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Abstract
Hawkes processes have been successfully applied
to understand online information diffusion and pop-
ularity of online items. Most prior work concen-
trate on individually modeling successful diffusion
cascades, while discarding smaller cascades which,
however, account for a majority proportion of the
available data. In this work, we propose a set of
tools to leverage information in the small cascades:
a joint fitting procedure that accounts for cascade
size bias in the sample, a Borel mixture model
and a clustering algorithm to uncover latent groups
within these cascades, and the posterior final size
distribution of Hawkes processes. On a dataset of
Twitter cascades, we show that, compared to the
state-of-art models, the proposed method improves
the generalization performance on unseen data, de-
livers better prediction for final popularity and pro-
vides means to characterize online content from the
way Twitter users discuss about it.

1 Introduction
User-generated online information in the forms of posts,
videos and images today stimulate widespread discussion
within or across online social media platforms such as Twit-
ter and Youtube. Among the broad classes of models suc-
cessfully applied to understand the popularity of such online
information [Jin et al., 2013; Zhang et al., 2013], a class of
point process based models — dubbed the Hawkes processes
— has seen increasing attention [Zhao et al., 2015; Kong et
al., 2020]. Such processes learn from the temporal patterns of
sharing events and from fine-grained features of online diffu-
sions to produce explainable parameters to quantify and pre-
dict popularity. Most modeling efforts are generally aimed to-
wards “popular” diffusions, whereas unpopular ones are usu-
ally discarded — Zhao et al. [2015] only study cascades with
at least 50 retweets, and Mishra et al. [2016] threshold at 20
retweets —, the goal being to learn what makes a popular dif-
fusion. Given that Cheng et al. [2014] and later Rizoiu et al.
[2018] have shown that luck is an important factor in online
popularity, and that the discarded diffusions make up for a
large portion of the available data (more than 40% events as
seen in Section 6), this paper aims to establish a procedure to

leverage the temporal information in “unpopular” diffusions
by jointly modeling these with Hawkes processes.

Specifically, in this work, we address three open questions
concerning online information diffusion modeling.

Cheng et al. [2014] have shown that the final popular-
ity, i.e., total number of events, of retweet diffusions is un-
predictable due to uncertainties contributed by various fac-
tors. Recent work from [Rizoiu et al., 2018] seconds this
conclusion with distributions of final popularity where the
same information has high probabilities of both remaining
unknown or getting extremely popular. The popular diffu-
sions are the “lucky” ones, and the first open question is:
can we gain knowledge about popularity of online infor-
mation from short diffusions? Here, we first jointly model
multiple diffusion sequences using a single Hawkes process
by summing up their log-likelihood functions, and we show
that this introduces bias in parameter estimation due to the
non-representativity of the sample as only small cascades are
observed. Next, we show how the parameter bias can be ad-
justed by accounting for the distribution of final event counts
of Hawkes processes [Daw and Pender, 2018]. We also show
that fitting short diffusions enjoys a better time efficiency.

The aforementioned joint modeling assumes that the ob-
served diffusions are generated by the same process, however
in real-life situations multiple latent processes are simulta-
neously generating cascades. The second challenge emerges
— how do we both heuristically and systematically un-
cover diffusions coming from same models, and how to
simultaneously learn the models parameters? The heuris-
tic method is with regard to the information content, e.g.,
grouping retweet diffusions about the same video in Twitter.
We design a Borel mixture model and a clustering algorithm
to systematically regroup similar cascades, while simultane-
ously learning the model parameters.

After learning the models from short diffusions, the next
question is: what are the tools we can develop to explore
the uncertainty of predicting popularity. While fitted pa-
rameters or derived quantities are commonly used for analyz-
ing content popularity [Rizoiu et al., 2017], we show that we
can characterize the virality of online content based solely on
how people discuss about it. Moreover, we present tools for
predicting final popularity along with its uncertainty.

The main contributions of this work are:

• We refine the likelihood function of Hawkes processes
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to jointly and correctly model size-biased diffusions.

• We design procedures to uncover latent clusters through
heuristics and algorithms. Specifically, we apply a mix-
ture model and the k-means on fitting branching factors
and kernel functions, respectively. We also study the
quantification of popularity with parameters fitted via
the procedures on real data.

• On a real-world Twitter diffusion dataset, we show that
better generalization performances are achieved on hold-
out proportions by learning from short diffusions com-
pared to benchmarks trained on individual popular dif-
fusions. We then show an improved early prediction of
final popularities.

• We construct the ActiveRT2017 Twitter cascade dataset.

