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Abstract 44 

A comprehensive understanding of the effects of agricultural management on climate–crop 45 

interactions has yet to emerge.  Using a novel wavelet–statistics conjunction approach, we analysed the 46 

synchronisation amongst fluxes (net ecosystem exchange NEE, evapotranspiration and sensible heat 47 

flux) and seven environmental factors (e.g., air temperature, soil water content) on 19 farm sites across 48 

Australia and New Zealand.  Irrigation and fertilisation practices improved positive coupling between 49 

net ecosystem productivity (NEP = −NEE) and evapotranspiration, as hypothesised.  Highly intense 50 

management tended to protect against heat stress, especially for irrigated crops in dry climates.  By 51 

contrast, stress avoidance in the vegetation of tropical and hot desert climates was identified by reverse 52 

coupling between NEP and sensible heat flux (i.e., increases in NEP were synchronised with decreases 53 

in sensible heat flux).  Some environmental factors were found to be under management control, 54 

whereas others were fixed as constraints at a given location.  Irrigated crops in dry climates (e.g., 55 

maize, almonds) showed high predictability of fluxes given only knowledge of fluctuations in climate 56 

(R2 > 0.78), and fluxes were nearly as predictable across strongly energy- or water-limited 57 

environments (0.60 < R2 < 0.89).  However, wavelet regression of environmental conditions on fluxes 58 

showed much smaller predictability in response to precipitation pulses (0.15 < R2 < 0.55), where 59 

mowing or grazing affected crop phenology (0.28 < R2 < 0.59), and where water and energy 60 

limitations were balanced (0.7 < net radiation ⁄ precipitation < 1.3; 0.27 < R2 < 0.36).  By incorporating 61 

a temporal component to regression, wavelet–statistics conjunction provides an important step forward 62 

for understanding direct ecosystem responses to environmental change, for modelling that 63 

understanding, and for quantifying nonstationary, nonlinear processes such as precipitation pulses, 64 

which have previously defied quantitative analysis. 65 

key words:  wavelet-statistics conjunction, eddy covariance, precipitation pulses, irrigation, 66 

agriculture, environmental variability 67 

68 
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1 Introduction 69 

With the required expansion of agriculture necessary for feeding future populations, it is estimated 70 

that 109 ha of native and unmanaged ecosystems will be transformed into agricultural uses (Khan and 71 

Hanjra, 2009).  The associated changes in land cover, land use, and thus ecosystem characteristics 72 

have well-established effects on the partitioning of energy and mass fluxes at the land surface.  Shifts 73 

in albedo, physiology and mass and energy balances can affect weather patterns and regional climate 74 

as a result of changes in grazing, irrigation or biomass burning (Beringer et al., 2015; Beringer et al., 75 

2011; Jeong et al., 2014; Lara et al., 2017; Lynch et al., 2007; Mueller et al., 2017; Shao et al., 2017; 76 

Yang et al., 2017).  As a consequence, biogeochemical cycles will likely be altered, including those of 77 

water, carbon, energy and nutrients (Beringer et al., 2011; Foley et al., 2005; Lara et al., 2017).  78 

Therefore, the transformation of unmanaged landscapes into managed agricultural systems (or vice-79 

versa, as is sometimes the case with reforestation of previously cleared agricultural lands) will alter 80 

seasonal and annual biogeochemical cycles from local to global scales (Beringer et al., 2011; 81 

Cunningham et al., 2015). 82 

Nomenclature 
 

Environmental factors 

ϕ short-term dryness index 

ρv absolute humidity (g m−3) 

θ soil water content (m3 m−3) 

D vapour pressure deficit (kPa) 

G ground heat flux (W m−2), (MJ m−2 d−1) 

P precipitation (mm d−1) 

q specific humidity (g g−1) 

Rn net radiation (W m−2), (MJ m−2 d−1) 

Ta air temperature (°C) 

Ts soil surface temperature (°C) 

Turbulent fluxes and flux ratios 

BR Bowen ratio 

E evapotranspiration (mm d−1) 

H sensible heat flux (W m−2), (MJ m−2 d−1) 

NEE net ecosystem exchange of carbon (µmol m−2 s−1), (gC m−2 d−1) 

NEP net ecosystem productivity (µmol m−2 s−1), (gC m−2 d−1) 

−NEE net ecosystem productivity (in regression of NEE) (µmol m−2 s−1), (gC m−2 d−1) 

 

Wavelets 

Ψ mother wavelet 

amax timescale of peak coherence (i.e., peaked squared correlation) 

CWT continuous wavelet transform 

DWT discrete wavelet transform 

Statistics 

αi ith component loading 

βi regression coefficient for the ith component 

ε regression model error 

λi ith eigenvalue 

r2 squared correlation, coherence 

R2 coefficient of determination 

envPCi ith principal component for environmental factors 

fluxPCi ith principal component for turbulent fluxes 

wCCA wavelet canonical correlation analysis 

wMLR wavelet multiple linear regression 

wPCA wavelet principal components analysis 
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Agricultural systems and yield are vulnerable to weather extremes and climate change (He et al., 83 

2014a; He et al., 2018; Jin et al., 2017; Luo et al., 2018; Mallawaarachchi et al., 2017).  Drought and 84 

heatwave present a risk of crop failure, although damage can be ameliorated through irrigation and 85 

associated evaporative cooling (Adamson et al., 2017; Dreccer et al., 2018; Ellis and Albrecht, 2017; 86 

Mueller et al., 2017; Rashid et al., 2018).  However, too much precipitation can also present a great 87 

risk of crop failure, especially when extreme precipitation occurs aseasonally (Ellis and Albrecht, 88 

2017).  Between these extremes of droughts and flooding rains, mild water stress might not reduce 89 

productivity and yield, depending upon the selection and performance of drought-tolerant genotypes 90 

(Cai et al., 2017).  Furthermore, climate change can have contrasting effects on winter and summer 91 

crops (Cammarano and Tian, 2018).  There are strong regional differences in the responses of crops 92 

and ecosystems to climate (Dreccer et al., 2018; Hao et al., 2018; Raupach et al., 2013), particularly 93 

with respect to water- versus energy-limited ecosystems (Akuraju et al., 2017).  These regional 94 

differences in environmental conditions inform the economic basis of agricultural management 95 

decisions (Meier et al., 2017; Regan et al., 2017).  As such, there is an urgent need to identify how 96 

management practices across regions might affect the response of biogeochemical fluxes to climate 97 

and other environmental factors. 98 

Agricultural management is intended to ameliorate unfavourable environmental conditions, thus 99 

management type and intensity can have a substantive effect on water and carbon dynamics (e.g., 100 

Behtari et al., 2019; Chi et al., 2016; Davis et al., 2010; Kirschbaum et al., 2017; Laubach et al., 2019; 101 

Moinet et al., 2019; Orgill et al., 2017; Ratcliffe et al., 2019; Schipper et al., 2019; Waters et al., 2017; 102 

Whitehead et al., 2018; Zeeman et al., 2010; Zhou et al., 2017).  Moreover, water and carbon cycles of 103 

agricultural systems are complex, influenced heavily by location, soil type and management practises 104 

such as cultivar selection, tillage, fertiliser application, irrigation, crop rotation and management of 105 

residue and wastewater (Drewniak et al., 2015; Thompson et al., 1999; Waldo et al., 2016).  106 

Management practices affect soil carbon stocks in a multitude of ways, including through changes to 107 
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primary productivity, biomass removal and decomposition (Kirschbaum et al., 2017; Whitehead et al., 108 

2018).  Agricultural management practices such as irrigation and grazing have direct and indirect 109 

effects on water-use efficiency (productivity ⁄ transpiration), evapotranspiration and CO2 emissions 110 

(Kirschbaum et al., 2017; Tallec et al., 2013; Wagle et al., 2017a; Wang et al., 2017).  In this study, the 111 

effects of management practices on productivity, evaporation and energy fluxes were investigated 112 

from across the agricultural sectors of Australia and New Zealand, ranging from grazed rangelands 113 

(low-intensity management) to irrigated/fertilised croplands and high-density dairy farms (high-114 

intensity management). 115 

Across Australia and New Zealand, ca. 52% of the landscape is managed at varying intensity for 116 

food and fibre production (Australian Bureau of Statistics, 2018; Statistics New Zealand, 2015).  117 

Agricultural ecosystems in Australia and New Zealand cover a vast range of climate and 118 

environmental conditions, from semiarid rangelands to the humid oceanic climate of New Zealand.  119 

Continuous measurements of fluxes and climate conditions across this range provides a wealth of 120 

information, but a method of statistical inference has yet to emerge which is not confounded by time-121 

series measurements (Hargrove and Pickering, 1992; Murphy et al., 2010).  Recently, wavelet-122 

conjunction analysis has laid a firm theoretical framework for statistical inference of time series (Rhif 123 

et al., 2019); some examples are wavelet eigenvalue regression (Abry and Didier, 2018), wavelet 124 

principal components analysis (Cleverly et al., 2016a) and discrete wavelet multiple linear regression 125 

(Guan et al., 2015; He and Guan, 2013; He et al., 2014b).  Building on this previous work, we used a 126 

novel wavelet–statistics conjunction to evaluate multivariate linear regression relationships between 127 

fluxes (net ecosystem exchange of carbon NEE, evapotranspiration E and sensible heat flux H) and 128 

environmental factors (e.g., air temperature Ta, specific humidity q, vapour pressure deficit D, soil 129 

water content θ, net radiation Rn, soil temperature Ts and ground heat flux G; see nomenclature for a 130 

list of factors and symbols).  These environmental factors are not independent, thus our approach first 131 

included a wavelet–principal components analysis to identify dependencies amongst environmental 132 



 

 
7 

factors and account for those interactions in subsequent regression analyses.  Relationships between a 133 

flux and a principal component can be associated with the full suite of environmental conditions 134 

experienced at a site, as defined by the principal component or components which together explain a 135 

majority of the variability in a dataset.  For example, if fluctuations in Ta and D were synchronised and 136 

thus both had large loadings in the same principal component, any relationship between a flux and that 137 

principal component during subsequent regression analysis would then be associated with coordinated 138 

fluctuations in both Ta and D, each in proportion to its dependence on the other.  This proportion 139 

would then be relative to each factor's relative, coordinated amplitude and phase (i.e., component 140 

loading in principal components analysis), the degree to which their principal component is related to a 141 

flux (from regression analysis), and the proportion of the variation which is explained by their 142 

principal component (i.e., the eigenvalue of the principal component).  This study aims to synthesise 143 

the results from eddy covariance measurements in agricultural ecosystems across the OzFlux research 144 

network (http://ozflux.org.au; (Beringer et al., 2016)) of the Terrestrial Ecosystem Research Network 145 

(Cleverly et al., 2019) and additional independent sites to address the following research question: 146 

How do fluxes under different types of management activities (grazed rangelands, dryland 147 

farming, irrigated agriculture, and high density grazing with large input requirements) differ in 148 

their responses to environmental drivers?  149 

We hypothesised that: (i) coupling amongst fluxes was expected to be similar across sites within a 150 

level of management intensity (low, intermediate, high) because carbon and water fluxes will 151 

experience greater physiological coupling if management plays a role in ameliorating crop stress; (ii) 152 

coupling amongst environmental factors would be weakened by increasingly intense management, due 153 

to the divergence of local and regional climate under highly intense management; and (iii) 154 

relationships between fluxes and environmental factors would be similar within a level of management 155 

intensity (low, intermediate, high) as a result of hypotheses (i) and (ii).  In this work, eddy covariance 156 

sites will be identified by their FLUXNET code (AU-xxx, NZ-xxx). 157 
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2 Agricultural sites description 158 

Nineteen sites in Australia and New Zealand with uninterrupted time series of fluxes and 159 

environmental factors during at least one complete growing season were identified for analysis (Table 160 

1, Fig. 1).  Because uninterrupted time series are required for wavelet analysis, site selection was 161 

restricted to those which contained few, small gaps during the peak of the growing season.  162 

Agricultural ecosystems were classified by management intensity:  low, intermediate and high.  Due to 163 

restrictions on the distribution of eddy covariance sites, only one or two datasets sometimes exist for a 164 

given management practice (e.g., dryland food crops, n = 1), thus management intensity categories 165 

could not be further divided by specific management practice without losing statistical power and 166 

rigour.  Management at low to negligible intensity included only Australian grazed rangelands, which 167 

are stocked at very low density and are absent of land clearing, irrigation and fertilisation.  At the other 168 

extreme, sites with highly intense management have been cleared and levelled, although the regular 169 

receipt of irrigation and fertilisation was used to define the high-intensity management class, both for 170 

crops and for dairy pastures.  Management practices at intermediate-intensity sites often included land 171 

clearing and nursery support (e.g., planting, initial but not continuing irrigation or fertilisation for 172 

promoting establishment only).  Sites with moderate-intensity management included improved 173 

pasturelands and unirrigated (dryland) crops, either for consumption by people (food crops) or as 174 

forage for livestock (forage crops).  Food crops are generally harvested at the end of the growing 175 

season, whereas forage crops are typically harvested repeatedly throughout the growing season.  These 176 

19 sites represent common agricultural activities across a wide range of regions and climates; see 177 

supplementary information S1 for a detailed description of the agricultural land use at each site.   178 
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Figure 1.  Locations of TERN OzFlux sites used in the analysis and regional Köppen–

Geiger climate zones.  Sites are categorised by management intensity (rangeland, 

rainfed agriculture, irrigated agriculture).  179 

Table 1. Site details, major land use and management intensity.   180 

Site Lat/Long Elevation 
(m asl) 

Dominant 
vegetation Major soil type Temporal 

coverage Reference 

AU-TTE -22.29, 133.64 600 Hummock grassland 
savanna 

Red kandasol, 
drainage sand Est. 2012 Cleverly et al. (2016c) 

AU-ASM -22.28, 133.25 600 Mulga woodland 
savanna Red kandasol Est. 2010 Cleverly et al. (2013); 

Eamus et al. (2013) 

AU-Stp -17.15, 133.35 228 Mitchell grassland Grey vertosol Est. 2008 Hutley et al. (2011) 

AU-Otw -38.51, 142.80 52 Pasture Mottled sandy yellow 
(Sodosol) 2007–2011 Etheridge et al. (2011); 

Loh et al. (2009) 

AU-DaP -14.06, 131.32 75 Pasture Red kandasol 2007–2013 Hutley et al. (2011) 

NZ-Oxf -43.26, 172.21 235 Converted paddock Taitapu Typic Orthic 
Gley 2005–2010 Brown et al. (2009) 

AU-Rig -36.66, 145.58 152 Pasture Sodosol Est. 2010  Beringer et al. (2016) 

AU-Gat -37.39, 141.96 255 Winter pasture Brown 
Chromosol/Sodosol 2015–2015 Dresel et al. (2018) 

AU-Emr -23.86, 148.48 170 Chick peas, wheat 
& pasture Grey vertosol 2011–2014 Berko et al. (2012) 

AU-Sam -27.39, 152.88 90 Improved pasture Redoxic hydrosol Est. 2010 van Delden et al. (2016) 
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Site Lat/Long Elevation 
(m asl) 

Dominant 
vegetation Major soil type Temporal 

coverage Reference 

NZ-BFu -43.59, 171.93 204 Kale Lismore silty loam 2012–2014 Hunt et al. (2016) 

NZ-ADn -43.65, 172.35 34 Lucerne Stony Balmoral silty 
loam Est. 2015 This study 

AU-Lox -34.47, 140.66 36 Almond orchard Mallee highland 
(Sodosol) 2008–2009 Stevens et al. (2012) 

AU-Cm1 -34.76, 146.02 120 Broadacre crops 
(maize & wheat) 

Transitional red 
brown earth 2010–2011 Vote et al. (2015) 

AU-Cm2 -34.93, 145.82 120 Broadacre crops 
(rice) 

Transitional red 
brown earth 2010–2011 Vote et al. (2015) 

NZ-Sco -37.77, 175.38 41 Pasture for dairying Matangi silt loam Est. 2007 Mudge et al. (2011); 
Rutledge et al. (2015) 

