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ABSTRACT 1 

Predicting the traffic condition in urban networks is a priority for all traffic management 2 

centers around the world. This becomes very challenging especially when the network is 3 

affected by traffic incidents which vary in both time and space. Although data-driven 4 

machine learning (ML) modeling can be considered as an ideal tool for short-term traffic 5 

predictions, its performance is severely degraded when little historical traffic information is 6 

available under non-recurrent incident conditions. This paper addresses this challenge by 7 

integrating both data-driven and traffic simulation modeling. Instead of directly predicting 8 

the traffic states using limited historical data, we apply data-driven models to reinforce the 9 

traffic microsimulation. More explicitly, we employ ML models to predict origin-destination 10 

(OD) demand flows based on historical day-to-day demand flows. The traffic simulation uses 11 

the freshly reported incident information and the predicted OD demand flows obtained from 12 

ML models to forecast the future traffic states under non-recurrent incident conditions. Since 13 

accurate OD flows cannot directly measured in large-scale areas, we propose an OD demand 14 

rolling-horizon estimation problem to estimate demand flows based on the most recent 15 

measured link volumes. Results show that Decision Tree method outperforms other ML 16 

models in OD demand flow prediction. Finally, we showcase the capability of the proposed 17 

data-driven enforced traffic simulation platform for incident impact analysis in a real –life 18 

sub-network from Sydney, Australia.  19 

 20 

Keywords: demand estimation and prediction, micro-simulation, incident impact 21 

management  22 
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INTRODUCTION 1 

Short-term traffic forecasting is a necessary step for efficient network operations and is an 2 

integral part of Intelligent Transportation System (ITS) applications. The abundance and 3 

recent increase of various traffic data sources have led many researchers and data scientists 4 

to employ a wide range of data-driven models to predict future traffic conditions. There are 5 

various parametric and non-parametric methods for the short-term forecast of speed (1, 2), 6 

travel time (3–5), and traffic volume (6, 7), which offer a prediction in the range of a few 7 

minutes to a few hours into the future. However, two challenges are highlighted in the 8 

previous studies as the main critical limitations of the majority of data-driven models (8). 9 

Firstly, the majority of data-driven forecasting models have been applied to freeways or 10 

arterial corridors rather than regular urban networks. The complex spatial configuration of 11 

all network connections and the dynamics of the travel demand makes the traffic forecasting 12 

in urban networks very challenging, particularly for large suburban networks. Secondly, an 13 

important challenge is the wide variability of traffic incidents that can occur at different times 14 

of the day, rarely in the same location or with the same severity. These incidents can range 15 

from temporary lane closures due to car breakdowns and small-scale accidents to more 16 

complicated ones such as sudden weather changes and train system breakdowns. All these 17 

varying characteristics of traffic disruptions increase the complexity of forecasting and make 18 

it almost impossible to find similar patterns in any historical dataset. To address this issue, 19 

some studies focus only on a particular type of incidents (9) or for example on highway lane 20 

closures due to roadway reconstruction projects (10, 11). However, in most cases, there is 21 

limited recorded data for each particular type of incident, and thus, forecasting traffic 22 

measurements such as traffic volume, speed, or travel time can result in inaccurate outcomes. 23 

On a parallel research track, an approach to predict the traffic state incorporating incidents is 24 

using reliable traffic assignment models (12–14). In these models, each traveler attempts to 25 

minimize his/her travel time/cost and their decision will impact the other travelers’ decisions 26 

to move in the network (15). By considering this essential principle, the intricate traveler 27 

route decisions can be modeled in the traffic network. Moreover, the propagation of traffic 28 

along the network is replicated by traffic flow theories that determine the traffic flows and 29 

the associated travel times on network links (16). However, the traffic assignment models 30 

require several demand and supply inputs which should be predicted as well for operational 31 

applications (17).  32 

In this paper, instead of directly predicting the link traffic features using only historical data, 33 

we use data-driven models to reinforce a traffic micro-simulation by providing the required 34 

inputs. In our proposed framework, once an incident is categorized as severe by an Al-engine 35 

(18), a summary of incident characteristics such as the location and the number of affected 36 

lanes is transferred to the traffic simulation. Moreover, a machine learning method predicts 37 

short-term OD demand flows and feeds them to the traffic simulator.  With knowledge of the 38 
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incident information and predicted OD demand flows, the simulator applies traffic flow 1 

principles to predict the traffic state under non-recurrent incident conditions.  2 

We make the assumption that network commuters hardly cancel their short-term trips even 3 

if affected by disruptions. This assumption holds particularly for morning peak hours in 4 

which a large proportion of trips like home-to-work or home-to-education still need to 5 

continue. The travelers mainly respond to a new prevailing bad network condition by 6 

updating/changing their route trips. Such behavioral phenomena can be modeled accurately 7 

in traffic simulations. We propose a rolling horizon bi-level optimization model to keep the 8 

traffic simulation model calibrated based on the most recent measured traffic data. To 9 

summarize, we present our main contributions for this paper as: 10 

- A dynamic OD estimation problem is formulated and solved to keep the traffic 11 

simulation updated based on the most recent measured traffic data. The estimated day-12 

to-day OD flows are archived for the OD demand prediction module.  13 

- Several machine learning models are deployed for OD demand prediction to reinforce 14 

the traffic simulator. 15 

- A prototype for an integrated incident management platform is developed to make use 16 

of data-driven and dynamic traffic simulation modelling. 17 

- The impacts of traffic incidents are investigated for a real application in an urban sub-18 

network. 19 

The rest of the paper is organized as follow: Section 2 describes the methodology applied 20 

over a real sub-network in Sydney, Australia and Section 3 showcases the results. Finally, 21 