Related work. Generative models are commonly employed
for modeling temporal diffusions of online information. Such
models are designed to predict final popularities [Zhao et al.,
2015; Samanta et al., 2017], uncover hidden diffusion net-
works [Gomez-Rodriguez et al., 2011] and detect rumors [Ma
et al., 2016]. The same tasks were also approached using
feature-driven models, which train machine learning algo-
rithms that use temporal features — statistical summaries of
temporal patterns — together with user features and content
features [Bakshy et al., 2011; Martin et al., 2016]. However,
to our knowledge, most of the prior work concentrate on large
(popular) cascades, and the complete temporal information of
the unpopular diffusions is rarely considered.

Hawkes processes [Hawkes and Oakes, 1974] are a class
of self-excitating point processes — past events excites fu-
ture events happening — widely applied in analyzing so-
cial media [Kobayashi and Lambiotte, 2016; Lukasik et
al., 2016; Farajtabar et al., 2015], earthquake aftershocks
[Ogata, 1988], crime rate [Mohler and others, 2013], inva-
sive species [Gupta et al., 2018], energy consumption [Li and
Zha, 2016] and finance [Bacry et al., 2015]. Event-level and
sequence-level clusterings of Hawkes processes have been
discussed in [Du et al., 2015] and [Yang and Zha, 2013; Xu
and Zha, 2017], and particular attention has been given to the
inference of Hawkes processes [Yan et al., 2018; Guo et al.,
2018; Liu et al., 2018]. The present work extends the prior
literature in several ways. First, we propose a joint inference
procedure which accounts for length-biased diffusions — i.e.
observing short cascades only. Second, we propose a Borel
Mixture Model and an efficient clustering procedure that re-
groups similar diffusions together.

2 Preliminaries
In this section, we first define our data objects: the diffusion
cascades. Next, we introduce the Hawkes processes, together
with essential concepts including its cluster representations,
branching factor, size distribution and likelihood functions.
Diffusion cascades. In online social media platforms, such
as Twitter, users read contents posted by others, and they
can share/retweet, exposing the contents to broader audience.
This diffusion usually continues until the content shifts away
from the users’ attention. The initial posting event and the
following share/retweet events together constitute a diffusion

𝑡𝑔(𝑡 − 𝑡0)

𝑡0𝑍"
𝑍1
𝑍$ ......

𝑔(𝑡 − 𝑡1) 𝑔(𝑡 − 𝑡2) 𝑔(𝑡 − 𝑡&)

𝑡'
𝑡2

𝑡&
𝑡(

𝑔(𝑡 − 𝑡()
Figure 1: The cluster representation of a Hawkes process. Each
individual event ti initiates an inhomogeneous Poisson process with
the intensity function g(t − ti) (identical for all events). Different
generations of events are shown in distinct colors, arrows indicate
the parent-offspring relation, and the event counts at each generation
form a branching process, i.e., {Z0, Z1, Z3, . . . }.

cascade. Mathematically, we denote a cascade i as Hi =
{t0, t1, t2, . . . , tNi−1} where Ni ≥ 1 is a random event num-
ber count, ∀tj ∈ Hi are random event times on [0,∞) relative
to t0 and t0 = 0 is the initial event time. Let Hi(T ), Ni(T )
represent the event set and the event count before time T ,
respectively, i.e., Hi(T ) = {tj | tj ∈ Hi, tj < T} and
Ni(T ) = |Hi(T )|. The popularity of the online content as-
sociated with the cascade i is defined by Ni its event count.
Hawkes processes are particular classes of self-exciting pro-
cesses — in which the occurrence of new events will increase
the likelihood of future event happening [Hawkes, 1971]. In
Hawkes processes, the event intensity is a function condi-
tioned on the past occurred events:

λ(t | Hi(t)) = µ+
∑

tj∈Hi(t)

n∗g(t− tj) (1)

where µ is the background event rate, n∗ is known as the
branching factor and g : R+ → R+ is a memory kernel
encoding the time-decaying influence of past events on future
events. Note that for information cascades (such as retweet
cascades on Twitter) there is no background intensity, as all
the retweets are considered to be spawning from the original
tweet. Therefore, µ = 0, and