NZ-BFm -43.59, 171.93 204 Pasture for dairying Lismore silty loam 2012–2015 Hunt et al. (2016) 

NZ-ADw -43.64, 172.35 33 Lucerne Stony Balmoral silty 
loam Est. 2015 Laubach et al. (2019) 

To constrain the large range of regional variation across Australia and New Zealand, four sets of co-181 

located sites were included in this study.  The paired grazed-rangeland sites AU-ASM and AU-TTE 182 

were co-located on Pine Hill Cattle station in semiarid central Australia, where grazing pressure ranges 183 

from small in the woodland at AU-ASM (Acacia spp.) to negligible in the unpalatable hummock 184 

grasses of AU-TTE (Triodia schinzii).  Measurements of three "paired" irrigated broadacre crops were 185 

co-located at relatively close proximity in the Coleambally irrigation area (AU-Cm1, AU-Cm2), where 186 

irrigation intensity was highest for rice (Oryza sativa), intermediate for summer-season maize (Zea 187 

mays, also known as corn in some parts of the world), and smallest for wheat (Triticum sativa) due to 188 

reduced evaporative demand in the winter.  In both sets of paired sites in New Zealand, highly intense 189 

management in the form of irrigation and fertilisation was compared to intermediate-intensity 190 

management for livestock, either as a rainfed forage crop or an intermittently grazed pasture.  One pair 191 

of sites was located on Beacon Farm, where the comparison was between irrigated and fertilised 192 

ryegrass (Lolium perenne) and clover (Trifolium repens) pasture versus rainfed kale (Brassica 193 

oleracea) (NZ-BFm and NZ-BFu, respectively; Laubach and Hunt, 2018).  The second set of paired 194 
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sites in NZ was at Ashley Dene farm, where the comparison was between an irrigated lucerne 195 

(Medicago sativa) crop (NZ-ADw), which is also known as alfalfa in some parts of the world, and a 196 

rainfed lucerne crop (NZ-ADn). 197 

3 Methods 198 

3.1 Measurements:  eddy covariance and environmental conditions 199 

Most of the eddy covariance sites across the OzFlux network use a standard set of instruments, 200 

although there is some variation due to site-specific limitations (Isaac et al., 2017).  Detailed 201 

descriptions of sites, flux tower installation and instrumentation can be found in the references of 202 

Table 1.  Each EC system was operated at a measurement frequency of 10 or 20 Hz, and fluxes were 203 

computed from covariance with vertical wind speed over a 30-minute interval except at AU-Otw, 204 

where fluxes were computed hourly.  Flux data were processed following Isaac et al. (2017).  NEE was 205 

assumed to be equal to net carbon flux Fc, where NEE = Fc =  ′w ′c , w is vertical wind speed, c 206 

represents atmospheric carbon dioxide density, primes represent fluctuation around the mean, and the 207 

overbar represents a temporal average.  Similarly, H was determined as H = 
 
ρaCp ′w ′Ta , where ρa is air 208 

density and Cp is the specific heat of air.  E was measured as a mass flux  Emass = ′w ′ρv ρw  and 209 

converted to a 30-minute depth equivalent (i.e., converted to units of mm 30-min-1), where ρv is 210 

absolute humidity and ρw is the density of water.  Latent heat flux (LE) was determined as the product 211 

of Lv and Emass, where Lv is the latent heat of vaporisation and was computed following Stull (1988) as 212 

a function of independently measured air temperature (Isaac et al., 2017).  See Isaac et al. (2017) for a 213 

detailed description of quality control and post-processing procedures used in TERN OzFlux. 214 

Because wavelet analysis requires uninterrupted time series, the potential for gapfilling bias is 215 

present.  Biases introduced during gap filling were minimised by (i) selecting a short analysis period 216 

which avoids large gaps (61 days, see §3.2) and (ii) careful screening of each dataset for obvious errors 217 
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introduced during gapfilling (e.g., vapour pressure deficit < 0).  However, screening came with the 218 

potential expense of under-representing agricultural sites in areas of high farm density (cf. Figs. 1 and 219 

S1).  Gapfilled flux datasets were obtained from http//data.ozflux.org or from individual sites.  Local 220 

optimisation of gapfilling procedures is essential for minimising bias (Isaac et al., 2017), just as local 221 

site knowledge is key for providing confidence and consistency in statistical findings (van Gorsel et 222 

al., 2018).  Wavelet–statistics conjunction could provide a powerful tool for comparing gapfilling 223 

approaches (e.g., Moffat et al., 2007), although a complete evaluation of gapfilling procedures should 224 

not be limited to agricultural sites and is beyond the scope of the current study. 225 

Gaps in fluxes (NEE, E, H) were filled using either a self-organising linear output (SOLO) model 226 

(Eamus et al., 2013; Isaac et al., 2017) or a feed-forward artificial neural network in DINGO (Dynamic 227 

INtegrated Gap-filling and partitioning for OzFlux; Beringer et al., 2017) following Moffat et al. 228 

(2007).  SOLO is an artificial neural network which (Eamus et al., 2013; Hsu et al., 2002):  (a) 229 

employs a linear statistical kernel, resulting in minimal errors due to over-training; (b) provides access 230 

to intermediate products (i.e., SOLO is not a black box type of artificial neural network); and (c) 231 

produces small root mean square errors when used for gap filling.  Gaps in meteorology were filled 232 

using a variety of strategies depending on data availability and suitability, including:  SOLO trained on 233 

environmental drivers from a paired tower (Cleverly et al., 2016c); linear interpolation for small gaps 234 

(≤ 60 minutes); regressions from ancillary data of automatic weather stations operated by the Bureau 235 

of Meteorology (in Australia); output from a numerical weather prediction model known as the 236 

Australian community climate Earth system simulator (ACCESS); output from the ERA-Interim 237 

reanalysis product; or vegetation indices from the moderate resolution imaging spectroradiometer 238 

(MODIS) satellite (Isaac et al., 2017).  Eight of the datasets used in this study contained no gaps in 239 

measurements of environmental factors during the chosen analysis period.  Gaps in environmental 240 

factors amounted to 0.08 ± 0.04% of observations across all sites, exclusive of the grazed rangeland 241 

AU-Stp where gaps in environmental factors amounted to 35% of the data during the chosen analysis 242 
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period.  Nonetheless, AU-Stp was retained in the analysis to maintain a minimum sample size of three 243 

grazed rangeland sites for analysis in this study. 244 

3.2 Analysis periods 245 

Analysis periods of 61 days were chosen to span the peak of the growing season, defined by 246 

consistently low (i.e., highly negative) values of daytime NEE, but also to minimise overlap with 247 

green-up or senescence periods.  Data records for some sites were restricted to a single year, 248 

particularly for those from irrigated broadacre crops (AU-Cm1, AU-Cm2), thus a single growing 249 

season was chosen for evaluation of the 19 sites in the study.  Measurements were collected in an 250 

anomalously wet year from AU-Cm1 and AU-Cm2, thus a growing season for sites with multi-year 251 

records was chosen as the most productive year in the record.  Differences in climate across sites and 252 

years are important confounding factors for comparisons across the network, and these issues cannot 253 

be ignored.  However, a survey of agricultural management conducted from flux measurements 254 

collected simultaneously is impractical, thus we will interpret the results of this study under the 255 

conditions observed during the growing season under analysis (Table 2). 256 

Table 2. Sixty-one-day analysis period with average (range) of daily fluxes and key environmental conditions for 257 

each site during that period.  NEE:  net ecosystem exchange of carbon; E:  evapotranspiration; H:  sensible 258 

heat flux; D:  vapour pressure deficit; θ:  soil water content; Rn:  net radiation; BR:  Bowen ratio (=∑[H] ⁄ ∑[LE]; 259 

LE:  latent heat flux) 260 

Site 
Date range 

Season 

NEE 
(g m−2 d-1) 

E 
(mm d−1) 

H 
(MJ m−2 d−1) 

D 
(kPa) 

θ 
(m3 m−3) 

Ta 
(°C) 

Rn 
(MJ m-2 d−1) 

BR 
(-) 

AU-TTE a 

15/1–17/3/2017 

Summer–Autumn 

−1.7 

(−2.0–0.4) 

3.1 

(1.2–4.8) 

4.7 

(0.5–7.3) 

2.40 

(0.93–3.51) 

0.047 

(0.018–0.14) 

28.4 

(22.1–32.1) 

15.2 

(2.1–21.7) 

0.7 

(0.2–1.4) 

AU-ASM a 
15/1–17/3/2011 

Summer–Autumn 

−0.2 

(−1.7–2.3) 

2.8 

(0.7–5.1) 

5.5 

(0.9–13.2) 

1.75 

(0.25–4.46) 

0.092 

(0.034–0.26) 

27.3 

(22.8–34.9) 

15.0 

(5.3–19.9) 

1.3 

(0.2–6.5) 

AU-Stp 
15/2–17/4/2011 

Summer–Autumn 

−1.9 

(−4.4–−0.1) 

4.0 

(1.5–6.0) 

2.4 

(0.0–4.0) 

0.98 

(0.36–1.82) 

0.22 

(0.11–0.27) 

25.9 

(21.4–28.5) 

11.9 

(2.5–18.5) 

0.2 

(0.0–0.6) 



 

 
14 

Site 
Date range 

Season 

NEE 
(g m−2 d-1) 

E 
(mm d−1) 

H 
(MJ m−2 d−1) 

D 
(kPa) 

θ 
(m3 m−3) 

Ta 
(°C) 

Rn 
(MJ m-2 d−1) 

BR 
(-) 

AU-Otw 
1/9–31/10/2009 

Spring 

−1.7 

(−3.8–2.0) 

1.4 

(0.4–3.3) 

0.2 

(−3.0–2.1) 

0.26 

(0.00–0.7) 

0.36 

(0.22–0.42) 

11.1 

(7.7–21.2) 

4.0 

(0.2–7.5) 

1.2 

(0.2–3.2) 

AU-DaP 
31/12/2012–2/3/2013 

Wet 

−3.8 

(−7.3–0.4) 

4.5 

(1.0–6.2) 

0.7 

(−1.5–3.9) 

0.98 

(0.34–1.65) 

0.13 

(0.061–0.18) 

27.8 

(24.0–31.1) 

13.1 

(1.4–17.8) 

0.0 

(−0.2–0.4) 

NZ-Oxf 
15/12/2006–14/2/2007 

Summer 

−0.1 

(−5.7–4.6) 

1.9 

(0.03–7.7) 

2.0 

(−2.6–5.8) 

0.43 

(0.06–1.57) 

0.50 

(0.46–0.52) 

13.5 

(7.3–21.7) 

8.4 

(−0.4–18.0) 

1.1 

(−17.2–7.5) 

AU-Rig 
5/6–5/8/2014 

Winter 

−2.3 

(−3.9–0.5) 

1.0 

(0.5–3.1) 

−0.3 

(−3.0–2.0) 

0.20 

(0.00–0.51) 

0.49 

(0.38–0.52) 

8.6 

(4.2–13.3) 

2.4 

(−0.8–5.8) 

0.0 

(−1.0–0.7) 

AU-Gat 
17/8–17/10/2015 

Winter–Spring 

−3.2 

(−7.1–2.0) 

1.2 

(0.1–4.0) 

1.0 

(−3.3–6.2) 

0.51 

(0.09–2.38) 

0.20 

(0.10–0.28) 

11.8 

(5.9–23.2) 

7.1 

(1.4–13.0) 

0.6 

(−1.9–3.6) 

AU-Emr 
5/2–6/4/2012 

Summer–Autumn 

0.3 

(−4.4–3.2) 

1.8 

(0.4–4.3) 

5.0 

(0.3–8.1) 

1.37 

(0.22–2.12) 

0.13 

(0.08–0.21) 

25.3 

(21.6–29.3) 

12.7 

(2.9–18.3) 

1.7 

(0.1–6.0) 

AU-Sam 
15/12/2011–14/2/2012 

Summer 

−2.2 

(−4.9–2.4) 

2.4 

(1.1–4.3) 

2.8 

(0.3–5.5) 

0.82 

(0.24–2.41) 

0.51 

(0.39–0.58) 

23.1 

(18.8–28.0) 

12.1 

(3.8–20.1) 

0.5 

(0.1–1.0) 

NZ-BFu b 
19/1–21/3/2014 

Summer–Autumn 

−2.1 

(−6.8–4.0) 

2.3 

(0.2–5.3) 

2.7 

(−4.8–8.2) 

0.38 

(0.01–1.60) 

0.15 

(0.11–0.21) 

13.8 

(7.8–20.7) 

9.4 

(−0.4–17.7) 

0.5 

(−1.7–1.8) 

NZ-ADn c 
22/1–24/3/2018 

Summer–Autumn 

−1.0 

(−8.5–4.6) 

2.4 

(−0.1–6.5) 

1.8 

(−8.5–7.5) 

0.50 

(0.05–1.52) 

0.22 

(0.10–0.35) 

16.3 

(9.2–24.0) 

10.1 

(1.4–19.2) 

0.3 

(−4.8–1.5) 

AU-Lox 
11/11/2008–11/1/2009 

Spring–Summer 

−6.3 

(−9.0–2.2) 

6.5 

(2.8–9.7) 

−1.8 

(−10.6–2.8) 

1.35 

(0.36–2.92) 

0.11 

(0.08–0.15) 

20.0 

(11.8–27.4) 

17.3 

(5.3–22.2) 

−0.1 

(−0.6–0.2) 

AU-Cm1 d 
(Maize) 

4/12/2010–3/2/2011 

Summer 

−15.4 

(−22.9–
−1.2) 

5.6 

(2.6–8.0) 

−0.3 

(−6.9–3.9) 

1.48 

(0.46–3.45) 

not 
measured 

23.2 

(13.9–32.1) 

18.6 

(3.9–23.7) 

−0.02 

(−0.4–0.3) 

AU-Cm1 d 
(Wheat) 

8/8–8/10/2011 

Winter–Spring 

−4.9 

(−8.8–0.9) 

2.4 

(0.9–5.1) 

0.3 

(−4.0–3.4) 

0.76 

(0.08–3.02) 

not 
measured 

16.0 

(7.4–26.5) 

7.1 

(−0.8–12.2) 

0.07 

(−0.9–0.7) 

AU-Cm2 d 
15/12/2010–14/2/2011 

Summer 

−9.7 

(−14.7–
−1.8) 

5.9 

(3.3–9.5) 

−1.9 

(−6.7–1.9) 

1.10 

(0.12–2.64) 

not 
measured 

22.0 

(13.4–29.1) 

21.5 

(6.1–27.7) 

−0.1 

(−0.4–0.2) 

NZ-Sco 
15/12/2008–14/2/2009 

Summer 

−2.8 

(−7.0–7.3) 

3.7 

(1.1–5.9) 

2.5 

(−0.5–6.2) 

0.64 

(0.25–1.07) 

0.42 

(0.28–0.57) 

17.6 

(14.1–23.3) 

14.8 

(4.1–20.7) 

0.3 

(−0.1–1.3) 
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Site 
Date range 

Season 

NEE 
(g m−2 d-1) 

E 
(mm d−1) 

H 
(MJ m−2 d−1) 

D 
(kPa) 

θ 
(m3 m−3) 

Ta 
(°C) 

Rn 
(MJ m-2 d−1) 

BR 
(-) 

NZ-BFm b 
15/12/2013–14/2/2014 

Summer 

−2.9 

(−9.7–3.4) 

3.4 

(0.2–8.0) 

0.5 

(−6.2–5.4) 

0.38 

(0.00–1.54) 

0.35 

(0.22–0.51) 

13.9 

(10.0–20.5) 

11.7 

(1.2–18.7) 

0.2 

(−0.7–1.8) 

NZ-ADw c 
22/1–24/3/2018 

Summer–Autumn 

−0.7 

(−6.4–5.2) 

2.8 

(0.0–8.3) 

0.6 

(−8.9–7.0) 

0.45 

(0.06–1.17) 

0.22 

(0.16–0.27) 

16.5 

(10.2–22.8) 