Section 4 provides the concluding remarks and outlines some research extensions for future 22 

studies. 23 

METHODOLOGY 24 

1.1. Incident management platform 25 

In this section, we explain the general data flow used for building an operational incident 26 

management platform tailored to the needs of the Traffic Management Center in Sydney, 27 

Australia. Figure 1 presents the proposed incident impact analysis platform using integrated 28 

data-driven and traffic simulation models. The methodological diagram treats the cases of 29 

recurrent versus non-recurrent incidents differently, by triggering various modules detailed 30 

here below.  31 
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 1 

Figure 1. Data-driven and simulation platform for incident impact analysis. The gray 2 

modules are beyond the scope of this paper. 3 

 4 

Our proposed framework is based on various data types including:  5 

• measured link traffic count: Link traffic counts are essential inputs for the OD demand 6 

estimation module as well as to validate the framework’s output.  7 

• supply/demand data: which contains the primary information of the links of the network, 8 

public transport lines and their frequency, and signal configuration. This data is exported 9 

and used to construct the simulation model once offline. 10 

• incident data logs: includes the incident location ([x,y] coordinates), the number of 11 

affected lanes, the start time of the incident, the incident duration and more details about 12 

the incident severity.  13 

By having such information, the proposed framework predicts traffic state in two streams of 14 

recurrent and non-recurrent conditions using the following modules: 15 

• Incident severity classification: This module includes raw data processing and uses 16 

machine learning techniques to classify reported incidents into severe and non-severe. 17 

When an incident is categorized as a severe incident, its data is transferred to the traffic 18 

simulation model for further impact analysis. For non-severe incidents, the data-driven 19 

traffic model is used for short traffic prediction,  This module is not a focus of this study 20 

and readers can refer to our previous work (18). 21 

• Data-driven traffic prediction: This module is based on our previous study (19) which 22 

proposed a deep learning methodology for travel speed prediction involving feature 23 

generation, model development, and model deployment. The proposed neural network 24 

model is used for recurrent incident conditions.  25 

• OD demand estimation: the purpose of this module is to adjust a-priori demand data by 26 

using link traffic observations. We estimate the OD flows through a bilevel optimization 27 



   

 

6 

 

framework in which the a-priori demand flow is updated based on the latest measured 1 

traffic in several links of the network. 2 

• OD demand prediction: The demand prediction model will forecast the OD trip flows for 3 

short time intervals into the future (up to an hour ahead) by using the OD demand flows 4 

obtained by the OD demand estimation module. 5 

• Traffic simulation: is used to understand the allocation of the predicted OD demand flows 6 

with consideration of the freshly reported incident information. The outputs of the traffic 7 

microsimulation are: travel times, link traffic volumes, delay and so on. 8 

• SCATSIM: is a simulator plug-in which responds to the simulated traffic state by 9 

changing: a) the total cycle times inside each SCATS-controlled intersection, b) the ratio 10 

of the cycle time assigned to each phase and c) the offset between adjacent signal controls. 11 

As a result, the real-life SCATS control logic is applied to the simulated vehicles in the 12 

simulator which offers a realistic replication of real-world traffic control conditions.  13 

• Validation: the inputs of the simulation model are regulated by the updated traffic 14 

measurements observed consistently from the network at each time-interval, in order to 15 

ensure the predicted results reflect the actual real-life conditions. If the error between the 16 

predicted and the corresponding observed values is less than an acceptable threshold 17 

defined in NSW traffic modelling guidelines (20), then we accept the outputs of the 18 

platform as the final predicted traffic state. 19 

1.2.Demand estimation and prediction 20 

The success of the traffic simulation relies on the quality of this fundamental input and how 21 

well it captures the travelers’ movement in the city from one-time interval to another. 22 

Accurate demand flow information is difficult to obtain directly and normally it is estimated 23 

based on link traffic measurements (21). The main objective of the OD demand estimation 24 

problem is to minimize the error between the simulated and the observed traffic 25 

measurements. Many studies apply a bi-level optimization formulation where demand flows 26 

are estimated in the upper-level and the feedback of estimated demand in the network is 27 

evaluated by a lower-level traffic assignment model (22). Some relevant works for dynamic 28 

OD estimation problems are conducted in the literature such as a) using advanced traffic 29 

surveillance data to improve the accuracy of estimated OD flows (23), b) proposing 30 

methodological enhancements to deal with nonlinearity problem in congested networks (24, 31 

