 216.54 0.51 0.000

PCGt−1 0.18 0.10 0.81 0.000

lnPOP.DENS 77.45 13.31 0.21 0.000

HHLDS 0.00 0.00 0.22 0.000

PROP.REC 261.52 107.50 0.87 0.000

lnDIST.URB 14.00 7.79 0.16 0.000

HHLD.SIZE 191.70 62.19 0.63 0.000

A benefit of GWR/GTWR as an exploratory tool is the possibility of mapping model coefficient estimates337

over space and time. Statistically significant GTWR model coefficients (with p-values < 0.05) are presented338

as thematic maps in Figure 7. For Figure 7, the average coefficient values over time are used for visualisation339

following Ma et al. (2018), who suggests that mapping the eigenvalues of the coefficients (e.g., the average340

values) is useful for visualising spatial variation (Ma et al., 2018). Of note from these results is that341

significant income coefficients occur for a set of clustered LGAs, west of the Sydney metropolitan area.342

Further discussion is provided below.343
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Other variables exhibit significant coefficients across a greater proportion of the state, most notably the344

lagged per-capita waste generation, number of households, household size, and population density variables345

(Figure 7). The analysis found that household size is a greater determinant of per-capita waste generation346

compared with the number of households, whose coefficient estimates across the study area are ≈ 0. A347

significant negative relationship is identified between per-capita waste generation and household size. This348

effect is most strongly associated with LGAs within the Murray and Southern Inland regions along the349

Victoria-NSW state border. Kolekar et al. (2016) cites in a review of predictive models that household size350

is often a significant determinant of waste generation. Kumar & Samadder (2017) and Trang et al. (2017)351

find significant positive relationships between household size and waste generation. A negative relationship352

between these variables may indicate that as the number of household occupants increase, households become353

more efficient in using materials through for example sharing and re-use, resulting in a lower per-capita rate354

of waste generation.355

Coefficient estimates for the proportion of waste collected as recycling was found to be quite clustered,356

with LGAs near more developed regions showing a positive relationship with per-capita waste generation.357

This relationship may be expected where improvements in waste management practices (e.g., increased358

separately collected recycling) are a response to increasing rates of waste generation, not as a measure359

to reduce waste generation through better waste disposal behaviour. Coefficient estimates for the lagged360

per-capita waste generation variable shows that across NSW, a mild increasing trend in per-capita waste361

generation is identified, indicated by coefficients < 1.362

Significant population density coefficients show a generally negative relationship with per-capita waste363

generation, which is mostly strongly associated with the Greater Sydney Metropolitan Area and its sur-364

rounds. A similar relationship between waste generation and population density was found in Oribe-Garcia365

et al. (2015). Such a relationship could indicate areas with a higher proportion of high-density residential366

development, where rates of per-capita generation are typically lower due to reduced green waste generated367

for example. Conversely, areas showing a positive relationship between population density and per-capita368

generation, may indicate LGAs with a lower level of urban development and waste infrastructure.369

Model fit of the GTWR model is superior to that of the global OLS model, indicated by goodness-of-fit370

statistics reported in Table 8. The improvement of model fit by utilising GTWR is consistent with the371

literature, as Lewandowska-Gwarda (2018); Yu (2006) report. GWR/GTWR will usually produce better372

fitting models over global OLS models given that the spatial model better controls for spatial (and temporal,373

in the case of GTWR) hetereogeneity (Lewandowska-Gwarda, 2018).374

4.3. Empirical findings for the WKC hypothesis375

The existence of the WKC can be identified following the framework presented in Section 2.1. Figure376

8 shows the LGAs where the WKC hypothesis is met across the time period analysed, and Figure 9 shows377
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(a) Intercept (b) log(Mean income) (c) log(Mean income)2

(d) Per cap. generation (t− 1) (e) log(Population density) (f) Households

(g) Proportion recycling (h) log(Distance to urban) (i) Household size

Figure 7: Average coefficient estimates from GTWR model

Table 8: Goodness-of-fit statistics for local GTWR and global OLS models

Local GTWR model Global OLS model

R2 0.699 0.297

Adjusted R2 0.611 0.286

AIC 6435.682 6789.946
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the ratio of tipping points to mean income for WKC conforming LGAs.378