10.1 

(1.4–19.1) 

−1.5 

(−107–2.9) 

a, b, c, d paired sites indicated with the same letter 261 

Many of the sites in this study provided a single season of flux data (Table 2), and this was often 262 

during a highly productive year like 2010–2011 in Australia (Boening et al., 2012; Cleverly et al., 263 

2016a; Poulter et al., 2014; Xie et al., 2019).  Thus to avoid confounding factors of interannual 264 

fluctuations in stress and productivity, comparisons in this study were made for each site during its 265 

most productive growing season (i.e., the growing season with the lowest daytime NEE).  Whereas 266 

some sites were highly productive during wet conditions (e.g., irrigated broadacre crops AU-Cm1, 267 

AU-Cm2; grazed rangelands AU-ASM, AU-Stp), others were evaluated during drought, including the 268 

final year of the Millennium Drought (2009; improved pasture AU-Otw, irrigated almonds AU-Lox), 269 

ten years of hydrological drought which generated hardships for irrigated agriculture 270 

(Mallawaarachchi et al., 2017; van Dijk et al., 2013), and 2012–2013, the return of drought (improved 271 

pasture in the Northern Territory, AU-Dap; rainfed crops and improved pasture in Queensland, AU-272 

Emr and AU-Sam). (Table 2).  Climate has continued to fluctuate between extremes of droughts, 273 

heatwaves and flooding rains (Cleverly et al., 2016a; Cleverly et al., 2016c; Ma et al., 2016), creating 274 

much uncertainty in the agricultural sector (Ellis and Albrecht, 2017).  The analysis period for AU-275 

TTE was identified during the return of wet conditions in the summer of 2016–2017, when 276 

precipitation in the two months preceding the analysis window (546 mm, 17 Dec 2016–6 February 277 

2017) was similar to that which fell across the entire water year 2010–2011 at AU-TTE's paired site, 278 

AU-ASM (565 mm, 1 September 2010–31 August 2011; Cleverly et al., 2016c) (Table 2). 279 
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Intense grazing events in New Zealand can strongly increase NEE through enhanced carbon 280 

emissions and removal of photosynthetic biomass (Hunt et al., 2016).  Thus, analysis periods for flux 281 

measurements from New Zealand were either (i) around the peak of the growing season, when high 282 

growth rates kept NEE low despite the occurrence of defoliation episodes; or (ii) after conversion to 283 

forage crops such as kale (e.g., NZ-BFu). 284 

As an indication of the short-term balance between energy and water limitations on NEE and E, an 285 

aridity index value (ϕ) was calculated as ϕ = Rn ⁄ (ρw Lv P) over the analysis period, where ρw is the 286 

density of water and P is precipitation.  Caution is urged regarding the interpretation of ϕ in this study 287 

as a short-term measure of ϕ cannot be used to draw inferences of long-term aridity, hydrology or 288 

climatology, contrary to the original definition and use of ϕ at an annual timescale (Budyko, 1974).  To 289 

further characterise site conditions, the Bowen ratio (BR) was also determined as BR = H ⁄ LE over the 290 

same period. 291 

3.3 Data analysis 292 

A wavelet–statistics conjunction approach was used for all inferences in this study.  Time series 293 

measurements are an extreme case of the repeated measures experimental design, representing many 294 

multiples of repeated observations on an individual experimental unit.  This restriction on random 295 

sampling creates the possibility of auto-correlation between successive observations, and the presence 296 

of this auto-correlation can generate spurious results during statistical inference (Murphy et al., 2010).  297 

Such observations are not 'independent and identically distributed' (i.i.d.), leading to misinterpretation 298 

of the strength of evidence obtained in statistical analyses (Hargrove and Pickering, 1992).  When 299 

performing inference between two or more time series, lagged cross-correlation interacts with each 300 

pattern of auto-correlation, causing errors due to temporal pseudoreplication (i.e., observations in time 301 

which lack independent replication) that are not affected by measurement frequency or persistence of 302 

environmental conditions.  Thus, time series violate several fundamental assumptions in statistics and 303 
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probability theory (e.g., temporal pseudoreplication, auto-correlation, lagged cross-correlation; 304 

Hargrove and Pickering, 1992; Murphy et al., 2010).  By contrast, the characteristics of wavelet 305 

analysis (linearity, localisation in time, energy conservation) make wavelets ideal for statistical 306 

inference of time series by interpreting variance in the time series instead of the observations 307 

themselves (He and Guan, 2013; He et al., 2014b).  This approach invokes the Central Limit Theorem 308 

by assuming that auto-correlation in variances is negligible relative to auto-correlation in the 309 

observations.  Wavelets are finite, cyclic functions that are modulated to identify fluctuations in time 310 

and timescale through dilation and translation of a mother wavelet (Ψ).  Thus, wavelets are ideal for 311 

analysis of data with intermittencies or nonstationarities, such as fluxes (Stoy et al., 2005; Stoy et al., 312 

2013; van Gorsel et al., 2013). 313 

A multivariate version of wavelet multiple linear regression (wMLR) was used to infer the relative 314 

importance of driving variables on the turbulent fluxes (NEE, E and H).  Seven variables were 315 

considered as potential drivers of the three fluxes (Rn, Ta, θ, D, q, Ts and G).  The complete analysis 316 

was performed in three steps:  1) wavelet coherence was used to determine the timescale of peak 317 

correlation (amax) between fluxes and environmental factors, where amax was used in the following two 318 

analyses; 2) wavelet principal components analysis (wPCA; Cleverly et al., 2016a) was performed 319 

independently for each site to identify dependencies (i.e., coupling) amongst (i) NEE, E and H 320 

(fluxPCs) or (ii) environmental factors (envPCs); and 3) wPCA was combined with wMLR to infer 321 

relationships between environmental factors and fluxes (i.e., wavelet canonical correlation analysis, 322 

wCCA) at a timescale of amax. 323 

First (step 1), amax was identified using wavelet coherence analysis to estimate the correlation 324 

between fluxes and environmental factors (Grinsted et al., 2004; Shi et al., 2014; Torrence and Compo, 325 

1998).  Fluxes and environmental factors were represented by their main principal components 326 

(fluxPCs, envPCs), as described in step (2), except PCs in this step were determined using details at all 327 

scales which were supported by the length of a given time series.  Coherence between two variables 328 
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represents the squared-correlation, r2, and wavelet coherence analysis uses a continuous wavelet 329 

transformation (CWT) to estimate r2.  The Morlet wavelet was chosen as Ψ for its functional similarity 330 

to turbulence (Cuxart et al., 2002) and its improved compositing (Schaller et al., 2017).  Analysis of 331 

timescales was limited to 10 scales per octave. Significant coherence was determined using Monte 332 

Carlo methods and a red noise auto-regressive null model.  Two primary modes of variability were 333 

identified, at daily and annual timescales, despite minor differences in coherence across management 334 

intensities (Fig. S2).  Thus, analyses were performed at a daily timescale. 335 

Next (step 2), dependencies amongst environmental factors were identified using wPCA (Matlab 336 

R2013a, The MathWorks Inc., Natick Massachusetts USA).  In wPCA, the covariance matrix is 337 

populated from the product of paired wavelet coefficients.  wPCA is limited to the discrete wavelet 338 

transformation (DWT) to simplify construction of the covariance matrix and for computational 339 

efficiency.  Normalised data were used to account for differences in units amongst environmental 340 

factors (equivalent to the use of a correlation matrix as a basis for computation of eigenvalues λi and 341 

associated eigenvectors).  Time series were padded to the next octave j (where the sample size is 2j) 342 

with spectrally neutral values (i.e., the first or last value in the time series) to minimise errors due to 343 

the cone of influence.  A second-order symlet was chosen for Ψ due to its improved localisation in the 344 

frequency domain relative to a first-order 'Haar' wavelet and improved symmetry over the second-345 

order Daubechies wavelet upon which it is based.  The resultant linear combinations of environmental 346 

factors (Xp) are defined as: 347 

 
  
envPCi = α i,1X1 +!+α i,pXp , (1) 348 

where envPCi is the ith principal component, αi is the component loading for envPCi and p is the 349 

number of environmental factors.  Similarly, wPCs of the fluxes (fluxPCi) were determined as fluxPCi 350 

= αi,NEE NEE + αi,E E + αi,H H.  Principal components are defined to be orthogonal, meaning they are 351 

independent for the purposes of multiple regression analysis (i.e., no colinearity).  Principal 352 
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components with cumulative eigenvalues (λ1+⋯+λi) explaining 70% or more of the total variability 353 

(∑λp) were included in following analyses.  fluxPC1 was retained in favour of the original fluxes when 354 

its eigenvalue exceeded 70% of the total variability in the fluxes.  Variables with a component loading 355 

of less than 10% of the total loadings were considered to be independent (i.e., not colinear).  wPCA 356 

included details for scales 21–2x (number of 30-minute periods) and approximations at a scale of 2x, 357 

with x representing the highest integer scale below amax. 358 

Time series of the principal components were constructed from wPCA-derived loadings α1–αp (e.g., 359 

equation 1) and normalised environmental factors or fluxes.  A CWT was performed on wPCs to 360 

provide samples for wCCA.  The Mexican hat wavelet is defined as the second derivative of a 361 

Gaussian function (Collineau and Brunet, 1993), and it is effective at locating nonstationarities 362 

precisely in time (Schaller et al., 2017).  Thus, coefficients from the Mexican hat wavelet represent 363 

directional variance by integrating information on timing (Percival and Walden, 2000), validating the 364 

application of the Central Limit Theorem and establishing that statistics based upon coefficients from 365 

the Mexican hat wavelet represent direct functional responses in one variable to perturbations in 366 

another.  However, CWT is oversampled, erroneously inflating sample size and degrees of freedom 367 

(Katul and Parlange, 1995).  Thus, daily-scale variance was computed as the sum of each day's wavelet 368 

coefficients.  For the Central Limit Theorem to apply, a sample size of at least 30 is required, thus 369 

restricting our ability to form rigorous inferences of inter-annual fluxes for sites with a data record 370 

which is shorter than 30 years, and this is why daily fluctuations were evaluated in this study. 371 

Initially, the primary mode of variability in the fluxes (fluxPC1) was regressed against (i) the k 372 

number of envPCs which explained a cumulative 70% of the variability in those variables (envPC1–373 

envPCk) and (ii) any other environmental factors which contributed less than 10% of the variability to 374 

any of envPC1–envPCk (Xa … Xn); for example: 375 

 
  
fluxPCi ~ βi,0 +βi,1Xa +!+βi,nXn +βi,n+1envPC1 +!+βi,n+kenvPCk +βi,n+k+1Xa ×!× Xn + ε , (2) 376 
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where each β is a unique regression coefficient, the term with coefficient βn+k+1 is the interaction for Xn 377 

non-colinear environmental factors when n > 1, and ε is the regression error term. 378 

Next, envPCs which were not significantly related to fluxPC1 were removed and replaced by any 379 

variables which contributed to less than 10% of the variability in the remaining envPCs.  In cases 380 

where multiple variables were at risk of introducing colinearity in subsequent regression models, each 381 

variable which was introduced by removal of an envPCi was evaluated individually.  This is illustrated 382 

in the following example, where (i) envPC2 of two envPCs was not significantly related to fluxPC1, (ii) 383 

all X1–Xp contributed more than 10% to the combination of envPC1 and envPC2, and (iii) three of X1–384 

Xp contribute more than 10% of the variability in envPC2 but not in envPC1 (Xx, Xy, Xz): 385 

 
 
fluxPCi ~ βi,0 +βi,1Xx +β2envPC1 + ε , (3a) 386 

 
 
fluxPCi ~ βi,0 +βi,1Xy +β2envPC1 + ε  

and (3b) 387 

 
 
fluxPCi ~ βi,0 +βi,1Xz +β2envPC1 + ε , (3c) 388 

The complete stepwise procedure was repeated for (i) fluxPC2 or (ii) any of NEE, E or H which 389 

represented less than 10% of the loadings on fluxPC1, wherever either was applicable.  The linear 390 

importance of each environmental factor for predicting fluxes was estimated from the product of that 391 

factor's α in envPCi and the regression coefficient (β) for that envPCi, but only if β were significantly 392 

different from zero.  The importance of each environmental factor for the prediction of fluxes was 393 

estimated as ∑|βi,X| or ∑|αi,X βi,envPCi| for significant main effects and envPCs, respectively. 394 

All analyses were performed in Matlab R2018b (The Mathworks, Inc., Natick, Massachusetts, 395 

USA), and inferences were based upon a sample size of N = 61 days.  The probability of a type I error 396 

was presumed to be 0.05 (p < 0.05) in all hypothesis tests.  Because of the nature of wavelet 397 

transformation, the equivalent of a multivariate analysis of variance could not be performed.  We thus 398 
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acknowledge that lacking a single statistical model for all 19 sites increases the probability of an 399 

erroneous inference for a site.  The coefficient of determination (R2) for wMLR and wCCA will be 400 

distinguished as a capital letter in this study to avoid confusion with coherence or squared correlation, 401 

r2.  Negative statistical coefficients for NEE were taken to indicate increasing values of NEP (NEP = 402 

−NEE). 403 

All statistical outputs (including those of intermediate steps) and data used in this study can be 404 

obtained from the TERN OzFlux data portal (Cleverly, 2019).  Example Matlab instructions for data 405 

analyses can be found in the Supplementary Material S2. 406 

4 Results 407 

4.1 Management intensity and coupling amongst fluxes 408 

Five combinations of dependencies amongst NEE, E and H were identified across the 19 sites, 409 

based upon the sign of their component loadings in wPCA (Table 3). 410 

Table 3. Coupling amongst fluxes from wavelet Principal Components Analysis (wPCA).  fluxPC1:  principal 411 

component explaining the largest proportion of total variability amongst the fluxes; α:  Component loading for 412 

NEE (α1), E (α2) and H (α3), respectively.  fluxPC1 term not shown for component loadings < 10% of total 413 

loadings. 414 

Type fluxPC1 
Productivity–E 

coupling 
Productivity–H 

coupling E–H coupling Explanation 

Type 1 {−α1 NEE, +α2 E, +α3 H} coupled coupled coupled full physiological coupling, no heat stress 

Type 2 {−α1 NEE, −α3 H} uncoupled reverse uncoupled heat stress, evaporative cooling 

Type 3 {−α1 NEE, +α2 E, −α3 H} coupled reverse reverse heat stress, isohydric 

Type 4 {−α1 NEE, −α2 E} reverse uncoupled uncoupled low D, no heat stress 

Type 5 {−α1 NEE, −α2 E, +α3 H} reverse coupled reverse low D, energy limited 
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Examples of Type 1 dependencies amongst fluxes were found in every management intensity class, 415 

although Type 1 dominated in the highly intense management class (Fig. 2, Table S1).  Increases in 416 

NEP were synchronised with increasing E and H (Type 1) at nine locations (Fig. 2). 417 

Only Type 1 and Type 2 dependencies were observed in the grazed rangelands of this study.  In 418 

Type 2 and Type 3 dependencies, decreasing NEE (i.e., increasing NEP) was synchronised with 419 

decreasing H, indicative of a negative heat stress response.  For Type 2, variation in E represented less 420 

than 10% of the total flux variability and was thus considered to be uncoupled from fluctuations in 421 

NEE or H.  Type 2 relationships were observed at four rangeland and pasture sites (Fig. 2).  Type 3 422 

relationships in which NEP was positively correlated to E and inversely correlated to H occurred on 423 

four of the 19 farms (Fig. 2).  Positive coupling with E on the highly managed Ashley Dene Farm (NZ-424 