25), and c) applying simultaneous adjustment of supply and demand parameters to consider 32 

the complex interactions of demand and supply components (26).  33 

Dynamic OD demand estimation based on traffic measurements is often performed offline 34 

for planning and operational applications. However, the offline procedure is not sufficient 35 

for real-time traffic management applications. The offline demand flow estimation problem 36 

requires measured traffic data, while in the real-time applications, the model should be able 37 
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to predict the traffic data actively for the near future. Offline dynamic OD estimation provides 1 

a reliable initial OD demand for online applications to estimate the OD flows within a 2 

reasonable computational time (27).  3 

The OD demand estimation problem is expressed as a system of equations in which the 4 

unknown parameters are OD flows and each equation represents the observed link flow. In 5 

this study, we used a bi-level optimization problem in which the OD demand flows are 6 

estimated by solving the system of equations in the upper level, and the estimated OD 7 

demands are evaluated in the lower level. In addition to reducing the Euclidean distance 8 

between simulated and observed traffic data, the objective function seeks to keep the 9 

estimated demand as close as possible to the initial demand. In this way the solution does not 10 

explore the local optima far from the initial demand flows. Our optimization OD demand 11 

estimation problem is mathematically expressed as follows: 12 

min  F(X) = 𝜔. ∑ ∑ f(𝑥̂𝑖
𝑡 , 𝑥𝑖

𝑡)

𝑇

𝑡=0

𝐼

𝑖=1

+ (1 − 𝜔). ∑ ∑ f(𝑦̂𝑎
𝑡, 𝑦𝑎

𝑡)

𝑇

𝑡=0

𝐴

𝑎=1

 

𝑦𝑎
𝑡 = ∑ ∑ 𝑝𝑎,𝑖

𝜏,𝑡(𝑋)𝑥𝑖
𝜏

𝐼

𝑖=1

𝑡

𝜏=1

 

(1) 

where each parameter is explained here below: 13 

f Euclidean distance function, 

a Link index, a ϵ [1,A], A is the total number of observed links in the network 

t,τ Time index t, τ ϵ [1,T], T is the total number of modeling discrete times,  

i OD pair index i ϵ [1,I], I is the total number of OD pairs in the network, 

𝑥̂𝑖
𝑡 Estimated demand flow for an OD pair i ϵ I at time t,  

𝑥𝑖
𝑡 Initial demand flow for an OD pair i ϵ I at time t, 

𝑋̂ Estimated demand vector,  𝑋̂ = [𝑥̂1
1 , 𝑥̂2

1, 𝑥̂3
1, … , 𝑥̂𝐼

1, … , 𝑥̂𝐼−1
𝑇 , 𝑥̂𝐼

𝑇] 

𝑦̂𝑎
𝑡 Estimated link flow in link a at time t ϵ T, 

𝑦𝑎
𝑡 Observed link flow in link a at time t ϵ T, 

𝑝𝑎,𝑖
𝜏,𝑡

 Assignment proportion of 𝑥𝑖
𝑡 that passes through a link a during time period τ, 

𝜔 Reliability weight for the demand deviation. 

To solve the problem in Eq.(1, the partial derivative of function F with respect to the demand 14 

flow for the OD pair 𝜂 at time h (𝑥𝜂
ℎ ℎ ∈ [0, 𝑇], 𝜂 ∈ 𝐼) is determined as follows: 15 

 16 

∂𝐹

𝜕𝑥𝜂
ℎ =

∂

𝜕𝑥𝜂
ℎ  (𝜔 ∑ ∑(𝑥𝑖

𝑡 − 𝑥̂𝑖
𝑡)2

𝑖∈𝐼

𝑇

𝑡=1

+ (1 − 𝜔) ∑ ∑(𝑦𝑎
𝑡 −  𝑦̂𝑎

𝑡)2

𝑇

𝑡=1

𝐴

𝑎=1

) (2) 



   

 

8 

 

= 2𝜔(𝑥𝜂
ℎ − 𝑥̂𝜂

ℎ) + 2(1 − 𝜔) (∑ ∑  𝑝𝑎,𝜂
𝜏,ℎ(𝑋∗)(∑ ∑  𝑝𝑎,𝑖

𝜏,𝑡(𝑋∗)𝑥𝑖
𝑡

𝑖∈𝐼

𝜏

𝑡=1

− 𝑦̂𝑎
𝜏)

𝑇

𝜏=ℎ

𝑀

𝑎=1

) 

 

In addition to determining of the gradient, we also need to calculate the step size (𝜆). To do 1 

so, the sub-optimization problem in Eq.3 is solved in each iteration: 2 

 3 

𝑚𝑖𝑛
𝜆

 𝐹(𝑋 +
∂𝐹

𝜕𝑥
 𝜆)  (3) 

 4 

We use the golden section algorithm, as a line search minimization solution for solving the 5 

sub-optimization problem defined in Eq.(3. The algorithm includes the following steps:  6 