∫∞
0
g(τ)dτ = 1. Common

choices of the memory kernels include the exponential kernel
function [Xu et al., 2016], gEXP (τ) = θe−θτ , the power-law
kernel [Mishra et al., 2016], gPL(τ) = θcθ(τ + c)−(1+θ),
among others (see [Kong et al., 2020] for a review of kernels
used with diffusion cascades).
Cluster representation and size distribution. An alternate
representation of the Hawkes self-exciting process is that of
a latent cluster of Poisson processes, introduced by Hawkes
and Oakes [1974]. Fig. 1 depicts the cluster representa-
tion of an example Hawkes process, with highlighted parent-
offspring relations between events. Each event generates off-
spring events following an inhomogeneous Poisson process
with the intensity function n∗g(t) and, therefore, its num-
ber of offspring follows a Poisson distribution of parameter∫ T
0
n∗g(t)dt. When T → ∞, the event counts at each gen-

eration — denoted as {Z0, Z1, Z2, . . . }— produce a Galton-
Watson branching process whose offspring distribution is a
Poisson distribution with the intensity n∗ [Durrett, 2010].
The total size of a Hawkes process can be then computed as
N =

∑
n Zn. This quantity is known as total progeny num-

ber of the branching process, and its distribution is the Borel



distribution [Borel, 1942], denoted as B(κ | n∗):

B(κ | n∗) = P[N = κ | n∗] =
(κn∗)κ−1e−κn

∗

κ!
(2)

This analytical form for the Hawkes process size distribution
has not been discussed until recently [Daw and Pender, 2018].
Eq. (2) holds for branching factors bounded by n∗ ≤ 1.
Parameter estimation. The parameters of a Hawkes process
can be estimated by maximizing the likelihood function of a
general point process [Daley and Vere-Jones, 2008]:

L(Θ | Hi(T )) = e−
∫ T
0
λ(τ)dτ

∏
tj∈Hi(T )

λ(tj) (3)

in which λ(·) is the intensity function defined in Eq. (1).

3 Joint Fitting of Hawkes Cascades
In this section, we propose a method to jointly learn a single
set of parameters from a collection of Hawkes realizations
biased in term of event count. We first discuss the estimation
bias when modeling on size-biased realizations, and next we
propose a modified likelihood function to eliminate such bias.
Joint likelihood function. Let Hr = {H1,H2, . . . } be a
representative set of independent Hawkes realizations, as-
sumed to be generated from the same model Θ and without
any post-generation filtering applied. It is then straightfor-
ward to estimate Θ by maximizing the joint likelihoodLr(Θ |
H) defined as the sum of the individual log-likelihoods (i.e.,
the log of Eq. (3)):

Lr(Θ | Hr) =
∑
Hi∈Hr

logL(Θ | Hi) (4)

This is asymptotically equivalent to minimizing the Kullback-
Leibler (KL) divergence between the underlying Hawkes pro-
cess where cascades are sampled from and the theoretical dis-
tribution parameterized by Θ.
Jointly fitting a biased set. Any filtering applied on the re-
alizations post-generation — such as selecting realizations
based on their final size — renders Eq. (4) non-applicable,
and introduces systematic bias in parameter estimation (as
shown empirically in our experiments in Section 6.1). Let
N∗ be a set of positive integers defining selected realization
sizes, and let Hb be the biased set of realizations of sizes in
N∗, i.e. Hb = {Hi ∈ Hr | Ni ∈ N∗}. Using Bayes theorem
and the Borel distribution of Hawkes sizes, we compute the
joint likelihood for the setHb:

Lb(Θ | Hb) =
∑
Hi∈Hb

log
f(Hi | Θ)

P[Ni ∈ N∗ | Θ]

=
∑
Hi∈Hb

log
L(Θ | Hi)∑
j∈N∗ B(j | Θ)

(5)

where f(Hi | Θ) is the probability density of realization i
under model parameters Θ, therefore f(Hi | Θ) = L(Θ |
Hi)). Finally, we plug Eq. (3) into Eq. (5) and we see that the
joint likelihood function can be rearranged as a sum of two
functions of independent parameters:

Lb(Θ | Hb) = Lg(Θg | Hb) + Ln(n∗ | Hb) (6)

Lg is a function of Θg — the parameter set of g(·) — Ln is a
function of n∗ the branching factor, and Θ = Θg ∪ {n∗}:

Lg(Θg | Hb) =
∑
Hi∈Hb

∑
tj∈Hi,j≥1

log
∑
tk<tj

g(tj − tk | Θg)

(7)

Ln(n∗ | Hb) =
∑
Hi∈Hb

log
(n∗)Ni−1e−Nin

∗∑
j∈N∗ B(j | n∗)

(8)

The above results indicate that Θg and n∗ can be learned in-
dependently in two separate phases, by maximizing Lg and
Ln. This amounts to fitting n∗ from observed final realization
sizes only, and Θg from inter-arrival times between events.