ADw) was small in magnitude, comparable to that of Type 2 dependencies on farms with 425 

intermediate-intensity management (Fig. 2).  Reverse coupling between NEP and E was uncommon, 426 

observed at only one site for each of Type 4 and Type 5 dependencies.  Refer to Table S1 for 427 

individual results from each of the 19 sites. 428 

4.2 Coupling amongst environmental 429 

factors 430 

Complete wPCA results for the seven 431 

environmental factors are also provided in 432 

Table S1.  Interactions amongst environmental 433 

factors were generally site specific, varying 434 

across sites in the identity and strength of 435 

contributing variables and in the amount of 436 

variation explained by envPCs (Fig. S3).  Thus, 437 
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Figure 2.  The relative proportion of sites showing 
each of the wavelet PCA component loading 
types for fluxes for each management class (low, 
intermediate, high).  Refer to Table 3 for a description 
of flux coupling types.
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dependencies amongst environmental factors were evaluated in detail at the paired sites to minimise 438 

differences introduced by the large distances between farms in this study (Fig. 3). 439 

In grazed rangelands, Rn and G maintained similar relationships across Pine Hill Station (AU-ASM, 440 

AU-TTE), whereas Ta, Ts, θ and q showed a ca. 180° phase shift relative to the Rn–G axis across sites 441 

c. NZ-ADn
22 January–24 March 2018

b. NZ-BFu
19 January–21 March 2014

a. AU-TTE
15 January–17 March 2017

d. AU-ASM
15 January–17 March 2011

e. NZ-BFm
15 December 2013–14 February 2014

f. NZ-ADw
22 January–24 March 2018

i. AU-Cm2
15 December 2010–14 February 2011

h. AU-Cm1 Maize
4 December 2010–3 February 2011

g. AU-Cm1 Wheat
8 August–8 October 2011
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Figure 3.  Wavelet PCA at the paired sites.  Paired sites were grazed rangeland (a, d; AU-ASM, AU-TTE), irrigated/
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(Fig. 3a, d).  In the comparison of an irrigated and fertilised pasture (NZ-BFu) versus a kale forage 442 

crop (NZ-BFm), fluctuations of Ts and θ differed across the two datasets; irrigation and fertilisation 443 

induced a shift from coupling of Ts with Rn to coupling of Ts with Ta, and highly intense management 444 

induced a shift in coupling for θ from D to q, representing a release of θ from atmospheric water stress 445 

(Fig. 3b, e).  In lucerne, fluctuations in G and q differed between irrigated and unirrigated paddocks on 446 

Ashley Dene farm, whereas relative coupling amongst Rn, D, Ta and Ts were fixed (NZ-ADn, NZ-447 

ADw; Fig. 3c, f).  In irrigated broadacre crops of the Coleambally Irrigation Area, fluctuations in Ts 448 

and q were similarly correlated in winter (AU-Cm1 wheat) and summer (AU-Cm1 maize, AU-Cm2 449 

rice; Fig. 3g–i).  With the exception of D, heavy irrigation for the cultivation of rice created similar 450 

relationships amongst environmental factors as irrigated cultivation of wheat during the winter and 451 

spring, but Ta dominance in winter (Fig. 3g) was exchanged for Rn dominance in summertime irrigated 452 

rice (Fig. 3i).  Across all comparisons, some environmental factors maintained the same contribution 453 

to total environmental variability at paired sites, whereas other environmental factors were rotated 454 

relative to the fixed factors, suggesting that management can influence some environmental factors, 455 

but others are beyond management control. 456 

4.3 Management responses of fluxes to environmental factors 457 

R2 from wCCA for the regression of fluctuations in NEE, E and H against fluctuations in 458 

meteorological and edaphic conditions ranged from 0.16 at AU-Emr to 0.88 at AU-Gat (Fig. 4).  459 

Values of R2 in Figure 4 for NEE, E or H which were not different at a given site were obtained from a 460 

single wCCA model, and only values of R2 which were significantly different from zero are presented 461 

in Figure 4.  Representing predictability of variations in fluxes, R2 did not show consistent patterns 462 

across management intensity classes, but there were some general trends.  Grazed rangelands had 463 

small R2 as a group (0.34 ± 0.06), with a range of values (0.17–0.54) which overlapped completely 464 

with the range of R2 values from sites managed at intermediate intensity (0.16–0.88, 0.55 ± 0.07).  By 465 
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contrast, the range of R2 for grazed rangelands 466 

overlapped only slightly with the range of R2 467 

from highly intense management (0.42–0.84, 468 

0.62 ± 0.07).  Similar to the grazed rangelands, 469 

the range of R2 values for sites with high-470 

intensity management overlapped completely 471 

with the range of R2 values from intermediate-472 

intensity management (Fig. 4).  No 473 

relationships between R2 and ϕ were apparent 474 

in grazed rangelands (Fig. 4).  At sites with 475 

intermediate-intensity management, the 476 

smallest values of R2 were observed at 477 

intermediate ϕ (R2 = 0.28–0.35; NZ-ADn, AU-478 

DaP, AU-Otw), with the exception of low R2 479 

for rainfed crops at AU-Emr (R2 = 0.16).  Amongst sites with highly intense management, R2 was 480 

highest in the three irrigated farms with the highest ϕ (R2 = 0.78–0.84; AU-Lox almonds, AU-Cm1 481 

maize, NZ-Sco dairy; Fig. 4). 482 

In all except three cases, a single inference model was obtained, with only envPCs and factors 483 

which were not co-linear with the envPCs explaining fluctuations in NEE, E and H (Table S2, Fig. 484 

S3).  This indicates that fluxes generally responded to coupled environmental factors instead of 485 

individually to those environmental factors.  One exception was in irrigated maize (AU-Cm1), where 486 

fluctuations in q were co-linear with envPC2 and not envPC1, but fluctuations in q alone (amongst the 487 

co-linear factors in envPC2) were significantly related to variation in NEE, E and H (βq = −0.06 ± 0.01, 488 

p < 0.001) without contributions from other co-linear factors in envPC2 (βenvPC2 = −0.06 ± 0.06, p = 489 

0.35) (R2 = 0.79, p < 0.001; Fig. 5).  This site provides an example of a strong environment–flux 490 
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relationship due to both individual factors (q) 491 

and interacting environmental factors (Rn and 492 

D; cf. Fig. 5, Table S1).   493 

The improved pasture AU-Otw similarly 494 

showed fluctuations in D to contribute to 495 

explaining fluctuations in NEE, E and H from 496 

outside of envPC2, although strong 497 

nonlinearities were present which reduced the 498 

strength of statistical inference for all 499 

environmental factors at this site (R2 = 0.11–500 

0.28, p = < 0.001–0.03; Table S2, Fig. 6).  In this example, the full model with envPC1 and envPC2, 501 

along with non-colinear Rn, resulted in no values of βX which were significantly different from zero 502 

(βRn, βenvPC1 and βenvPC2 of −0.009 ± 0.04, −0.15 ± 0.11 and 0.03 ± 0.11, respectively; Table S2) and a 503 

small R2 which was nonetheless significantly 504 

different from zero (R2 = 0.11, p = 0.02).  This 505 

discrepancy was likely induced by nonlinearity 506 

in the residuals, particularly near values of zero 507 

on the x-axis which represent a large range of 508 

fluctuations in NEE, E and H under stable 509 

environmental conditions (Fig. 6).  D 510 

contributed little to envPC1 at this site, so 511 

removal of envPC2 from the regression 512 

permitted the inclusion of D as a main effect.  513 

Doing so resolved the discrepancy between 514 

Figure 5.  wCCA results for an example irrigated 
broadacre crop.  See supplementary material 
for details of regression statistics (Table S2, Fig. 
S1).  Asterisks represent factors with coefficients 
significantly different from zero.
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model and submodel results, showing a weak 515 

linearity in fluxes with respect to fluctuations in 516 

D without losing nonlinear effects near the y-517 

axis (Fig. 6). 518 

Strong nonlinearities were observed at many 519 

sites (Fig. S3), with an example from grazed 520 

rangeland AU-ASM shown in Figure 7.  For 521 

fluxPC1, the response was largely linear (R2 = 522 

0.54), but with notable nonlinearities in the 523 

residuals.  This suggests that environment–flux 524 

relationships contain a linear portion and a 525 

nonlinear portion, the latter due to lags in the 526 

cycles of perturbation and response (Fig. 7).  Nonlinear responses were dominant for E (R2 = 0.34; Fig. 527 

7), suggesting that the sensitivity of E to precipitation pulses is largely independent of climate 528 

conditions in central Australia. 529 

No single environmental factor accounted for fluctuations in NEE, E and H, and there was much 530 

variability across sites within each management intensity class (Fig. 8).  The most important factors for 531 

explaining linear responses of fluxes in grazed rangelands (importance > 15%) were Ts, Ta and G (0.23 532 

± 0.11, 0.19 ± 0.09 and 0.17 ± 0.11, respectively; Fig. 8).  In intermediate-intensity management, most 533 

environmental factors were important for predicting fluxes:  Ta, Rn, G and D (0.15 ± 0.02, 0.12 ± 0.03, 534 

0.25 ± 0.08 and 0.17 ± 0.06, respectively; Fig. 8).  Environmental factor importance was similar to 535 

intermediate-management in highly intense management, except that Ta was replaced by θ:  θ, Rn, G 536 

and D (0.16 ± 0.05, 0.20 ± 0.04, 0.16 ± 0.03 and 0.27 ± 0.11, respectively; Fig. 8). 537 

Figure 7.  wCCA results for an example and 
grazed rangeland.  See supplementary material for 
details of regression statistics (Table S2, Fig. S1).  
‘fluxPC1:  closed circles, solid line, bottom abscissa 
and left ordinate axes; ‘E’ in (c):  open circles, 
dashed line, top abscissa and right ordinate.  
Asterisks represent factors with coefficients 
significantly different from zero.
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5 Discussion 538 

Simple regression of environmental factors 539 

alone has been previously found to fit measured 540 

fluxes better than the output of land-surface 541 

models, although the reasons for this have not 542 

yet been identified (Best et al., 2015; Haughton 543 

et al., 2018b).  Nonetheless, no consensus has 544 

been reached regarding identification of the key 545 

environmental factors driving variations in 546 

surface fluxes, which is still an active area of 547 

inquiry.  Thus, a call has been issued for more 548 

studies to evaluate climate and management effects using paired and multiple towers (Mudge et al., 549 

2011).  In this study, we used a multivariate wavelet–statistics conjunction approach to evaluate 550 

management effects on relationships between fluctuations in environmental factors and synchronised 551 

fluctuations of carbon, water and heat fluxes (NEE, E and H, respectively).  Coupling amongst fluxes 552 

showed some key differences across management intensity categories, providing partial but not 553 

overwhelming support for hypothesis 1.  By contrast, coupling amongst environmental factors 554 

appeared to be strongly site-specific and showed inconsistent effects of management in comparison of 555 

paired sites at a single location, thus failing to support our hypothesis that increasingly intense 556 

management would weaken integration of environmental factors (hypothesis 2).  Despite site-specific 557 

coupling amongst environmental factors, we found relationships between fluxes and environmental 558 

factors to depend upon management intensity and the short-term level of aridity within a management 559 

intensity class (Fig. 4), providing support for hypothesis 3.  However, no single environmental factor 560 

was found which explained variability in fluctuations of NEE, E or H, consistent with previous 561 

findings (Hao et al., 2018); for example, enhanced vegetation index, photosynthetically active 562 

Figure 8.  Proportional importance (± standard 
error) of environmental factors in wCCA for each 
management intensity class (low, intermediate, 
high).
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radiation and air temperature were all found to be significantly correlated to E by Wagle et al. (2017b).  563 

Instead, the way in which environmental factors co-varied through time (i.e., their synchronised 564 

interaction) affected variations in NEE, E and H, especially in water-limited landscapes where 565 

precipitation pulses dominate the coordination of fluxes and environmental factors (Cleverly et al., 566 

2013). 567 

5.1 Coupling of carbon, water and energy cycles 568 

The largest effect of management identified in this study was upon the relationship amongst fluxes.  569 

Even though examples of full, positive coupling between NEP, E and H (Type 1, {−NEE, +E, +H}) 570 

were found for each management intensity class in our study (on nine farms), the proportion of sites 571 

showing such full coupling increased with increasingly intense management (Fig. 2).  Intense 572 

management practices like irrigation and fertilisation are intended to minimise the impact of 573 

detrimental environmental conditions and maximise yield, thus generating synchronisation amongst 574 

carbon, water and energy fluxes.  There can be regional variation in the response of crops to heat and 575 

water stress (Dreccer et al., 2018), although managing for heat stress can be as simple as converting 576 

from dryland agriculture or pasture to irrigated agriculture, if enough water is available.  Because 577 

many irrigated broadacre cropping and arboreal horticultural systems exist in water-limited climates 578 

with high evaporative demand and the potential for plant stress (Stokes et al., 2008; Williams et al., 579 

2002), as they do in the Australian examples of this study, they can require substantial volumes of 580 

irrigation water to return a profitable yield.  Irrigated almonds in this study (AU-Lox) did not show 581 

any apparent stress, with coupling of NEP, E and H.  Irrigation can protect against physiological stress 582 

and stress-induced crop failure by ameliorating heat extremes through evaporative cooling (Chen et al., 583 

2017; Cleverly et al., 2016b; Cleverly et al., 2015; Stevens et al., 2012), in addition to supporting high 584 

productivity at high Ta or D and lengthening the growing season over which NEE is below zero 585 

(Mueller et al., 2017; Wagle et al., 2017a). 586 
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Decoupling between NEP and E has been proposed for vegetation experiencing heat stress, when 587 

photosynthetic assimilation declines whilst transpiration is maintained for cooling of the leaf (De 588 

Kauwe et al., 2019).  Reverse coupling between H and NEP implies a negative response to heat, as has 589 

been observed during heatwaves (van Gorsel et al., 2016; van Heerwaarden and Teuling, 2014).  We 590 

found that reverse coupling between H and NEP (i.e., NEP was increasing when H was declining) 591 

occurred at another eight sites in the current study, with locations where E was decoupled from NEP 592 

and H (Type 2) tending to be more common in hot, minimally managed environments, and where NEP 593 

and E were both reverse coupled to H (Type 3) on colder, more highly managed farms (Fig. 2).  The 594 

first and primary role of management in Australia and New Zealand was thus identified as supporting 595 

positive coupling amongst NEP, E and H and thereby managing crop stress, whether that stress 596 

originated from lack of water or abundance of heat. 597 

5.2 Season, energy limitation and aridity 598 

 Year-round growing conditions across much of Australia and New Zealand favour a strong 599 

wintertime net carbon sink (i.e., NEE < 0), when low temperature limits respiration and heat stress 600 

(Campbell et al., 2014; Cleverly et al., 2013; Hutley et al., 2005; Renchon et al., 2018).  For example, 601 

heavy irrigation was required in the summer for rice to obtain similar relationships amongst 602 

environmental factors as were seen in irrigated wheat during winter and springs months (Fig. 3g, i).  603 

However, wintertime cropping comes at a cost of supporting about half of the productivity as that of 604 

summer cropping, thus only three out of 19 locations in this study were evaluated during winter.  605 

Furthermore, productivity of winter pasture can be reverse-coupled to turbulent heating (e.g., AU-606 

Otw), suggesting that some grasslands in Australia can be susceptible to heat stress, even during 607 

winter.  Seasonal differences in evaporative fraction (LE ⁄ Rn) exist between irrigated wheat and maize 608 

(0.83 and 0.57, respectively; Lei and Yang, 2010), reflecting smaller potential energy limitations 609 

during wintertime than during summer.  Similarly, we found that environmental factors responded 610 
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most strongly to fluctuations in Rn for maize (and rice), but that they responded to fluctuations in Ta 611 

for wheat (i.e., they had the largest α coefficient value in envPC1). 612 

The response of vegetation to changes in environmental factors critically depends upon whether 613 

productivity and E in a given ecosystem are energy or water limited (Donohue et al., 2009; Restrepo-614 

Coupe et al., 2016).  In energy-limited ecosystems, water is plentiful, but cloud cover restricts Rn
 615 

(Hutley et al., 2005; Kanniah et al., 2013; Whitley et al., 2011).  Rn and D both drive variations of E in 616 

energy-limited regions (Zhang et al., 2017), where they are strongly coherent (Peng et al., 2018).  617 