Step 1: if 𝜆∗ ∈ [0,1],𝜁 = 0, 𝜚 = 1,  𝜆1 = 𝜓,  𝜆2 = 1 − 𝜓 where 𝜓 =
√5−1

2
 7 

Step 2: if 𝐹(𝑋 +
∂𝐹

𝜕𝑥
 𝜆1)>𝐹(𝑋 +

∂𝐹

𝜕𝑥
 𝜆2) 8 

𝜁 = 𝜆2 , 𝜆2 = 𝜆1, 𝜚 = 𝜚, 𝜆1 = 𝜓 9 

if 𝐹(𝑋 +
∂𝐹

𝜕𝑥
 𝜆1)<𝐹(𝑋 +

∂𝐹

𝜕𝑥
 𝜆2) 10 

𝜁 = 𝜁 , 𝜚 = 𝜆1, 𝜆1 = 𝜆2,   𝜆2 = 𝜚 − 𝜓 11 

Step 3: if 𝜁 − 𝜚 < 𝜀 then: 𝜆∗ =  
𝜁+𝜚

2
 ; otherwise, go to, step 2. 12 

With the knowledge of the gradient (
∂𝐹

𝜕𝑥𝜂
𝜏) and the step size (𝜆), the demand flow (𝑥̂𝜂

𝜏) is then 13 

updated as: 14 

𝑥̂𝜂
𝜏 = 𝑥𝜂

𝜏 +  𝜆 
∂𝐹

𝜕𝑥𝜂
ℎ  𝑥𝜂

𝜏  (4) 

The proposed OD demand estimation model is performed in two stages. First, we execute the 15 

procedure offline to estimate OD demands for a typical weekday. In this stage, an initial static 16 

OD demand obtained from the strategic model is used to estimate sixteen 15-minute OD 17 

demand matrices for a 4-hour simulation during peak hours. Second, the time-dependent OD 18 

demand matrices estimated from the first stage are adjusted in a rolling-horizon estimation 19 

procedure based on the most recent observed traffic counts. As a result, the simulation model 20 

is kept updated in real-time using the newly observed data. Moreover, the estimated OD 21 

demand flows are archived for different days of the week. The archived demand is considered 22 

as a reliable training demand set for any demand prediction module. Let the current time be 23 

‘t’. Then, the demand prediction model has to predict demand flow for the next time intervals 24 

(𝑥̃𝑖
𝑡+1) given the value of the ‘m+1’ previous demand flow values (𝑥̂𝑖

𝑡−𝑚, …, 𝑥̂𝑖
𝑡−1, 𝑥̂𝑖

𝑡). Thus, 25 

the prediction model is expressed as: 26 
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𝑥̃𝑖
𝑡= P(𝑥̂𝑖

𝑡, 𝑥̂𝑖
𝑡−1, …, 𝑥̂𝑖

𝑡−𝑚, 𝑡) (5) 

For building this OD demand prediction module, we use different predictors which are 1 

presented in the next sections.  2 

1.3. Data-driven models 3 

In this section, we provide a brief description of various algorithms that we used for demand 4 

flow prediction, among which we cite: support vector machines (SVM), decision trees (DT), 5 

and autoregressive moving average (ARMA).  6 

Support Vector Machines 7 

Support vector machines (SVM) in statistical learning theory have been widely applied for 8 

solving classification and regression problems (28). In general, SVM is a well-established 9 

prediction method in complex systems which can deal with noisy databases (29). The SVM 10 

model is formulated as a constrained optimization problem specified in Eq.(6). The problem 11 

consists of two conflicting objectives: minimizing the Euclidean distance of ω to increase the 12 

margin and reducing the instance margin violations (𝜉𝑖). Constant C makes a balance between 13 

the two objective terms. A small value for hyper-parameter C allows a higher generalization 14 

ability while a big C value enforces serious penalty to limit instances (in our application 15 

demand flow 𝑥𝑖
𝑡) that violate the determined margin.   16 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝜛, 𝑏

  0.5 𝜛𝑇 . 𝜛 + 𝐶 ∑ 𝜉𝑖

𝑖=1

 

so that: 

𝜉𝑖 = {
|𝜛. Γ(𝑥𝑖

𝑡) + 𝑏 − 𝑥𝑖
𝑡| − 𝜀 |𝜛. Γ(𝑥𝑖

𝑡) + 𝑏 − 𝑥𝑖
𝑡| ≥ 𝜀

0 |𝜛. Γ(𝑥𝑖
𝑡) + 𝑏 − 𝑥𝑖

𝑡| < 𝜀
   , ∀𝑖 

(6) 

 17 

where Γ is a transformation function that can be replaced with a kernel function. Different 18 

kernel functions such as linear, polynomial, Gaussian radial basis function (RBF), and 19 

Sigmoid are commonly used in SVM modelling (28). Regardless of the kernel functions used, 20 

the main goal is to estimate the value of coefficients of 𝜛 and b in the Eq.(6. To do this, the 21 

parameters C, 𝜀, and 𝜉 should first be defined. Once they are determined, there will be a 22 

global optimal solution found for the convex Problem Eq.(6 to obtain 𝜛 and b values. In 23 

Section 2.2, we explore different values to find the best combination for our application. 24 
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Decision Trees 1 

Decision Trees (DT) are versatile non-parametric supervised ML algorithms that are capable 2 

of fitting complex datasets. Decision Trees are considered as white box models because their 3 

decisions are intuitive and easy to interpret. This algorithm is also widely used in both 4 

classification and regression (28). The following cost function is minimized to determine the 5 

subsets and their thresholds: 6 

 7 

 𝐽 =
𝑚𝑙𝑒𝑓𝑡

𝑚
 𝐺𝑙𝑒𝑓𝑡 +  

𝑚𝑟𝑖𝑔ℎ𝑡

𝑚
 𝐺𝑟𝑖𝑔ℎ𝑡 

𝐺 = 1 − ∑ 𝑝𝑘
2

𝑛

𝑘=1

 

{
𝐺𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡

𝑚𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡
 

the impurity measurement of the left/right subset, 

the number of examples in the left/right subset. 
 