4 Uncovering Clusters of Hawkes Models
In practice, it is often unknown which realizations were gen-
erated from the same model parameters. In this section,
we examine several strategies to construct clusters of diffu-
sion cascades. Finally, we introduce a Borel mixture model
(BMM) and a modified k-means algorithm to automatically
discover clusters based on cascade sizes and time intervals.
Heuristic grouping. For diffusion cascades relating to online
content, one natural grouping is based on the explicit features
of the content. For instance, in the ActiveRT dataset [Rizoiu
et al., 2018], each cascade records a retweet event series relat-
ing to a Youtube video, so one could group together cascades
about the same video. Another example would be grouping
cascades that are initiated by same users. On the up side, the
heuristic grouping builds content-related models depending
on the grouping criterion — i.e., models describing the online
videos or Twitter users — in addition to describing generated
cascades. On the flip side, not all cascades relating to a video
or a user might be generated by the same process, and they
might in reality not share the same parameters.
Algorithmic grouping. We are given a set of cascades Hb
with a known cascade size filtering condition N∗, and K la-
tent generative models with an unknown relation to the cas-
cades in Hb. We seek to learn the K values of n∗ and Θg ,
and the membership of each cascade to the models (denoted
as clusters). As indicated in Section 3, we cluster n∗ and g(t)
separately.

We model the n∗ for each cascade using a mixture model
of Borel distributions (BMM), and we present an efficient EM
estimation algorithm. A BMM can be fitted on Hb by maxi-
mizing the likelihood

LBMM =
∑
Hi∈Hb

log

K∑
k=1

pk
B(Ni | n∗k)∑
j∈N∗ B(j | n∗k)︸ ︷︷ ︸
q(k,Ni)

(9)

where Ni = |Hi |, and pk denotes the mixture probability of
the kth cluster parameterized by n∗k. As maximizing Eq. (9)
directly suffers from the identifiability [Bishop, 2006], we
apply the Expectation-Maximization (EM) algorithm com-
monly used for learning mixture models. Next we give the
update formulas for the E and M steps, the detailed deriva-
tions can be found in [supplement, 2020].
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Figure 2: Validation of cascade joint learning on synthetic data. On
simulated cascades at given n∗, the absolute fitting bias of n∗ with
Eq. (5) and Eq. (4) are compared for fitting on N∗ = {1, . . . , 20}
and all cascades. The right panel shows average times per event a
method takes.

Update membership probabilities (E-step): The probability
of Ni being a member of k is defined as

p(k | Ni) =
q(k,Ni)∑K
j=1 q(j,Ni)

(10)

Update n∗k and pk (M-step): When N∗ is the natural num-
ber set, namely there is no filtering, n∗k is updated analytically,
and the update formulas for n∗k and pk are

(n∗k)new =

∑
Ni
p(k | Ni)(Ni − 1)∑
Ni
p(k | Ni)(Ni)

, (pk)new =

∑
Ni
p(k | Ni)
|N|

When filtering is imposed, n∗k can be efficiently solved by nu-
merically finding roots of the simplified first partial derivative
of Eq. (9) w.r.t. n∗k.

For finding gk(t) kernel functions, we employ a K-means
like procedure in which Θg serve as the equivalent of cen-
troids. We start by randomly assigning cascades to clusters,
and we use maximize Eq. (7) for each cluster to recompute
its centroid. Cluster reassignment is performed by selecting
for each cascade the cluster whose centroid (Θg) maximizes
its likelihood function (Eq. (3)).

As the branching factors n∗k and the kernel functions pa-
rameters Θg are inferred separately, there is no exact matched
pair of parameters between them — two cascades might have
the same n∗ but different Θg , or the other way around.

5 Prediction for Partial Observations
In this section, we first describe how fitted parameters are
chosen for newly observed sequences, based on previously
trained clusters of Hawkes models. Next, we then derive pre-
dictions for their popularities — i.e., the final cascade size.
Parameter selection. Given a partially observed event se-
quence Hi(T ) where T is the observation time, we select for
it a parameter set Θg and a branching factor n∗ from the can-
didates constructed using the clustering procedure. We first
chose the kernel function parameters that maximize its Lg
likelihood function (Eq. (7)), denoted as Θ̂g . We then use Θ̂g

to select the best n∗k that maximizes the probability

P[K = k | Hi(T )] =
pkL({n∗k, Θ̂g} | Hi(T ))∑K
j=1 pjL({n∗j , Θ̂g} | Hi(T ))

(11)

When T = 0, however, the kernel function cannot be identi-
fied and we only maximize the Ln function (Eq. (8)).