Consistent with previous observations, Rn and D were strongly and negatively coherent in this study 618 

for energy-limited regions and in areas where irrigation released water limitations, except for winter 619 

wheat, in which Ta was strongly coherent with D instead due to seasonal limitations on Rn (Fig. 3).  In 620 

water-limited environments, the relationship of θ and q shifted from the woody rangeland (AU-ASM) 621 

to the grass-dominated rangeland (AU-TTE).  θ is typically only related to E in water-limited 622 

environments when θ is above the wilting point (Akuraju et al., 2017), explaining the variable levels of 623 

θ coupling at AU-ASM and AU-TTE.  Vegetation at AU-ASM is suspected to have an effect on 624 

surface θ via hydraulic redistribution (Cleverly et al., 2016b), thus reducing the dependence of fluxes 625 

on θ and providing an alternative explanation for the lack of correlation with θ near the surface at AU-626 

ASM.  Regardless of variations in the importance of individual environmental factors, interactions 627 

amongst all environmental factors were generally strong across our study, as has been previously 628 

inferred at AU-ASM using boundary analysis (Cleverly et al., 2013; Eamus et al., 2016). 629 

The 19 sites in this study showed a large range of energy versus water limitations as indicated by ϕ, 630 

in which energy limitation was defined by values below unity (i.e., Rn ⁄ [ρw Lv] > P) and degree of 631 

water limitation by values above unity (i.e., R n ⁄ [ρw Lv] > P; Fig. 4).  The Canterbury Plains in New 632 

Zealand (NZ-Oxf, NZ-ADn, NZ-ADw, NZ-BFu, NZ-BFm) are generally energy limited, although a 633 

lack of precipitation during the late summer commonly pushes ϕ above unity (Graham et al., 2016), 634 

and this was when large NEP was identified for analysis in the current study (Table 2).  Values of ϕ 635 
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near unity are likely to reflect co-limitations by energy and water (Cleverly et al., 2013; Ryu et al., 636 

2008).  Currently, a general shift from energy limitations to water limitations appears to be occurring 637 

in the climate system (Babst et al., 2019), making an understanding of crop responses to this transition 638 

critical.  By increasing θ, irrigation can tip a crop back to an energy-limited state, although irrigation 639 

ultimately depends upon heavy precipitation to replenish water supplies in Australia's drylands, 640 

providing only opportunistic access to irrigation in regions where irrigated agricultural production 641 

might not be sustainable over the long term (Garnaut, 2008; Khan and Hanjra, 2009; Vote et al., 2015). 642 

5.3 Predictability, phenology and nonlinearities 643 

Controls on fluxes in warmer, drier climates such as those of tropical Australia can be site specific, 644 

making fluxes more unpredictable and difficult to represent without local parameterisation in land 645 

surface models (Haughton et al., 2018a).  As a consequence, we found that predictability as inferred 646 

from R2 was low on the five northern farms in our study (AU-DaP, AU-Stp, AU-ASM, AU-TTE, AU-647 

Emr; R2 < 0.55, cf. Figs. 1 and 4).  Nonlinearities in regressions for these sites are consistent with the 648 

presence of time-lagged perturbations to fluxes after environmental conditions have returned to normal 649 

(i.e., as with pulse-response dynamics), thus acting to desynchronise environmental conditions and 650 

ecosystem responses (Huxman et al., 2004).  In the woody central Australian rangeland site (AU-651 

ASM), E responded exclusively to precipitation pulses, with equal sensitivity to large and small 652 

fluctuations in environmental factors (Fig. 7).  This variability in sensitivity to climate during 653 

precipitation pulses of varying intensity thus forms the basis for variable responses of water-use 654 

efficiency (WUE = NEP ⁄ E) observed at this location (Eamus et al., 2013).  Pulse behaviour during the 655 

summer of 2010/2011 was produced by heavy precipitation (Boening et al., 2012; Fasullo et al., 2013; 656 

Poulter et al., 2014) in widespread, organised weather patterns which imposed cycles of strong energy 657 

limitations (Cleverly et al., 2013; Cleverly et al., 2016a).  Thus, similarities in the responses of 658 

irrigated rice and grazed rangeland were associated with similar weather patterns during the growing 659 
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season at AU-ASM and AU-Cm2, despite contrasting water requirements for the rice crop at AU-Cm2 660 

and for forage plants AU-ASM.  Wavelet transformation of environmental factors and fluxes can 661 

provide the first quantitative framework for evaluating sensitivity to precipitation pulses, for which 662 

further study is merited. 663 

Outside of the five northern sites (AU-DaP, AU-Stp, AU-ASM, AU-TTE, AU-Emr), R2 followed 664 

two patterns relative to aridity, depending upon management intensity.  For intermediate-intensity 665 

management, R2 was small at locations where water and energy limitations were balanced (0.8 ≤ ϕ ≤ 666 

1.2; NZ-ADn, AU-Otw; R2 = 0.28–0.29, cf. Figs. 1 and 4).  This suggests that water limitations and 667 

energy limitations can counteract one another over time, resulting in no observed net effect of 668 

environmental factors on fluxes.  This situation can potentially create a conundrum for land surface 669 

models, where a small imbalance between compensating environmental factors can bias the output 670 

(Haughton et al., 2018b).  Intra-seasonal shifts in phenology, for example due to grazing or harvesting, 671 

can also degrade the predictability of NEE, E and H from environmental factors.  Examples of 672 

phenological control of fluxes, instead of environmental control, were found at NZ-ADw, NZ-ADn 673 

and NZ-BFm, all of which were exposed to 2–3 defoliation events during the analysis period.  During 674 

regrowth, NEE and E were constrained by low leaf area index instead of energy or water limitations.  675 

To account for phenological effects, one could integrate data regarding vegetation structure (e.g., leaf 676 

area index, vegetation indices), but these data would need to be measured at an equivalent frequency to 677 

that of fluxes and environmental factors.  Altogether for intermediate-intensity management, we found 678 

three factors that reduced the innate predictability of fluxes:  (i) nonlinear effects of precipitation 679 

pulses; (ii) complementarity amongst coupled environmental factors in their effects on fluxes, as when 680 

water and energy limitations are in temporal balance within a single season; and (iii) by undocumented 681 

shifts in phenology. 682 

In contrast to patterns of predictability for intermediate-intensity management, those for highly 683 

intense management fell into two categories depending upon aridity:  irrigation in more water-limiting 684 
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conditions (ϕ > 2, AU-Lox almonds, AU-Cm1 maize and NZ-Sco dairy pasture) resulted in high flux 685 

predictability (R2 > 0.75, Fig. 4), whereas moderate flux predictability (R2 = 0.62 ± 0.07) was found 686 

for sites with low values of ϕ (ϕ ≤ 2, AU-Cm1 wheat, AU-Cm2 rice, and NZ-BFm dairy farm and NZ-687 

ADw irrigated lucerne).  Even though there are environmental factors beyond the control of irrigation, 688 

irrigation practices are finely attuned to affect the environmental factors which are related to 689 

productivity, water use and heat flux, and these effects are magnified in regions where there is a large 690 

difference between on-farm and adjacent natural conditions.  The most extreme example is from 691 

irrigated almonds during the final year of the Millennium Drought, where intense sensible heat 692 

advection onto the irrigated orchard from surrounding semi-arid lands pushed H to as low as −500 W 693 

m-2 (i.e., an input of energy into the orchard; Stevens et al., 2012).  Termed "the oasis effect," 694 

horizontal transport of energy across steep environmental gradients created by differential irrigation 695 

and evaporative cooling results in coherent variation in fluxes and scalars across the landscape (Brakke 696 

et al., 1978; Brunet et al., 1994; Cooper et al., 2003; Hanks et al., 1971).  As a consequence, irrigation 697 

in Australia can lead to very high daily values of NEP in crops, both in this study (NEE ca. −23 g m−2 698 

d−1 at a minimum for AU-Cm1 maize) and in previous research on rice, maize and sugarcane, which 699 

reached productivity rates of NEE = −40 µmol m−2 s−1 during the peak of the summer growing season 700 

(Vote et al., 2015; Webb et al., 2018). 701 

This survey of environmental drivers for fluctuations in NEE, E and H leaves open a number of 702 

limitations and uncertainties which merit further investigation.  These can be characterised as (i) 703 

incomplete information on carbon budgets; (ii) lack of information for relating productivity and water 704 

use to yield; and (iii) the inherent challenge of resolving reasonable relationships from nonlinear 705 

systems undergoing high levels of variability.  For (i), one missing component in this study is an 706 

accounting of net biome production (NBP), which can show very different contributions to the total 707 

carbon budget from NEE.  For example, a crop might be assessed as a carbon sink from NEE alone, 708 

whereas accounting for export of carbon via harvest as NBP can shift the carbon budget to a net source 709 



 

 
35 

(Buysse et al., 2017).  Even in the absence of such a shift from carbon sink to source, failing to 710 

account for export of dissolved organic carbon from crops can result in a very large overestimation of 711 

carbon sink strength by NEE relative to NBP (Kindler et al., 2011; Webb et al., 2018).  Second (ii), 712 

there are strong relationships between biomass and yield in Australian agriculture (Donohue et al., 713 

2018), implying a close relationship between NEE (or NBP) and yield.  Peak-season carbon fluxes are 714 

the most predictive for annual carbon budgets (Zscheischler et al., 2016), thus the results of our study 715 

would be particularly informative for parameterising agricultural yield models like APSIM (e.g., 716 

Donohue et al., 2018; He et al., 2014a; Luo et al., 2018; Ummenhofer et al., 2015).  Third (iii), 717 

variability in precipitation is an important yet often overlooked constraint on vegetative productivity in 718 

pastures and rangelands, and this variability also affects grazing strategies in Australia (Sloat et al., 719 

2018).  Ecohydrological processes are often strongly nonlinear, amplifying intermittency and 720 

unpredictability when precipitation variability is high (Porporato et al., 2015).  We found evidence for 721 

the presence of three types of nonlinearity:  (a) organisation of fluxes and environmental factors 722 

around intermittent precipitation pulses; (b) over-riding control of crop phenology by mowing or 723 

grazing; and (c) compensatory effects of one or more environmental factors which ameliorated the 724 

effects of other factors.  These types of nonlinearities are due to abrupt changes in biotic or 725 

environmental conditions, which are not captured well by land-surface models or analytical methods 726 

which require stationarity (e.g., auto-regression; De Keersmaecker et al., 2015).  We present for the 727 

first time an analytical framework for quantifying pulse–response sensitivities on a single scale by 728 

using a wavelet–statistics conjunction approach which can incorporate information on the timing of 729 

fluctuations in addition to simple lagged averages, a necessity for land surface modelling which has 730 

recently been elucidated by Haughton et al. (2018b). 731 

6 Conclusions 732 

In this survey of agricultural ecosystems across Australia and New Zealand, we developed a novel 733 

statistical framework through wavelet–statistics conjunction to incorporate information on temporal 734 
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synchronisation between variations in turbulent fluxes (NEE, E and H) and environmental factors (Rn, 735 

q, Ta, Ts, D, G and θ).  Using this approach to test hypotheses about the effects of management on 736 

environment–flux relationships, we found that: 737 

1. Coordination amongst NEE, E and H was strongly affected by management practices as 738 

hypothesised.  Full coupling of NEE, E and H was more frequently achieved through 739 

irrigation and fertilisation practices than in minimally grazed rangelands and pastures.  740 

Decoupling of NEP and E was observed at drier sites, some of which also showed reverse 741 

coupling to H, illustrating the decoupling of carbon and water fluxes in response to 742 

conditions conducive of heat stress (De Kauwe et al., 2019). 743 

2. We could not fully support our second hypothesis that coordination amongst environmental 744 

factors would be related to management.  Large-scale differences in relationships amongst 745 

environmental factors were observed across the 19 sites of this study, suggesting that 746 

environmental conditions are largely site-specific and outside of management control.  747 

Comparison of paired sites across management intensity categories, seasons and crop types 748 

identified some environmental factors which had fixed effects across paired sites, whereas 749 

dependencies with other environmental factors differed amongst sites.  This suggests that a 750 

subset of environmental factors are under management control at a given location, whereas 751 

other environmental factors represent constraints on the agricultural system. 752 

3. The combination of management practices which promote positive coupling of carbon and 753 

water budgets (i.e., point 1) with site-specific variability of coupling amongst environmental 754 

factors (i.e., point 2) generated various patterns in the predictability of fluxes from 755 

environmental factors.  Predictability was small in northern Australian agriculture as 756 

hypothesised by Haughton et al. (2018a), with low R2 due to nonlinear responses of fluxes 757 

and environmental factors, including those due to precipitation pulses in hot climate zones.  758 
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Predictability (as a function of R2) was also low for farms where (i) complementarity 759 

between energy and water limitations was apparent (0.8 ≤ ϕ ≤ 1.2) and (ii) management 760 

activities such as grazing or harvesting induced a phenological response and release from 761 

environmental constraints.  Conversely, irrigation in water-limited environments resulted in 762 

very high predictability of variations in fluxes from knowledge of environmental factors. 763 

By incorporating timing and temporal variability into a statistical framework, wavelet–regression 764 

conjunction modelling has the capability of transforming our understanding of how ecosystems 765 

respond to fluctuations in climate, to the occurrence of nonstationarities such as precipitation pulses 766 

and extreme weather events, and to climate change by helping to analytically separate the effects of 767 

fluctuations, nonstationarities and trends.  Several potential applications arise from this work, 768 

including analysis of longer-term phenological trends characterised by satellite imagery, 769 

development of a better understanding of drought impacts on crops, comparison of crops with 770 

differing physiognomy, and analysis of greenup/brown-down dynamics. 771 

Acknowledgments 772 

The study used data from Terrestrial Ecosystem Research Network (TERN, http://tern.org.au), 773 

supported by the Australian Government through the National Collaborative Research Infrastructure 774 

Strategy (NCRIS).  The authors would like to further acknowledge funding through the Australian 775 

Research Council (ARC) and the National Water Commission through Programs 3 (surface water–776 

groundwater interactions, AU-TTE) and 4 (groundwater–vegetation–atmosphere interactions, AU-Gat) 777 

of the National Centre for Groundwater Research and Training (a part of the NCRIS Groundwater 778 

project).  Further funding for AU-Gat was provided by ARC and the Victoria Department of Economic 779 

Development, Jobs, Transport and Resources (ARC LP140100871).  NZ funding sources included 780 

Landcare Research and NZ government.  We would also like to thank Eva van Gorsel for her insights 781 



 

 
38 

and discussion during early planning stages of this study, and two anonymous reviewers whose 782 

suggestions have helped to improve manuscript quality. 783 

7 REFERENCES 784 

Abry, P. and Didier, G., 2018. Wavelet eigenvalue regression for n-variate operator fractional 785 
Brownian motion. J. Multivar. Anal. 168: 75-104, DOI: 10.1016/j.jmva.2018.06.007. 786 

Adamson, D., Loch, A. and Schwabe, K., 2017. Adaptation responses to increasing drought frequency. 787 
Aust. J. Agr. Resour. Econ. 61: 385-403, DOI: 10.1111/1467-8489.12214. 788 

Akuraju, V.R., Ryu, D., George, B., Ryu, Y. and Dassanayake, K., 2017. Seasonal and inter-annual 789 
variability of soil moisture stress function in dryland wheat field, Australia. Agric. For. Meteor. 790 
232: 489-499, DOI: 10.1016/j.agrformet.2016.10.007. 791 

Australian Bureau of Statistics, 2018. Agricultural Commodities, Australia, 2016–2017, 792 
Commonwealth of Australia, Canberra. 793 

Babst, F., Bouriaud, O., Poulter, B., Trouet, V., Girardin, M.P. and Frank, D.C., 2019. Twentieth 794 
century redistribution in climatic drivers of global tree growth. Sci. Adv. 5: eaat4313, DOI: 795 
10.1126/sciadv.aat4313. 796 

Behtari, B., Jafarian, Z. and Alikhani, H., 2019. Temperature sensitivity of soil organic matter 797 
decomposition in response to land management in semi-arid rangelands of Iran. Catena. 179: 798 
210-219, DOI: 10.1016/j.catena.2019.03.043. 799 