(7) 

where 𝑝𝑘 is the ratio of subset k among the training data. If all training instances belong to 8 

the same subset then the impurity measurement would equal to zero (G=0). In this study, the 9 

Classification and Regression Tree (CART) algorithm is employed (30). The algorithm splits 10 

various instances into several subsets and defines a threshold. The CART algorithm 11 

investigates greedily for the optimum split thresholds from the top level and continues the 12 

process to lower levels. The algorithm stops splitting once it reaches the maximum depth for 13 

the decision (regression) tree, or the impurity measurements are not reduced by splitting the 14 

instances.  15 

ARMA 16 

We used the ARIMA model as a traditional time series model only for the demand prediction 17 

(not for the incident classification). The ARMA-family models include an autoregressive 18 

(AR) and a moving average (MA) part. The models predict the main variable for one or more 19 

discrete time intervals by using the time-lagged values. Therefore, the historical variation of 20 

the variable along with subtle time series dynamics is handled. The ARMA model with “𝑝 21 

autoregressive terms” and “𝑞 moving-average terms” takes the following form: 22 

𝜙(𝐿)𝑥𝑖
𝑡 = 𝜃(𝐿)𝜖𝑡 + 𝛿 (8) 

where 𝜙(L)  and 𝜃(L)  are respectively the autoregressive operator on variables and the 23 

autoregressive operator on residuals, L is the backshift (lag) operator (L𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1) , 𝜖𝑡 24 

represents the residuals between the real and the estimated variable at time t, and 𝛿 is a 25 

constant. θ(L) and ϕ(L) can be presented as a polynomial relationship in the lag operator, 26 

defined as: 27 
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𝜃(𝐿) = 1 − 𝜃1𝐿 − ⋯ − 𝜃𝑞𝐿𝑞, 

𝜙(𝐿) = 1 − 𝜙1𝐿 − ⋯ − 𝜙𝑝𝐿𝑝 
(9) 

Consequently, if Eq.(9) is replaced in Eq.(8), we have: 1 

(1 − 𝜙1𝐿 − ⋯ − 𝜙𝑝𝐿𝑝)𝑥𝑖
𝑡 = (1 − 𝜃1𝐿 − ⋯ − 𝜃𝑞𝐿𝑞)𝜖𝑡 + 𝛿 (10) 

Producing an ARMA model requires defining parameters p and q in order to specify θ(L) 2 

and ϕ(L). Identification of p and q terms involves investigating a tentative formulation for 3 

the model as a starting point. After the general model is specified, the θ(L) and ϕ(L) are 4 

estimated using the least-squares method.  5 

NUMERICAL RESULTS 6 

1.4. Study Area  7 

In this study, we evaluate the proposed framework models for one of the major subnetworks 8 

in Sydney, stretching alongside the Victoria Road corridor form CBD to western city (see 9 

Figure 2). The subnetwork includes 1,310 links and 428 nodes. The General Transit Feed 10 

Specification (GTFS) data is used to import public transport information such as bus time 11 

schedules, lines, and bus stop data. There are 81 signalized intersections with the adaptive 12 

SCATS control system running. The link traffic counts obtained from the SCATS detectors 13 

are aggregated in 15-min time-intervals. Most of the SCATS signals are located throughout 14 

the main corridor and near the Sydney CBD. The simulation is conducted for 4-h morning 15 

peak hours from 6:00 to 10:00 a.m. using an AIMSUN microscopic model. AIMSUN is a 16 

discrete-event simulation tool established based on car-following and lane-changing models 17 

(31). Therefore, detailed traffic phenomena such as congestion propagation and dissipation 18 

of queues are simulated over time. We used a modified multinomial logit model as an 19 

advanced stochastic route choice model (31). Maximum five shortest paths are calculated 20 

using Dijkstra’s label-setting algorithm. The probability of choosing a path k is then 21 

calculated according to a utility function of each path. 22 

In Sydney, the signal controls are working with SCATS to reduce delay and make the 23 

transport system more efficient. Signal configurations such as signal group, phases and 24 

detector IDs are set in the model based on the SCATS configuration. Since the SCATS 25 

signals are adaptive and the adjacent signals are synchronized, it is very challenging to model 26 

such a complex system. To deal with this issue, we integrate our traffic simulator with 27 

SCATS using SCATSIM plug-in architecture (32). As a result, the real-life adaptive SCATS 28 

control logic is applied to the simulated vehicles in our AIMSUN microsimulation model. 29 
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 1 

Figure 2. Victoria corridor sub-network. Green points show signals equipped with SCATS 2 

count detectors (measured traffic data). Red line demonstrates the main Victoria corridor. 3 