(a) 2012 (b) 2013

(c) 2014 (d) 2015

Figure 8: Local government areas conforming to the WKC hypothesis

LGAs within NSW that exhibit the WKC are located across the Orana, Hunter, Central West, Murray,379

and Riverina regions directly west of the Sydney metropolitan area. The total number of LGAs conforming380

to the WKC hypothesis vary over the time frame, showing an increasing trend. Table 9 shows the number381

of LGAs conforming to the WKC for each year, including the proportion of WKC conforming LGAs to total382

state LGAs, proportion of the NSW population residing in WKC conforming LGAs, and average estimated383

tipping points for these LGAs.384

Tipping point mean incomes have been estimated between approximately $48,000/annum to $76,000/an-385

num. Average mean income across these LGAs in 2015 is approximately $47,400/annum, compared to386

$54,400 for all other LGAs. The ratio of tipping point to mean income ranges from 0.8 to 2 times local mean387

income for these LGAs (Figure 9). These ratios are quite high for some LGAs, considering a lower level388

of economic development in regional NSW where the WKC conforming LGAs are located. High tipping389
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(a) 2012 (b) 2013

(c) 2014 (d) 2015

Figure 9: Ratio between estimated tipping points and mean incomes for WKC conforming local government areas

Table 9: Summary of WKC conforming LGAs

Num. WKC LGAs % of NSW LGAs % of NSW population Avg. tipping point

2012 18 14.1% 3.0% $58,875

2013 19 14.8% 3.3% $59,345

2014 19 14.8% 3.0% $57,700

2015 20 15.6% 4.3% $56,260
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Figure 10: Comparison between LGAs conforming to WKC hypothesis for all years of the study and LGAs conforming to

WKC hypothesis for at least one year

point estimates also emerged in Mazzanti & Zoboli (2009), where value added per-capita was used as the390

economic indicator. Following from Ichinose et al. (2011) and Mazzanti & Zoboli (2009), such high tipping391

points occur outside the range of observable mean incomes for most WKC conforming LGAs, indicating a392

relative decoupling of waste generation and income in NSW generally rather than an absolute decoupling.393

This is also partly confirmed from the global model results, which indicate a global tipping point above the394

statewide mean income.395

Figure 11 shows the distribution of per-capita waste generation rates, proportion of waste collected396

as recycling, population density, and mean incomes for WKC and non-WKC conforming LGAs. LGAs397

conforming to the WKC hypothesis generally exhibit higher per-capita generation rates, and significantly398

lower proportion of waste collected as recycling. This might suggest that WKC conforming LGAs may in399

fact have poorer performing waste management systems than non-WKC conforming LGAs. It may be the400

case that the WKC conforming LGAs have taken steps to improve waste management practices in recent401

years, which has caused a WKC-type relationship to emerge. However the short time-series dataset used for402

this study makes confirming this difficult.403

The distribution of mean incomes is expected, with non-WKC conforming LGAs including LGAs within404

the Sydney metropolitan area having a greater level of economic development, and thus higher mean income405

levels. Considering that mean income is higher, and per-capita generation rates are generally lower in406

non-WKC LGAs, it may be true that some currently non-WKC conforming LGAs have in fact already407

experienced a decoupling of waste generation from income. However a longer time-series dataset would be408

required to confirm this.409

Differences in urbanisation, indicated by population density, are found between LGAs conforming to410

the WKC hypothesis, and those that do not. Mean population density for WKC conforming LGAs is411

approximately 10 persons/km2, compared to 865 persons/km2 for the non-conforming LGAs. This large412

difference in urbanisation is expected, given that LGAs within the Sydney metropolitan area, the most413

heavily populated area in Australia, do not exhibit the WKC relationship. The effect of population density414

on WKC-like behaviour however can only be speculated. Previous studies suggest that population density415
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has a positive effect on per-capita generation rates (Mazzanti et al., 2008). Findings from our study show416

that population density has a mostly negative impact on per-capita generation, which is especially true417

for WKC conforming LGAs. Reasons for this may be that denser locales have better access to improved418

waste management and avoidance infrastructure. This finding is consistent with those presented in Jaligot419

& Chenal (2018), who found higher levels of population density led to decreased waste generation when420

testing a similar WKC.421
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Figure 11: Comparison of WKC conforming and non-conforming LGAs

The strength of the divergence between income and per-capita generation for WKC conforming LGAs422

is measured in Table 10. We compare the percentage difference in per-capita generation rates, and the423

income elasticity on per-capita generation over the study period for the two sets of LGAs. A Student’s424

t-test found no significant difference between distributions for WKC conforming and non-conforming LGAs.425