Beringer, J., Hutley, L.B., Abramson, D., Arndt, S.K., Briggs, P., Bristow, M., Canadell, J.G., 800 
Cernusak, L.A., Eamus, D., Edwards, A.C., Evans, B.J., Fest, B., Goergen, K., Grover, S.P., 801 
Hacker, J., Haverd, V., Kanniah, K., Livesley, S.J., Lynch, A., Maier, S., Moore, C., Raupach, 802 
M., Russell-Smith, J., Scheiter, S., Tapper, N.J. and Uotila, P., 2015. Fire in Australian 803 
savannas: from leaf to landscape. Glob. Change Biol. 21: 62-81, DOI: 10.1111/gcb.12686. 804 

Beringer, J., Hutley, L.B., Hacker, J.M., Neininger, B. and U, K.T.P., 2011. Patterns and processes of 805 
carbon, water and energy cycles across northern Australian landscapes: From point to region. 806 
Agric. For. Meteor. 151: 1409-1416, DOI: 10.1016/j.agrformet.2011.05.003. 807 

Beringer, J., Hutley, L.B., McHugh, I., Arndt, S.K., Campbell, D., Cleugh, H.A., Cleverly, J., Resco de 808 
Dios, V., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, 809 
N., Huete, A., Isaac, P., Kanniah, K., Leuning, R., Liddell, M.J., Macfarlane, C., Meyer, W., 810 
Moore, C., Pendall, E., Phillips, A., Phillips, R.L., Prober, S.M., Restrepo-Coupe, N., Rutledge, 811 
S., Schroder, I., Silberstein, R., Southall, P., Yee, M.S., Tapper, N.J., van Gorsel, E., Vote, C., 812 
Walker, J. and Wardlaw, T., 2016. An introduction to the Australian and New Zealand flux 813 
tower network – OzFlux. Biogeosciences. 13: 5895-5916, DOI: 10.5194/bg-13-5895-2016. 814 

Beringer, J., McHugh, I., Hutley, L.B., Isaac, P. and Kljun, N., 2017. Technical note: 815 
Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO). Biogeosciences. 14: 816 
1457-1460, DOI: 10.5194/bg-14-1457-2017. 817 

Berko, H., Etheridge, D., Loh, D., Kuske, T., Colin, A., Gregory, R., Spencer, D., Law, R., Zegelin, S. 818 
and Feitz, A., 2012. Installation Report for Arcturus (ARA): An inland baseline station for the 819 
continuous measurement of atmospheric greenhouse gases. 1922103616, Geoscience Australia, 820 
Canberra. 821 



 

 
39 

Best, M.J., Abramowitz, G., Johnson, H.R., Pitman, A.J., Balsamo, G., Boone, A., Cuntz, M., 822 
Decharme, B., Dirmeyer, P.A., Dong, J., Ek, M., Guo, Z., Haverd, V., Van den Hurk, B.J.J., 823 
Nearing, G.S., Pak, B., Peters-Lidard, C., Santanello, J.A., Jr., Stevens, L. and Vuichard, N., 824 
2015. The Plumbing of Land Surface Models: Benchmarking Model Performance. J. 825 
Hydrometeor. 16: 1425-1442, DOI: 10.1175/JHM-D-14-0158.1. 826 

Boening, C., Willis, J.K., Landerer, F.W., Nerem, R.S. and Fasullo, J., 2012. The 2011 La Niña: So 827 
strong, the oceans fell. Geophys. Res. Lett. 39: L19602, DOI: 10.1029/2012gl053055. 828 

Brakke, T.W., Verma, S.B. and Rosenberg, N.J., 1978. Local and regional components of sensible heat 829 
advection. J. Appl. Meteor. 17: 935-963. 830 

Brown, M., Whitehead, D., Hunt, J.E., Clough, T.J., Arnold, G.C., Baisden, W.T. and Sherlock, R.R., 831 
2009. Regulation of soil surface respiration in a grazed pasture in New Zealand. Agric. For. 832 
Meteor. 149: 205-213, DOI: 10.1016/j.agrformet.2008.08.005. 833 

Brunet, Y., Itier, B., McAneney, J. and Lagouarde, J.P., 1994. Downwind evolution of scalar fluxes 834 
and surface resistance under conditions of local advection. Part II: Measurements over barley. 835 
Agric. For. Meteor. 71: 227-245. 836 

Budyko, M.I., 1974. Climate and Life. Academic Press, San Diego, CA, 508 pp. 837 
Buysse, P., Bodson, B., Debacq, A., De Ligne, A., Heinesch, B., Manise, T., Moureaux, C. and 838 

Aubinet, M., 2017. Carbon budget measurement over 12 years at a crop production site in the 839 
silty-loam region in Belgium. Agric. For. Meteor. 246: 241-255, DOI: 840 
10.1016/j.agrformet.2017.07.004. 841 

Cai, Q., Zhang, Y.L., Sun, Z.X., Zheng, J.M., Bai, W., Zhang, Y., Liu, Y., Feng, L.S., Feng, C., 842 
Zhang, Z., Yang, N., Evers, J.B. and Zhang, L.Z., 2017. Morphological plasticity of root 843 
growth under mild water stress increases water use efficiency without reducing yield in maize. 844 
Biogeosciences. 14: 3851-3858. 845 

Cammarano, D. and Tian, D., 2018. The effects of projected climate and climate extremes on a winter 846 
and summer crop in the southeast USA. Agric. For. Meteor. 248: 109-118, DOI: 847 
10.1016/j.agrformet.2017.09.007. 848 

Campbell, D.I., Smith, J., Goodrich, J.P., Wall, A.M. and Schipper, L.A., 2014. Year-round growing 849 
conditions explains large CO2 sink strength in a New Zealand raised peat bog. Agric. For. 850 
Meteor. 192: 59-68, DOI: 10.1016/j.agrformet.2014.03.003. 851 

Chen, X., Su, Z., Ma, Y., Cleverly, J. and Liddell, M., 2017. An accurate estimate of monthly mean 852 
land surface temperatures from MODIS clearsky retrievals. J. Hydrometeor. 18: 2827-2847, 853 
DOI: 10.1175/jhm-d-17-0009.1. 854 

Chi, J., Waldo, S., Pressley, S., O'Keeffe, P., Huggins, D., Stöckle, C., Pan, W.L., Brooks, E. and 855 
Lamb, B., 2016. Assessing carbon and water dynamics of no-till and conventional tillage 856 
cropping systems in the inland Pacific Northwest US using the eddy covariance method. Agric. 857 
For. Meteor. 218-219: 37-49, DOI: 10.1016/j.agrformet.2015.11.019. 858 

Cleverly, J., 2019. Agricultural ecosystems collection. TERN OzFlux: Australian and New Zealand 859 
Flux Research and Monitoring Network, hdl.handle.net/102.100.100/79013. 860 

Cleverly, J., Boulain, N., Villalobos-Vega, R., Grant, N., Faux, R., Wood, C., Cook, P.G., Yu, Q., 861 
Leigh, A. and Eamus, D., 2013. Dynamics of component carbon fluxes in a semi-arid Acacia 862 
woodland, central Australia. J. Geophys. Res.: Biogeosci. 118: 1168–1185, DOI: 863 
10.1002/jgrg.20101. 864 



 

 
40 

Cleverly, J., Eamus, D., Edwards, W., Grant, M., Grundy, M.J., Held, A., Karan, M., Lowe, A.J., 865 
Prober, S.M., Sparrow, B. and Morris, B., 2019. TERN, Australia's Land Observatory:  866 
addressing the global challenge of forecasting ecosystem responses to climate variability and 867 
change. Environ. Res. Lett. 14: 095004, DOI: 10.1088/1748-9326/ab33cb. 868 

Cleverly, J., Eamus, D., Luo, Q., Restrepo Coupe, N., Kljun, N., Ma, X., Ewenz, C., Li, L., Yu, Q. and 869 
Huete, A., 2016a. The importance of interacting climate modes on Australia's contribution to 870 
global carbon cycle extremes. Sci. Rep. 6: 23113, DOI: 10.1038/srep23113. 871 

Cleverly, J., Eamus, D., Restrepo Coupe, N., Chen, C., Maes, W., Li, L., Faux, R., Santini, N.S., 872 
Rumman, R., Yu, Q. and Huete, A., 2016b. Soil moisture controls on phenology and 873 
productivity in a semi-arid critical zone. Sci. Total Environ. 568: 1227-1237, DOI: 874 
10.1016/j.scitotenv.2016.05.142. 875 

Cleverly, J., Eamus, D., Van Gorsel, E., Chen, C., Rumman, R., Luo, Q., Restrepo Coupe, N., Li, L., 876 
Kljun, N., Faux, R., Yu, Q. and Huete, A., 2016c. Productivity and evapotranspiration of two 877 
contrasting semiarid ecosystems following the 2011 global carbon land sink anomaly. Agric. 878 
For. Meteor. 220: 151-159, DOI: 10.1016/j.agrformet.2016.01.086. 879 

Cleverly, J., Thibault, J.R., Teet, S.B., Tashjian, P., Hipps, L.E., Dahm, C.N. and Eamus, D., 2015. 880 
Flooding regime impacts on radiation, evapotranspiration and latent heat fluxes over 881 
groundwater-dependent riparian cottonwood and saltcedar forests. Adv. Meteorol. 2015: 882 
935060, DOI: 10.1155/2015/935060. 883 

Collineau, S. and Brunet, Y., 1993. Detection of turbulent coherent motions in a forest canopy part I: 884 
Wavelet analysis. Bound.-Lay. Meteor. 65: 357-379, DOI: 10.1007/bf00707033. 885 

Cooper, D., Eichinger, W., Archuleta, J., Hipps, L., Kao, J., Leclerc, M., Neale, C. and Prueger, J., 886 
2003. Spatial source-area analysis of three-dimensional moisture fields from LIDAR, eddy 887 
covariance, and a footprint model. Agric. For. Meteor. 114: 213-234. 888 

Cunningham, S.C., Mac Nally, R., Baker, P.J., Cavagnaro, T.R., Beringer, J., Thomson, J.R. and 889 
Thompson, R.M., 2015. Balancing the environmental benefits of reforestation in agricultural 890 
regions. Perspect. Plant Ecol. Evol. Syst. 17: 301-317, DOI: 10.1016/j.ppees.2015.06.001. 891 

Cuxart, J., Morales, G., Terradellas, E. and Yague, C., 2002. Study of coherent structures and 892 
estimation of the pressure transport terms for the nocturnal stable boundary layer. Bound.-Lay. 893 
Meteor. 105: 305-328, DOI: 10.1023/a:1019974021434. 894 

Davis, P.A., Brown, J.C., Saunders, M., Lanigan, G., Wright, E., Fortune, T., Burke, J., Connolly, J., 895 
Jones, M.B. and Osborne, B., 2010. Assessing the effects of agricultural management practices 896 
on carbon fluxes: Spatial variation and the need for replicated estimates of Net Ecosystem 897 
Exchange. Agric. For. Meteor. 898 

De Kauwe, M.G., Medlyn, B.E., Pitman, A.J., Drake, J.E., Ukkola, A., Griebel, A., Pendall, E., Prober, 899 
S. and Roderick, M., 2019. Examining the evidence for decoupling between photosynthesis and 900 
transpiration during heat extremes. Biogeosciences. 16: 903-916, DOI: 10.5194/bg-16-903-901 
2019. 902 

De Keersmaecker, W., Lhermitte, S., Tits, L., Honnay, O., Somers, B. and Coppin, P., 2015. A model 903 
quantifying global vegetation resistance and resilience to short-term climate anomalies and 904 
their relationship with vegetation cover. Glob. Ecol. Biogeogr. 24: 539-548, DOI: 905 
10.1111/geb.12279. 906 

Donohue, R.J., Lawes, R.A., Mata, G., Gobbett, D. and Ouzman, J., 2018. Towards a national, remote-907 
sensing-based model for predicting field-scale crop yield. Field Crop. Res. 227: 79-90, DOI: 908 
10.1016/j.fcr.2018.08.005. 909 



 

 
41 

Donohue, R.J., McVicar, T.R. and Roderick, M.L., 2009. Climate-related trends in Australian 910 
vegetation cover as inferred from satellite observations, 1981-2006. Glob. Change Biol. 15: 911 
1025-1039. 912 

Dreccer, M.F., Fainges, J., Whish, J., Ogbonnaya, F.C. and Sadras, V.O., 2018. Comparison of 913 
sensitive stages of wheat, barley, canola, chickpea and field pea to temperature and water stress 914 
across Australia. Agric. For. Meteor. 248: 275-294. 915 

Dresel, P.E., Dean, J.F., Perveen, F., Webb, J.A., Hekmeijer, P., Adelana, S.M. and Daly, E., 2018. 916 
Effect of Eucalyptus plantations, geology, and precipitation variability on water resources in 917 
upland intermittent catchments. J. Hydrol. 564: 723-739, DOI: 10.1016/j.jhydrol.2018.07.019. 918 

Drewniak, B.A., Mishra, U., Song, J., Prell, J. and Kotamarthi, V.R., 2015. Modeling the impact of 919 
agricultural land use and management on US carbon budgets. Biogeosciences. 12: 2119-2129. 920 

Eamus, D., Cleverly, J., Boulain, N., Grant, N., Faux, R. and Villalobos-Vega, R., 2013. Carbon and 921 
water fluxes in an arid-zone Acacia savanna woodland: An analyses of seasonal patterns and 922 
responses to rainfall events. Agric. For. Meteor. 182–183: 225–238, DOI: 923 
10.1016/j.agrformet.2013.04.020. 924 

Eamus, D., Huete, A., Cleverly, J., Nolan, R.H., Ma, X., Tarin, T. and Santini, N.S., 2016. Mulga, a 925 
major tropical dry open forest of Australia: recent insights to carbon and water fluxes. Environ. 926 
Res. Lett. 11: 125011, DOI: 10.1088/1748-9326/11/12/125011. 927 

Ellis, N.R. and Albrecht, G.A., 2017. Climate change threats to family farmers' sense of place and 928 
mental wellbeing: A case study from the Western Australian Wheatbelt. Soc. Sci. Med. 175: 929 
161-168, DOI: 10.1016/j.socscimed.2017.01.009. 930 

Etheridge, D., Luhar, A., Loh, Z., Leuning, R., Spencer, D., Steele, P., Zegelin, S., Allison, C., 931 
Krummel, P., Leist, M. and van der Schoot, M., 2011. Atmospheric monitoring of the 932 
CO2CRC Otway Project and lessons for large scale CO2 storage projects. Energy Procedia. 4: 933 
3666-3675, DOI: 10.1016/j.egypro.2011.02.298. 934 

Fasullo, J.T., Boening, C., Landerer, F.W. and Nerem, R.S., 2013. Australia's unique influence on 935 
global sea level in 2010-2011. Geophys. Res. Lett. 40: 4368-4373, DOI: 10.1002/grl.50834. 936 

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., 937 
Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., 938 
Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N. and Snyder, P.K., 2005. Global 939 
consequences of land use. Science. 309: 570-574, DOI: 10.1126/science.1111772. 940 

Garnaut, R., 2008. The Garnaut climate change review : final report / Ross Garnaut. Cambridge 941 
University Press, Port Melbourne, Vic. :. 942 

Graham, S.L., Kochendorfer, J., McMillan, A.M.S., Duncan, M.J., Srinivasan, M.S. and Hertzog, G., 943 
2016. Effects of agricultural management on measurements, prediction, and partitioning of 944 
evapotranspiration in irrigated grasslands. Agric. Water Manage. 177: 340-347, DOI: 945 
10.1016/j.agwat.2016.08.015. 946 

Grinsted, A., Moore, J.C. and Jevrejeva, S., 2004. Application of the cross wavelet transform and 947 
wavelet coherence to geophysical time series. Nonlinear Process Geophys. 11: 561-566. 948 

Guan, H., He, X. and Zhang, X., 2015. A comprehensive examination of global atmospheric CO2 949 
teleconnections using wavelet-based multi-resolution analysis. Environmental Earth Sciences. 950 
74: 7239-7253, DOI: 10.1007/s12665-015-4705-z. 951 