1.5.Demand estimation and prediction 4 

The initial demand used in our study was obtained from the Sydney strategic model received 5 

from Transport for NSW, Australia. The extracted demand for the subnetwork contains 1,262 6 

non-zero origin and destination pairs and around 150,000 travelers who are commuting in 7 

the area during 4-h morning peak hours working days. The total number of travelers suffers 8 

daily changes and declines to less than 100,000 on weekends. We select October 2017 9 

because the traffic count data and incident data are available for almost every day of the 10 

month. To compare day-to-day traffic changes, we plotted the overall traffic counts pattern 11 

for all days in October in Figure 3. We observe that during morning peak hours, the traffic 12 

flow can reach almost 40,000 vehicles per every 15-min time interval compared to weekend 13 

when this number can be counted in the 20,000s. This indicated almost twice motorists 14 

travelling daily during working week, increasing the traffic congestion along the Victoria 15 

Road Corridor. From Figure 3, we selected Thursday 12th October as a typical weekday.  16 

 17 
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 1 

Figure 3. (a) Total 24-hour link counts obtained from loop detectors in the Victoria area in 2 

different days within a month, morning peak hours in (b) weekdays and (c) weekends. 3 

 4 

We conduct our OD estimation process in two stages. At the first stage, we estimate time-5 

dependent OD demand matrices based on the selected typical weekday link count and a-6 

priori demand data. A priori static OD demand obtained from the strategic model is time-7 

sliced into sixteen 15-minute OD demand matrices for a 4-hour simulation during peak 8 

period. Then, the bilevel optimization problem formulated in Eq.(1 is iteratively solved for 9 

the whole 4-hour morning peak period. This stage is done once in an offline manner and 10 

demand flows at different time intervals are estimated. The only parameter in Eq.(1 that must 11 

be set before executing the OD estimation problem is the demand reliability weight, which 12 

influences the accuracy of results. Previous studies proposed ranges based on the accuracy 13 

of the initial demand, the size of the network, and the simulation time window(33, 34). After 14 

various tests, we set this parameter to 0.95 for this case study.  15 

We next execute our proposed OD estimation in a 15-min rolling-horizon procedure. In other 16 

words, the time-dependent OD demand matrices estimated from the first stage are adjusted 17 

every 15-min time interval based on the most recent observed traffic counts. Note that the 18 

input OD matrices for the second stage are more reliable than the inputs to the previous stage 19 

since they have already been adjusted. We increase the reliability weight (ω) value from 0.95 20 

to 0.99. Adding higher weight for demand deviation also helps us to avoid overfitting the 21 

simulation model based on possible noisy count data. The microsimulation is executed for 22 

four hours morning peak with a 15-min network warm-up (5:45- 6:00 AM). We used the 23 

coefficient of determination (R2), mean absolute error (MAE) and GEH (35) as the common 24 

goodness of fit criteria to evaluate the simulation results based on link traffic volumes.  25 
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(12) 

Table 1 presents how the accuracy of the simulated traffic volumes increases through the 1 

two-stage OD estimation applications. Results show that MAE improves about 42% and 27% 2 

respectively after implementing OD demand estimation process at first and second stages. In 3 

general, a GEH value under 5 is regarded as a good fit, between 5 and 10 implies the 4 

measurement site needs further investigation, and a value greater than 10 implies a significant 5 

error (35). As can be seen, at the end of the OD estimation process, all links among 252 6 

observed links have GEH less than 10 and almost 90% of links have GEH<5. Similar work 7 

is conducted for other days of October 2017 to archive day-to-day OD demand matrices. 8 

Figure 4 displays day-to-day variation in the estimated demand. The scatter plots in Figure 5 9 

show the simulated and observed traffic flows after OD estimation applications. 10 

Table 1. The goodness of fit before and after the OD estimation. 11 

OD matrices 
No. links 

GEH<5 

No. links 

GEH<10 
MAE 

(veh/h) 
R2 

Regression  

line 

Before OD estimation 189 243 97 0.97 Y=0.98X 

After OD estimation stage 1 228 251 56 0.99 Y=1.00X 

After OD estimation stage 2 231 252 41 0.99 Y=1.00X 

 12 

 

 

Figure 4. Day-to-day total estimated demand flow profiles: (a) in a 3D, (b) in 2D plotting. 13 
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Figure 5. Simulated versus observed traffic flows after the rolling horizon OD estimation 1 

(a) 6:00-7:00 am, (b)7:00-8:00 am, (c) 8:00-9:00 am and (d) 9:00-10:00 am (f) Absolute 2 

flow errors vs observed flows. 3 

 4 

The estimated OD demand matrices were archived and used for the demand prediction 5 

model. As mentioned earlier, there are 1,262 OD pairs with various demand profiles in the 6 

study network. The OD flows vary from few trips between local OD pairs to hundreds of 7 

trips between two ends of the main corridor. Therefore, it is necessary to consider an ML 8 

model for each OD pair trained on previous historical OD pairs. We consider the 9 

corresponding OD flow values from the 5 previous working days. There is a tradeoff between 10 
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the size of the database and the accuracy of the prediction. More historical data may be useful, 1 

but it increases the computation time, especially for real-time forecasting.  2 

The features we consider for our models are: three time-lagged demand data (𝑥𝑖
𝑡−2, 𝑥𝑖