This finding might suggest that per-capita rates of waste generation across the non-WKC conforming LGAs426

are relatively stable and in decline, whereas the WKC-conforming LGAs are in various stages of decoupling,427

therefore may only recently be experiencing the initial stages of relative decoupling.428

Table 10 also compares the mean income elasticity of per-capita generation for each set of LGAs. Mean429

elasticity for WKC conforming LGAs shows a negative elasticity, providing further evidence of the relative430

decoupling status for these LGAs. Non-WKC conforming LGAs experience a greater, positive elasticity.431

Considering the findings from both the global and local models, this is consistent as a general trend in432

decreasing waste generation and increasing mean income exists across the entire state. In fact, LGAs433

identified not to be following a WKC trajectory within our study’s time frame, may have already experienced434
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a decoupling, and are in the final stages of decline with stabilisation. Further investigation on a more435

complete dataset (i.e., over a longer time period) would be needed to identify the stage of decoupling an436

LGA in the study might be at, as well to measure the strength of decoupling if it is taking place.437

Table 10: Income elasticity of per-capita generation for WKC conforming and non-conforming LGAs

LGA type Mean %∆ PCG Mean %∆ INC Mean elasticity

Non-WKC conforming -3.66% 3.35% 2.19

WKC conforming -1.88% 3.49% -1.56

The results of our study show that there is progress towards the decoupling of per-capita waste generation438

from mean income across NSW following the WKC hypothesis. While NSW has an agenda for transitioning439

to the circular economy, with decoupling as a key focus area (NSW Government, 2018), there has been440

little action towards establishing benchmarks to measure progress towards circular economy objectives. The441

results of this study give a baseline of decoupling progress at the municipal level following the WKC, and442

may inform policy through the targeting of specific initiatives towards LGAs not exhibiting decoupling-like443

behaviour, or for establishing regionally specific decoupling related targets.444

5. Conclusion445

This study has estimated the existence of the WKC across the Australian state of NSW using a GTWR446

approach, accounting for spatial and temporal heterogeneity in socioeconomic, demographic and structural447

factors over the 2011 to 2015 period. The GTWR model allowed us to identify specific LGAs within the study448

area that conform to the WKC hypothesis over time. Our analysis showed that the region to the west of the449

Sydney metropolitan exhibit the WKC relationship when accounting for spatially varied socioeconomic and450

structural factors. The ratios of tipping point to mean income for WKC conforming LGAs are between 0.8451

and 2, indicating that generally LGAs conforming to the WKC are in stages of relative decoupling rather452

than absolute.453

Findings from the GTWR model show that LGAs conforming to the WKC hypothesis have higher rates454

of per-capita generation, and lower proportions of waste collected as recycling than non-WKC conforming455

LGAs in NSW. This suggests that WKC conforming LGAs may have poorer waste management systems,456

and poorer waste disposal practices than non-WKC conforming LGAs. While it may follow that targeted457

investment in waste management infrastructure or waste avoidance programs in these regions may drive458

decoupling, it is unclear from these findings the impact of such strategies in supporting decoupling. The459

study does not analyse the degree to which LGAs may be decoupling waste generation from household460

income, however the lower rates of per-capita waste generation suggests that some non-WKC conforming461

LGAs (namely, those located within the Sydney metropolitan area) may have in-fact already experienced a462
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decoupling before the study time period. Additionally, findings show that WKC-conforming LGAs also have463

lower mean household incomes compared to non-WKC conforming LGAs, however this finding is expected464

considering mean incomes in the Sydney metropolitan area and other major regional and urban centres tend465

to have higher mean incomes and greater levels of economic development that regional LGAs.466

This analysis demonstrates a new methodology that may be applied in NSW for exploring waste and467

income decoupling relationships, significant in transitioning to sustainable waste management and the cir-468

cular economy more broadly. Findings from our study may be used in a strategic policy making context,469

for example benchmarking and measuring performance against statewide circular economy objectives using470

the WKC framework might enable appraisal of the effectiveness of circular economy and sustainable waste471

management policy implementation in driving decoupling. Findings may also inform future policy and/or472

waste management programs such as waste prevention and initiatives that are tailored to not only current473

stages of decoupling, but also to locally specific drivers of waste generation.474
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Figure A1: Variation in β coefficient and t-value estimates for values of λ. (a) and (b) are the β estimates for the log(mean

income) and log(mean income)2 variables and (c) and (d) are t-value estimates
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