Hanks, R.J., Allen, L.H., Jr. and Gardner, H.B., 1971. Advection and evapotranspiration of wide-row 952 
sorghum in the Central Great Plains. Agron. J. 63: 520-527. 953 



 

 
42 

Hao, X.M., Zhang, S.H., Li, W.H., Duan, W.L., Fang, G.H., Zhang, Y. and Guo, B., 2018. The 954 
uncertainty of Penman-Monteith method and the energy balance closure problem. J. Geophys. 955 
Res.: Atmos. 123: 7433-7443, DOI: 10.1029/2018jd028371. 956 

Hargrove, W.W. and Pickering, J., 1992. Pseudoreplication:  a sine qua non for regional ecology. 957 
Landsc. Ecol. 6: 251-258, DOI: 10.1007/bf00129703. 958 

Haughton, N., Abramowitz, G., De Kauwe, M.G. and Pitman, A.J., 2018a. Does predictability of 959 
fluxes vary between FLUXNET sites? Biogeosciences. 15: 4495-4513, DOI: 10.5194/bg-15-960 
4495-2018. 961 

Haughton, N., Abramowitz, G. and Pitman, A.J., 2018b. On the predictability of land surface fluxes 962 
from meteorological variables. Geosci. Model Dev. 11: 195-212, DOI: 10.5194/gmd-11-195-963 
2018. 964 

He, L., Cleverly, J., Chen, C., Yang, X., Li, J., Liu, W. and Yu, Q., 2014a. Diverse responses of winter 965 
wheat yield and water use to climate change and variability on the semiarid Loess Plateau in 966 
China. Agron. J. 106: 1169–1178, DOI: 10.2134/agronj13.0321. 967 

He, L., Cleverly, J., Wang, B., Jin, N., Mi, C., Liu, D.L. and Yu, Q., 2018. Multi-model ensemble 968 
projections of future extreme heat stress on rice across southern China. Theor. Appl. Climatol. 969 
133: 1107-1118, DOI: 10.1007/s00704-017-2240-4. 970 

He, X. and Guan, H., 2013. Multiresolution analysis of precipitation teleconnections with large-scale 971 
climate signals: A case study in South Australia. Water Resour. Res. 49: 6995-7008, DOI: 972 
10.1002/wrcr.20560. 973 

He, X., Guan, H., Zhang, X. and Simmons, C.T., 2014b. A wavelet-based multiple linear regression 974 
model for forecasting monthly rainfall. Int. J. Climatol. 34: 1898–1912, DOI: 975 
10.1002/joc.3809. 976 

Hsu, K.-l., Gupta, H.V., Gao, X., Sorooshian, S. and Imam, B., 2002. Self-organizing linear output 977 
map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis. 978 
Water Resour. Res. 38: 1302, DOI: 10.1029/2001wr000795. 979 

Hunt, J.E., Laubach, J., Barthel, M., Fraser, A. and Phillips, R.L., 2016. Carbon budgets for an 980 
irrigated intensively grazed dairy pasture and an unirrigated winter-grazed pasture. 981 
Biogeosciences. 13: 2927-2944, DOI: 10.5194/bg-13-2927-2016. 982 

Hutley, L.B., Beringer, J., Isaac, P.R., Hacker, J.M. and Cernusak, L.A., 2011. A sub-continental scale 983 
living laboratory: Spatial patterns of savanna vegetation over a rainfall gradient in northern 984 
Australia. Agric. For. Meteor. 151: 1417–1428, DOI: 10.1016/j.agrformet.2011.03.002. 985 

Hutley, L.B., Leuning, R., Beringer, J. and Cleugh, H.A., 2005. The utility of the eddy covariance 986 
techniques as a tool in carbon accounting: tropical savanna as a case study. Aust. J. Bot. 53: 987 
663–675, DOI: 10.1071/BT04147. 988 

Huxman, T.E., Snyder, K.A., Tissue, D., Leffler, A.J., Ogle, K., Pockman, W.T., Sandquist, D.R., 989 
Potts, D.L. and Schwinning, S., 2004. Precipitation pulses and carbon fluxes in semiarid and 990 
arid ecosystems. Oecologia. 141: 254–268, DOI: 10.1007/s00442-004-1682-4. 991 

Isaac, P., Cleverly, J., McHugh, I., van Gorsel, E., Ewenz, C. and Beringer, J., 2017. OzFlux data: 992 
network integration from collection to curation. Biogeosciences. 14: 2903-2928, DOI: 993 
10.5194/bg-14-2903-2017. 994 

Jeong, S.-J., Ho, C.-H., Piao, S., Kim, J., Ciais, P., Lee, Y.-B., Jhun, J.-G. and Park, S.K., 2014. 995 
Effects of double cropping on summer climate of the North China Plain and neighbouring 996 
regions. Nat. Clim. Change. 4: 615, DOI: 10.1038/nclimate2266. 997 



 

 
43 

Jin, Z., Zhuang, Q.L., Wang, J.L., Archontoulis, S.V., Zobel, Z. and Kotamarthi, V.R., 2017. The 998 
combined and separate impacts of climate extremes on the current and future US rainfed maize 999 
and soybean production under elevated CO2. Glob. Change Biol. 23: 2687-2704, DOI: 1000 
10.1111/gcb.13617. 1001 

Kanniah, K.D., Beringer, J. and Hutley, L., 2013. Exploring the link between clouds, radiation, and 1002 
canopy productivity of tropical savannas. Agric. For. Meteor. 182–183: 304-313, DOI: 1003 
10.1016/j.agrformet.2013.06.010. 1004 

Katul, G.G. and Parlange, M.B., 1995. The spatial structure of turbulence at production wave-numbers 1005 
using orthonormal wavelets. Bound.-Lay. Meteor. 75: 81-108, DOI: 10.1007/bf00721045. 1006 

Khan, S. and Hanjra, M.A., 2009. Footprints of water and energy inputs in food production - Global 1007 
perspectives. Food Policy. 34: 130-140. 1008 

Kindler, R., Siemens, J., Kaiser, K., Walmsley, D.C., Bernhofer, C., Buchmann, N., Cellier, P., 1009 
Eugster, W., Gleixner, G., Grunwald, T., Heim, A., Ibrom, A., Jones, S.K., Jones, M., Klumpp, 1010 
K., Kutsch, W., Larsen, K.S., Lehuger, S., Loubet, B., McKenzie, R., Moors, E., Osborne, B., 1011 
Pilegaard, K., Rebmann, C., Saunders, M., Schmidt, M.W.I., Schrumpf, M., Seyfferth, J., 1012 
Skiba, U., Soussana, J.F., Sutton, M.A., Tefs, C., Vowinckel, B., Zeeman, M.J. and 1013 
Kaupenjohann, M., 2011. Dissolved carbon leaching from soil is a crucial component of the net 1014 
ecosystem carbon balance. Glob. Change Biol. 17: 1167-1185, DOI: 10.1111/j.1365-1015 
2486.2010.02282.x. 1016 

Kirschbaum, M.U.F., Schipper, L.A., Mudge, P.L., Rutledge, S., Puche, N.J.B. and Campbell, D.I., 1017 
2017. The trade-offs between milk production and soil organic carbon storage in dairy systems 1018 
under different management and environmental factors. Sci. Total Environ. 577: 61-72, DOI: 1019 
10.1016/j.scitotenv.2016.10.055. 1020 

Lara, M.J., Johnson, D.R., Andresen, C., Hollister, R.D. and Tweedie, C.E., 2017. Peak season carbon 1021 
exchange shifts from a sink to a source following 50+years of herbivore exclusion in an Arctic 1022 
tundra ecosystem. J. Ecol. 105: 122-131, DOI: 10.1111/1365-2745.12654. 1023 

Laubach, J. and Hunt, J.E., 2018. Greenhouse-gas budgets for irrigated dairy pasture and a winter-1024 
forage kale crop. Agric. For. Meteor. 258: 117-134, DOI: 10.1016/j.agrformet.2017.04.013. 1025 

Laubach, J., Hunt, J.E., Graham, S.L., Buxton, R.P., Rogers, G.N.D., Mudge, P.L., Carrick, S. and 1026 
Whitehead, D., 2019. Irrigation increases forage production of newly established lucerne but 1027 
enhances net ecosystem carbon losses. Sci. Total Environ. 689: 921-936, DOI: 1028 
10.1016/j.scitotenv.2019.06.407. 1029 

Lei, H. and Yang, D., 2010. Interannual and seasonal variability in evapotranspiration and energy 1030 
partitioning over an irrigated cropland in the North China Plain. Agric. For. Meteor. 150: 581-1031 
589. 1032 

Loh, Z., Leuning, R., Zegelin, S., Etheridge, D., Bai, M., Naylor, T. and Griffith, D., 2009. Testing 1033 
Lagrangian atmospheric dispersion modelling to monitor CO2 and CH4 leakage from 1034 
geosequestration. Atmos. Environ. 43: 2602-2611, DOI: 10.1016/j.atmosenv.2009.01.053. 1035 

Luo, Q., O’Leary, G., Cleverly, J. and Eamus, D., 2018. Effectiveness of time of sowing and cultivar 1036 
choice for managing climate change: wheat crop phenology and water use efficiency. Int. J. 1037 
Biometeor. 62: 1049-1061, DOI: 10.1007/s00484-018-1508-4. 1038 

Lynch, A.H., Abramson, D., Görgen, K., Beringer, J. and Uotila, P., 2007. Influence of savanna fire on 1039 
Australian monsoon season precipitation and circulation as simulated using a distributed 1040 
computing environment. Geophys. Res. Lett. 34: L20801, DOI: 10.1029/2007GL030879. 1041 



 

 
44 

Ma, X., Huete, A., Cleverly, J., Eamus, D., Chevallier, F., Joiner, J., Poulter, B., Zhang, Y., Guanter, 1042 
L., Meyer, W., Xie, Z. and Ponce-Campos, G., 2016. Drought rapidly diminishes the large net 1043 
CO2 uptake in 2011 over semi-arid Australia. Sci. Rep. 6: 37747, DOI: 10.1038/srep37747. 1044 

Mallawaarachchi, T., Nauges, C., Sanders, O. and Quiggin, J., 2017. State-contingent analysis of 1045 
farmers' response to weather variability: irrigated dairy farming in the Murray Valley, 1046 
Australia. Aust. J. Agr. Resour. Econ. 61: 36-55, DOI: 10.1111/1467-8489.12193. 1047 

Meier, E.A., Thorburn, P.J., Kragt, M.E., Dumbrell, N.P., Biggs, J.S., Hoyle, F.C. and van Rees, H., 1048 
2017. Greenhouse gas abatement on southern Australian grains farms: Biophysical potential 1049 
and financial impacts. Agric. Syst. 155: 147-157, DOI: 10.1016/j.agsy.2017.04.012. 1050 

Moffat, A.M., Papale, D., Reichstein, M., Hollinger, D.Y., Richardson, A.D., Barr, A.G., Beckstein, 1051 
C., Braswell, B.H., Churkina, G., Desai, A.R., Falge, E., Gove, J.H., Heimann, M., Hui, D.F., 1052 
Jarvis, A.J., Kattge, J., Noormets, A. and Stauch, V.J., 2007. Comprehensive comparison of 1053 
gap-filling techniques for eddy covariance net carbon fluxes. Agric. For. Meteor. 147: 209-232. 1054 

Moinet, Y.G., Midwood, J.A., Hunt, E.J., Rumpel, C., Millard, P. and Chabbi, A., 2019. Grassland 1055 
Management Influences the Response of Soil Respiration to Drought. Agronomy. 9, DOI: 1056 
10.3390/agronomy9030124. 1057 

Mudge, P.L., Wallace, D.F., Rutledge, S., Campbell, D.I., Schipper, L.A. and Hosking, C.L., 2011. 1058 
Carbon balance of an intensively grazed temperate pasture in two climatically contrasting 1059 
years. Agric. Ecosyst. Environ. 144: 271-280, DOI: 10.1016/j.agee.2011.09.003. 1060 

Mueller, N.D., Rhines, A., Butler, E.E., Ray, D.K., Siebert, S., Holbrook, N.M. and Huybers, P., 2017. 1061 
Global relationships between cropland intensification and summer temperature extremes over 1062 
the last 50 years. J. Clim. 30: 7505-7528, DOI: 10.1175/jcli-d-17-0096.1. 1063 

Murphy, B.P., Paron, P., Prior, L.D., Boggs, G.S., Franklin, D.C. and Bowman, D., 2010. Using 1064 
generalized autoregressive error models to understand fire-vegetation-soil feedbacks in a 1065 
mulga-spinifex landscape mosaic. J. Biogeogr. 37: 2169-2182, DOI: 10.1111/j.1365-1066 
2699.2010.02359.x. 1067 

Orgill, S.E., Waters, C.M., Melville, G., Toole, I., Alemseged, Y. and Smith, W., 2017. Sensitivity of 1068 
soil organic carbon to grazing management in the semi-arid rangelands of south-eastern 1069 
Australia. Rangeland J. 39: 153-167, DOI: 10.1071/rj16020. 1070 

Peng, L., Li, D. and Sheffield, J., 2018. Drivers of variability in atmospheric evaporative demand: 1071 
multiscale spectral analysis based on observations and physically based modeling. Water 1072 
Resour. Res. 54: 3510-3529, DOI: 10.1029/2017WR022104. 1073 

Percival, D.B. and Walden, A.T., 2000. Wavelet Methods for Time Series Analysis. Cambridge Series 1074 
in Statistical and Probabilistic Mathematics. Cambridge University Press, New York, NY. 1075 

Porporato, A., Feng, X., Manzoni, S., Mau, Y., Parolari, A.J. and Vico, G., 2015. Ecohydrological 1076 
modeling in agroecosystems: Examples and challenges. Water Resour. Res. 51: 5081-5099, 1077 
DOI: 10.1002/2015WR017289. 1078 

Poulter, B., Frank, D., Ciais, P., Myneni, R.B., Andela, N., Bi, J., Broquet, G., Canadell, J.G., 1079 
Chevallier, F., Liu, Y.Y., Running, S.W., Sitch, S. and van der Werf, G.R., 2014. Contribution 1080 
of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature. 509: 600–1081 
603, DOI: 10.1038/nature13376. 1082 

Rashid, M.A., Andersen, M.N., Wollenweber, B., Zhang, X.Y. and Olesen, J.E., 2018. Acclimation to 1083 
higher VPD and temperature minimized negative effects on assimilation and grain yield of 1084 
wheat. Agric. For. Meteor. 248: 119-129, DOI: 10.1016/j.agrformet.2017.09.018. 1085 



 

 
45 

Ratcliffe, J.L., Campbell, D.I., Clarkson, B.R., Wall, A.M. and Schipper, L.A., 2019. Water table 1086 
fluctuations control CO2 exchange in wet and dry bogs through different mechanisms. Sci. 1087 
Total Environ. 655: 1037-1046, DOI: 10.1016/j.scitotenv.2018.11.151. 1088 

Raupach, M.R., Haverd, V. and Briggs, P.R., 2013. Sensitivities of the Australian terrestrial water and 1089 
carbon balances to climate change and variability. Agric. For. Meteor. 182–183: 277-291, DOI: 1090 
10.1016/j.agrformet.2013.06.017. 1091 

Regan, C.M., Connor, J.D., Segaran, R.R., Meyer, W.S., Bryan, B.A. and Ostendorf, B., 2017. Climate 1092 
change and the economics of biomass energy feedstocks in semi-arid agricultural landscapes: 1093 
A spatially explicit real options analysis. J. Environ. Manage. 192: 171-183, DOI: 1094 
10.1016/j.jenvman.2017.01.049. 1095 

Renchon, A.A., Griebel, A., Metzen, D., Williams, C.A., Medlyn, B., Duursma, R.A., Barton, C.V.M., 1096 
Maier, C., Boer, M.M., Isaac, P., Tissue, D., Resco de Dios, V. and Pendall, E., 2018. Upside-1097 
down fluxes Down Under: CO2 net sink in winter and net source in summer in a temperate 1098 
evergreen broadleaf forest. Biogeosciences. 15: 3703-3716, DOI: 10.5194/bg-15-3703-2018. 1099 