𝑡−1, 𝑥𝑖
𝑡), 3 

the time interval of the prediction (t) and the flow direction (inbound and outbound). We 4 

adopt DT, SVR, and the traditional ARMA models for predicting the OD flows for the next 5 

15, 30, 45 and 60min. The experiments were conducted in Scikit tool and Stat Python 6 

libraries (30). The results of each approach are presented in  7 

Table 2 and evaluated against the total error and MAE. 8 

As a baseline approach, we assume that we do not have any model to predict the demand. 9 

Therefore, the latest demand flow is considered for the next time intervals. As can be seen, 10 

by extending the prediction time intervals (from 15 min to 60 min), the prediction error grows 11 

quickly (from 1.37 to 1.85). First, we investigate the performance of the decision tree model. 12 

The maximum depth of the decision tree is one of the most important parameters that affect 13 

the prediction accuracy. Therefore, we chose three different values for this parameter to 14 

investigate the sensitivity of the model (maximum depth of 2, 5 or unconstrained). When the 15 

constraint is too strict (e.g., max depth=2), the predictor is too simplistic to predict the traffic 16 

demand accurately. In contrast, with no constraint (no max depth), the prediction error 17 

increases showing the predictor overfitted to the training data. This result demonstrates that 18 

the optimum depth of the tree is a critical parameter, which can be optimized. Next, the 19 

performance of the SVM model is explored by using different kernel functions. We tried 20 

several combinations (the radial basis function (RBF), the sigmoid function, and the linear 21 

function) and compared the results through a cross-validation approach.  As can be seen, the 22 

first two models fail to predict the demand flows successfully and the error is higher than the 23 

baseline (e.g. 1.47 and 1.71 to 1.37). The best result for SVM prediction was obtained when 24 

using the Linear kernel (with critical parameter of C=0.1), for a 45min prediction in the 25 

future. This seems to perform similarly to predictions for the next 15 or 60min time-interval. 26 

However, overall, the accuracy results for SVM are significantly worse than those of DT 27 

prediction. Lastly, we present the results of the ARMA model, for which we need to 28 

determine the p and q parameters. Defining various parameters for each OD pair requires a 29 

vast amount of modelling effort. This process would be extremely computationally intensive 30 

if we need to execute the demand forecasting for any incidents that may arrive in the road 31 

network. As a result, we consider the specifications of a unique model for all OD demands 32 

and estimate the factors of each OD pair. To identify p and q, we test various combinations 33 

of these parameters on all OD demand series ((1,0,0,), (2,0,0) and (0,0,1)). Overall, the 34 

performance of the traditional AR and MA models show a medium level of accuracy 35 

compared to the others and the MAE errors are similar to those of SVM only for a 45min 36 

prediction.  37 

Overall, we can conclude that DTs are outperforming all other models and represent our final 38 

choice for conducting the rest of the experiments presented in this paper.  39 
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Table 2. Predicted demand using different predictors. 1 

Predictor 

Prediction window 

15 min 30 min 45 min 60 min 

Total 

error 
MAE 

Total 

error 
MAE 

Total 

error 
MAE 

Total 

error 
MAE 

Baseline  1283 1.37 2785 1.49 4519 1.61 6953 1.85 

DTs          

 Max=2 762 0.81 2785 0.79 2278 0.81 3077 0.82 

 Max=5 606 0.65 1152 0.61 1743 0.62 2533 0.68 

 unconstraint 660 0.70 1216 0.65 1816 0.65 2645 0.70 

SVM          

 RBF (C=0.1) 1381 1.47 2613 1.40 3738 1.33 4797 1.28 

 Sigmoid (C=0.1) 1592 1.71 3017 1.67 4519 1.54 5545 1.48 

 Linear (C=0.1) 832 0.89 1676 0.89 2462 0.87 3327 0.89 

 Linear (C=1.0) 852 0.91 1693 0.90 2490 0.89 3376 0.90 

ARMA          

 (1,0,0) 869 0.93 1652 0.88 2459 0.87 3377 0.90 

 (2,0,0) 883 0.94 1678 0.90 2517 0.89 3509 0.93 

 (0,0,1) 1009 1.08 1876 1.00 2762 0.98 3864 1.03 

1.6.Incident impact analysis: 2 

For evaluating the potential of our proposed framework, we consider a real reported incident 3 

along the Victoria Rd with characteristics showcased in Table 3 (as received from the real-4 

life incident stream in the Traffic Management Centre - TMC). The incident took place at 5 

7:58 AM on the 11th of October 2017 and affected the traffic in both directions. 6 

 7 

Table 3. CMCS incident data example 8 
(X, Y) (9684462, 4425168)  

Date 11/10/2017 

Start Time Plain 7:58:19 AM 

End Time Plain 8:23:00 AM 

Incident Description Accident: Accident 

Location Description 
VICTORIA RD PARK AVE DRUMMOYNE 

2047 CANADA BAY (LGA) NSW 

Direction BOTH DIRECTIONS 

Affected Lanes ALL LANES 

Sector ID ICMT 

Inc Source ICEMS INCIDENT AND ISENTRY 

Operator ---- 

ICEMS Street VICTORIA RD 

ICEMS Suburb DRUMMOYNE 

UBD Ref 235 A/4 

ed duration 25 

rowid A6C4B8F8-5617-4E12-B170-973234EA31B0 

 9 
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First, the accident information is imported into the simulation platform. The corresponding 1 

affected link IDs from the traffic simulation are determined based on the accident location. 2 

For example, according to the presented data, the accident impacts both travel directions, and 3 

thus, two affected sections are selected. Then, an incident scenario containing the number of 4 

blocked lanes, start time and incident duration is generated. Next, the Decision-Tree demand 5 

prediction module is triggered to forecast the travel demand starting from 8:00 AM for the 6 

next hour. Subsequently, the simulation model is executed with consideration of the 7 

developed incident scenario. Since the incident is located in a crucial link, we explore the 8 

impact of the incident duration by analyzing the total travel time in the network and the extra 9 

delay it caused in next hour. 10 

Figure 6 (a) shows the location of the car accident. The accident took place in the main road 11 

and according to the reported data it impacted all lanes in both directions. No further details 12 

about how the accident affected the area exist in the database. Therefore, different 13 

interpretations of affected lanes can be considered. For example, the accident may have 14 

physically blocked all the lanes or it caused some speed reduction for crossing vehicles. Since 15 

it is unlikely that for half an hour all lanes are fully blocked in two directions, we assume 16 

only two lanes were blocked and vehicles could slowly cross the accident area with some 17 

lane changing near the accident. We executed the simulation based on the above assumption 18 

and the simulated speed and delay ratio are plotted for two different location points along the 19 

corridor: point A taken near the accident location and point B towards west, 1,600 meters 20 

away from the accident. Figure 6 (b) and (c) show the severe drop in the speed near the 21 

incident location (Point A) and consequently, the delay/travel time ratio increases 22 

significantly at this point. The impact of the accident can be observed upstream with a time 23 

lag and less severity. Next, we compare the simulated travel time obtained for the 24 

eastbound/westbound directions along the entire Victoria Rd corridor in two scenarios: with 25 

the reported incident and without the incident (this would be regular travel times in normal 26 

conditions) in Figure 6 (d) and (e). One can observe that the reported incident at 07: 58AM 27 

induces an increase of almost 12 min on the eastbound direction (from 36-48 min) and 13 28 

minutes in the westbound direction (from 22 to 35 minutes). 29 

 30 

 31 
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Figure 6. (a) Accident location, (b) speed (c) delay ratio profiles for Point A and B. Journey 1 

times with (red) and without (blue) the incident: (d) Eastbound, (e) Westbound. 2 
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CONCLUSION 1 

Managing an incident situation effectively is one of the critical challenges that TMCs deal 2 

with on a daily basis. Methodological advances in both data-driven and computer-based 3 

simulation modeling provide a unique opportunity to predict traffic conditions accurately in 4 

real-time. This paper presented a generic framework for incident management proposed for 5 

use in the TMC of Sydney, Australia, by using integrated data-driven and traffic simulation 6 

models. We first introduced a generic demand estimation and prediction model which 7 

provides the essential input for the traffic simulation model to forecast the traffic features 8 

under non-recurrent incident conditions.  9 

The proposed approach initially calibrates the traffic model based on the most recent 10 

observed link traffic count and then uses them for demand prediction for the next time-11 

interval. A bi-level dynamic OD demand estimation problem was formulated and solved 12 

iteratively. Thereafter, we showcased that Decision Trees outperformed the baseline, SVM 13 

and ARMA models in terms of prediction accuracy. Finally, we investigated an incident’s 14 

impact by making use of the proposed framework outputting the predicted travel time/delay 15 

along the affected corridor. Several limitations exist for this study that will be addressed in 16 

our future work: 17 

• We assumed that travellers respond to the bad traffic conditions by changing routes 18 

in peak hours. However, for critical traffic disruptions, we should consider mode 19 

shifting and trip cancelation in short-term traffic forecasting.  20 

• Although the current simulation network provides the commuters with some re-21 

routing options, the selected area has limited major parallel routes to consider 22 

strategic re-route choices of travellers under severe incident conditions. We plan to 23 

expand our simulation modelling to larger subnetwork areas. 24 

• For the real-time incident impact application, incident time duration should be 25 

predicted based on the incident features. Another AI-engine will be added to the 26 

incident management platform to provide an incident duration estimation for the 27 

traffic simulator when an incident occurs. This estimation can be updated with more 28 

incident data.  29 

• In order for our proposed modelling framework to be used for real-life traffic 30 

management operations, it requires exact details of the incident location (inside 31 

intersection or not, beginning and ending of road link), the length of the affected 32 

incident area and exact number of blocked lanes. This can be challenging for 33 

operational centres to provide in real-time. 34 

• The performance of the simulation results should be evaluated based on 35 

complementary measured traffic data including travel time, flow and queue length.  36 
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• The traffic model includes private cars and buses. The other types of traffic modes 1 

such as taxi, freight and active modes can be exclusively considered in the model. 2 

This will help us to replicate the simulated congestion more accurately.  3 
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