Restrepo-Coupe, N., Huete, A., Davies, K., Cleverly, J., Beringer, J., Eamus, D., van Gorsel, E., 1100 
Hutley, L.B. and Meyer, W.S., 2016. MODIS vegetation products as proxies of photosynthetic 1101 
potential along a gradient of meteorologically and biologically driven ecosystem productivity. 1102 
Biogeosciences. 13: 5587-5608, DOI: 10.5194/bg-13-5587-2016. 1103 

Rhif, M., Abbes, A.B., Farah, I.R., Martínez, B. and Sang, Y., 2019. Wavelet transform application 1104 
for/in non-stationary time-series analysis: A review. Appl. Sci. 9, DOI: 10.3390/app9071345. 1105 

Rutledge, S., Mudge, P.L., Campbell, D.I., Woodward, S.L., Goodrich, J.P., Wall, A.M., Kirschbaum, 1106 
M.U.F. and Schipper, L.A., 2015. Carbon balance of an intensively grazed temperate dairy 1107 
pasture over four years. Agric. Ecosyst. Environ. 206: 10-20, DOI: 1108 
10.1016/j.agee.2015.03.011. 1109 

Ryu, Y., Baldocchi, D.D., Ma, S. and Hehn, T., 2008. Interannual variability of evapotranspiration and 1110 
energy exchange over an annual grassland in California. J. Geophys. Res.: Atmos. 113: 1111 
D09104. 1112 

Schaller, C., Göckede, M. and Foken, T., 2017. Flux calculation of short turbulent events – 1113 
comparison of three methods. Atmos. Meas. Tech. 10: 869-880, DOI: 10.5194/amt-10-869-1114 
2017. 1115 

Schipper, L.A., Petrie, O.J., O’Neill, T.A., Mudge, P.L., Liáng, L.L., Robinson, J.M. and Arcus, V.L., 1116 
2019. Shifts in temperature response of soil respiration between adjacent irrigated and non-1117 
irrigated grazed pastures. Agric. Ecosyst. Environ. 285: 106620, DOI: 1118 
10.1016/j.agee.2019.106620. 1119 

Shao, C.L., Chen, J.Q., Li, L.H., Dong, G., Han, J.J., Abraha, M. and John, R., 2017. Grazing effects 1120 
on surface energy fluxes in a desert steppe on the Mongolian Plateau. Ecol. Appl. 27: 485-502, 1121 
DOI: 10.1002/eap.1459. 1122 

Shi, H., Li, L., Eamus, D., Cleverly, J., Huete, A., Beringer, J., Yu, Q., van Gorsel, E. and Hutley, L., 1123 
2014. Intrinsic climate dependency of ecosystem light and water-use-efficiencies across 1124 
Australian biomes. Environ. Res. Lett. 9: 104002, DOI: 10.1088/1748-9326/9/10/104002. 1125 

Sloat, L.L., Gerber, J.S., Samberg, L.H., Smith, W.K., Herrero, M., Ferreira, L.G., Godde, C.M. and 1126 
West, P.C., 2018. Increasing importance of precipitation variability on global livestock grazing 1127 
lands. Nat. Clim. Change. 8: 214-218, DOI: 10.1038/s41558-018-0081-5. 1128 

Statistics New Zealand, 2015. Total Area of Farms, 2013., Statistics New Zealand, New Zealand. 1129 



 

 
46 

Stevens, R.M., Ewenz, C.M., Grigson, G. and Conner, S.M., 2012. Water use by an irrigated almond 1130 
orchard. Irrig. Sci. 30: 189-200, DOI: 10.1007/s00271-011-0270-8. 1131 

Stokes, C.J., Howden, S.M., Gifford, R.G., Meinke, H., Bange, M., McRae, D., Roth, G., Gaydon, D.,, 1132 
Beecher, H.G., Reinke, R., Crimp, S., Park, S., Inman-Bamber, G., Webb, L., Barlow, E.W.R.,, 1133 
Hennessy, K., Whetton, P.H., Booth, T.H., Kirschbaum, M.U.F., Battaglia, M., Stone, G., 1134 
Cobon, D., and Ash, A., McKeon, G., Miller, C.J., Jones, R.N., Hobday, A. J., and 1135 
Poloczanska, E. S., 2008. An overview of climate change adaptation in Australian primary 1136 
industries: impacts, options and priorities. Report prepared for the National Climate Change 1137 
Research Strategy for Primary Industries, CSIRO, Canberra, ACT, Australia. 1138 

Stoy, P.C., Katul, G.G., Siqueira, M.B.S., Juang, J.Y., McCarthy, H.R., Kim, H.S., Oishi, A.C. and 1139 
Oren, R., 2005. Variability in net ecosystem exchange from hourly to inter-annual time scales 1140 
at adjacent pine and hardwood forests: a wavelet analysis. Tree Physiol. 25: 887-902. 1141 

Stoy, P.C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A., Arain, M.A., Arneth, A., 1142 
Aurela, M., Bernhofer, C., Cescatti, A., Dellwik, E., Duce, P., Gianelle, D., van Gorsel, E., 1143 
Kiely, G., Knohl, A., Margolis, H., McCaughey, H., Merbold, L., Montagnani, L., Papale, D., 1144 
Reichstein, M., Saunders, M., Serrano-Ortiz, P., Sottocornola, M., Spano, D., Vaccari, F. and 1145 
Varlagin, A., 2013. A data-driven analysis of energy balance closure across FLUXNET 1146 
research sites: The role of landscape scale heterogeneity. Agric. For. Meteor. 171-172: 137-1147 
152, DOI: 10.1016/j.agrformet.2012.11.004. 1148 

Stull, R.B., 1988. An Introduction to Boundary Layer Meteorology. Atmospheric Sciences Library. 1149 
Kluwer Academic Publishers, Boston, MA, 666 pp. 1150 

Tallec, T., Béziat, P., Jarosz, N., Rivalland, V. and Ceschia, E., 2013. Crops’ water use efficiencies in 1151 
temperate climate: Comparison of stand, ecosystem and agronomical approaches. Agric. For. 1152 
Meteor. 168: 69-81, DOI: 10.1016/j.agrformet.2012.07.008. 1153 

Thompson, M.A., Campbell, D.I. and Spronken-Smith, R.A., 1999. Evaporation from natural and 1154 
modified raised peat bogs in New Zealand. Agric. For. Meteor. 95: 85-98, DOI: 1155 
10.1016/s0168-1923(99)00027-1. 1156 

Torrence, C. and Compo, G.P., 1998. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc. 1157 
79: 61-78. 1158 

Ummenhofer, C.C., Xu, H., Twine, T.E., Girvetz, E.H., McCarthy, H.R., Chhetri, N. and Nicholas, 1159 
K.A., 2015. How climate change affects extremes in maize and wheat yield in two cropping 1160 
regions. J. Clim. 28: 4653-4687, DOI: 10.1175/jcli-d-13-00326.1. 1161 

van Delden, L., Larsen, E., Rowlings, D., Scheer, C. and Grace, P., 2016. Establishing turf grass 1162 
increases soil greenhouse gas emissions in peri-urban environments. Urban Ecosyst.: 1-14, 1163 
DOI: 10.1007/s11252-016-0529-1. 1164 

van Dijk, A., Beck, H.E., Crosbie, R.S., de Jeu, R.A.M., Liu, Y.Y., Podger, G.M., Timbal, B. and 1165 
Viney, N.R., 2013. The Millennium Drought in southeast Australia (2001-2009): Natural and 1166 
human causes and implications for water resources, ecosystems, economy, and society. Water 1167 
Resour. Res. 49: 1040-1057, DOI: 10.1002/wrcr.20123. 1168 

van Gorsel, E., Berni, J.A.J., Briggs, P., Cabello-Leblic, A., Chasmer, L., Cleugh, H.A., Hacker, J., 1169 
Hantson, S., Haverd, V., Hughes, D., Hopkinson, C., Keith, H., Kljun, N., Leuning, R., Yebra, 1170 
M. and Zegelin, S., 2013. Primary and secondary effects of climate variability on net 1171 
ecosystem carbon exchange in an evergreen Eucalyptus forest. Agric. For. Meteor. 182–183: 1172 
248-256, DOI: 10.1016/j.agrformet.2013.04.027. 1173 



 

 
47 

van Gorsel, E., Cleverly, J., Beringer, J., Cleugh, H., Eamus, D., Hutley, L.B., Isaac, P. and Prober, S., 1174 
2018. Preface:  Ozflux:  a network for the study of ecosystem carbon and water dynamics 1175 
across Australia and New Zealand. Biogeosciences. 15: 349-352, DOI: 10.5194/bg-15-349-1176 
2018. 1177 

van Gorsel, E., Wolf, S., Cleverly, J., Isaac, P., Haverd, V., Ewenz, C., Arndt, S., Beringer, J., Resco 1178 
de Dios, V., Evans, B.J., Griebel, A., Hutley, L.B., Keenan, T., Kljun, N., Macfarlane, C., 1179 
Meyer, W.S., McHugh, I., Pendall, E., Prober, S.M. and Silberstein, R., 2016. Carbon uptake 1180 
and water use in woodlands and forests in southern Australia during an extreme heat wave 1181 
event in the “Angry Summer” of 2012/2013. Biogeosciences. 13: 5947-5964, DOI: 1182 
10.5194/bg-13-5947-2016. 1183 

van Heerwaarden, C.C. and Teuling, A.J., 2014. Disentangling the response of forest and grassland 1184 
energy exchange to heatwaves under idealized land-atmosphere coupling. Biogeosciences. 11: 1185 
6159-6171, DOI: 10.5194/bg-11-6159-2014. 1186 

Vote, C., Hall, A. and Charlton, P., 2015. Carbon dioxide, water and energy fluxes of irrigated broad-1187 
acre crops in an Australian semi-arid climate zone. Environmental Earth Sciences. 73: 449-465, 1188 
DOI: 10.1007/s12665-014-3547-4. 1189 

Wagle, P., Gowda, P.H., Anapalli, S.S., Reddy, K.N. and Northup, B.K., 2017a. Growing season 1190 
variability in carbon dioxide exchange of irrigated and rainfed soybean in the southern United 1191 
States. Sci. Total Environ. 593: 263-273, DOI: 10.1016/j.scitotenv.2017.03.163. 1192 

Wagle, P., Xiao, X.M., Gowda, P., Basara, J., Brunsell, N., Steiner, J. and Anup, K.C., 2017b. 1193 
Analysis and estimation of tallgrass prairie evapotranspiration in the central United States. 1194 
Agric. For. Meteor. 232: 35-47, DOI: 10.1016/j.agrformet.2016.08.005. 1195 

Waldo, S., Chi, J., Pressley, S.N., O’Keeffe, P., Pan, W.L., Brooks, E.S., Huggins, D.R., Stöckle, C.O. 1196 
and Lamb, B.K., 2016. Assessing carbon dynamics at high and low rainfall agricultural sites in 1197 
the inland Pacific Northwest US using the eddy covariance method. Agric. For. Meteor. 218–1198 
219: 25-36, DOI: 10.1016/j.agrformet.2015.11.018. 1199 

Wang, L., Liu, H.Z. and Bernhofer, C., 2017. Response of carbon dioxide exchange to grazing 1200 
intensity over typical steppes in a semi-arid area of Inner Mongolia. Theor. Appl. Climatol. 1201 
128: 719-730, DOI: 10.1007/s00704-016-1736-7. 1202 

Waters, C.M., Orgill, S.E., Melville, G.J., Toole, I.D. and Smith, W.J., 2017. Management of Grazing 1203 
Intensity in the Semi-Arid Rangelands of Southern Australia: Effects on Soil and Biodiversity. 1204 
Land Degrad. Dev. 28: 1363-1375, DOI: 10.1002/ldr.2602. 1205 

Webb, J.R., Santos, I.R., Maher, D.T., Macdonald, B., Robson, B., Isaac, P. and McHugh, I., 2018. 1206 
Terrestrial versus aquatic carbon fluxes in a subtropical agricultural floodplain over an annual 1207 
cycle. Agric. For. Meteor. 260-261: 262-272, DOI: 10.1016/j.agrformet.2018.06.015. 1208 

Whitehead, D., Schipper, L.A., Pronger, J., Moinet, G.Y.K., Mudge, P.L., Calvelo Pereira, R., 1209 
Kirschbaum, M.U.F., McNally, S.R., Beare, M.H. and Camps-Arbestain, M., 2018. 1210 
Management practices to reduce losses or increase soil carbon stocks in temperate grazed 1211 
grasslands: New Zealand as a case study. Agric. Ecosyst. Environ. 265: 432-443, DOI: 1212 
10.1016/j.agee.2018.06.022. 1213 

Whitley, R.J., Macinnis-Ng, C.M.O., Hutley, L.B., Beringer, J., Zeppel, M., Williams, M., Taylor, D. 1214 
and Eamus, D., 2011. Is productivity of mesic savannas light limited or water limited? Results 1215 
of a simulation study. Glob. Change Biol. 17: 3130–3149, DOI: 10.1111/j.1365-1216 
2486.2011.02425.x. 1217 



 

 
48 

Williams, J., Hook, R.A. and Hamblin, A., 2002. Agro-ecological regions of Australia: Methodologies 1218 
for their derivation and key issues in resource management, CSIRO Land and Water, Canberra, 1219 
ACT, Australia. 1220 

Xie, Z., Huete, A., Cleverly, J., Phinn, S., McDonald-Madden, E., Cao, Y. and Qin, F., 2019. Multi-1221 
climate mode interactions drive hydrological and vegetation responses to hydroclimatic 1222 
extremes in Australia. Remote Sens. Environ. 231: 111270, DOI: 10.1016/j.rse.2019.111270. 1223 

Yang, Z., Dominguez, F., Zeng, X.B., Hu, H.C., Gupta, H. and Yang, B., 2017. Impact of irrigation 1224 
over the California Central Valley on regional climate. J. Hydrometeor. 18: 1341-1357. 1225 

Zeeman, M.J., Hiller, R., Gilgen, A.K., Michna, P., Pluss, P., Buchmann, N. and Eugster, W., 2010. 1226 
Management and climate impacts on net CO2 fluxes and carbon budgets of three grasslands 1227 
along an elevational gradient in Switzerland. Agric. For. Meteor. 150: 519-530, DOI: 1228 
10.1016/j.agrformet.2010.01.011. 1229 

Zhang, Y.Q., Chiew, F.H.S., Pena-Arancibia, J., Sun, F.B., Li, H.X. and Leuning, R., 2017. Global 1230 
variation of transpiration and soil evaporation and the role of their major climate drivers. J. 1231 
Geophys. Res.: Atmos. 122: 6868-6881, DOI: 10.1002/2017jd027025. 1232 

Zhou, Y.T., Xiao, X.M., Wagle, P., Bajgain, R., Mahan, H., Basara, J.B., Dong, J.W., Qin, Y.W., 1233 
Zhang, G.L., Luo, Y.Q., Gowda, P.H., Neel, J.P.S., Starks, P.J. and Steiner, J.L., 2017. 1234 
Examining the short-term impacts of diverse management practices on plant phenology and 1235 
carbon fluxes of Old World bluestems pasture. Agric. For. Meteor. 237: 60-70, DOI: 1236 
10.1016/j.agrformet.2017.01.018. 1237 

Zscheischler, J., Fatichi, S., Wolf, S., Blanken, P.D., Bohrer, G., Clark, K., Desai, A.R., Hollinger, D., 1238 
Keenan, T., Novick, K.A. and Seneviratne, S.I., 2016. Short-term favorable weather conditions 1239 
are an important control of interannual variability in carbon and water fluxes. J. Geophys. Res.: 1240 
Biogeosci. 121: 2186-2198, DOI: 10.1002/2016JG003503. 1241 

 1242 

1243 


	Elsevier Statement 2020
	AgSynthesis+Accepted+Manuscript (1)