Posterior size distribution. To be able to make prediction
using the chosen parameters, it is desirable to derive the pos-
terior size distribution given Hi(T ). The future events af-
ter time T are of two kinds: direct offspring of observed
events (their count denoted as Nd

i ) and indirect offspring
(children of children, total count denoted as N ind

i ). The pro-
cess generating direct offspring is an inhomogeneous Pois-
son process of conditional intensity λ(t|Hi(T )), t > T —
note that this is not a stochastic function as only the history
up to time T is accounted in the intensity function. Con-
sequently, Nd

i follows a Poisson distribution of parameter
Λi(T ) =

∫∞
T
λ(τ |Hi(T ))dτ . Furthermore, each direct off-

spring initiated a Hawkes process and its total progeny num-
ber follows a Borel distribution. Given the number of direct
offspringNd

i , the total number of direct and indirect offspring
follows a Borel-Tanner distribution (also known as the gener-
alized Borel distribution):

B(κ | n∗, Nd
i ) =

(κn∗)κ−N
d
i e−κn

∗

κ(κ−Nd
i )!

(12)

The proof of this is straightforward and leverages the gen-
eral hitting time theorem [Van der Hofstad and Keane, 2008],
which can be found in [supplement, 2020].

Finally, the posterior cascade size distribution is therefore

P[Ni = n | Hi(T )] = Ni(T ) (13)

+

n−Ni(T )∑
z=0

Poi(z | Λi(T ))B(n− z −Ni(T ) | n∗, z)

where Poi(·) is the Poisson distribution. Eq. (13) leads to
a quadratic complexity in computing the final size distribu-
tion, which is intractable in most real-life scenarios. We ap-
ply a numerical trick to reduce the complexity by introduc-
ing a threshold probability εp and summing until Poi(z |
Λi(T )) < εp.
Prediction. The size of real-life diffusion cascades is me-
chanically limited by the available population and the span
of human attention. Therefore, it is logical impose an up-
per bound on the cascade size nmax, leading to P[Ni = n |
Hi(T ), n ≤ nmax]. In particular, for retweet cascades, nmax
can be estimated by the cumulative number of users exposed
by the online item (computed as the sum of the followers of
the users that were observed retweeting). Given the distribu-
tion, one is able to compute the expected final event count,
its variance and the probability of a cascade diffusing beyond
certain sizes. It is worth noting that when nmax =∞, the ex-
pected final event count has an analytical solution as applied
in [Zhao et al., 2015; Mishra et al., 2016].

6 Experiments
This section provides evaluation results of the proposed mod-
eling procedures on both synthetic data and real data. On syn-
thetic data, we assess the effect of different cascade size fil-
tering conditions. We then present a retweet cascade dataset
together with some measurements on it. Finally, we conduct
experiments evaluating model generalization on unseen data
and final popularity prediction performance compared to the
state-of-art models [Zhao et al., 2015; Mishra et al., 2016].



Table 1: Chi-square tests of BMM fitted on size-biased cascades
with various filtering conditions. Each cell shows the percentage of
tests passing 0.05 significance level.

#cluster Nmax = 20 Nmax = 30 Nmax = 40 Nmax = 50 All sizes

1 90.1% 92.4% 93.7% 95.3% 96.1%
2 82% 89.7% 93.7% 94.7% 98.2%
3 80.5% 88.5% 93.9% 94.7% 98.8%

Table 2: Purity tests of the power law kernel function clustering
experiments with various filtering condition. Each cell shows the
mean purity measures and the standard deviation.

#cluster Nmax = 20 Nmax = 30 Nmax = 40 Nmax = 50 All sizes

2 88.5± 11.4% 91.8± 9.3% 92.1± 9.5% 92.2± 8.6% 93.0± 8.0%
3 76.5± 11.2% 80.5± 9.9% 79.3± 10.9% 80.9± 10.3% 83.6± 9.6%
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Figure 3: Profiling the ActiveRT2017 dataset: (a) the empirical
complementary cumulative density (CCDF) of cascade sizes in the
dataset; (b) the percentages of events filtered when imposing vari-
ous minim cascade sizes. The two points highlight the event loss as
a minimum threashold of 20 and 50 events, introduced in [Mishra
et al., 2016] and [Zhao et al., 2015], respectively.

6.1 Synthetic experiments
Bias from joint fitting. Given various n∗ values, we sim-
ulate 100 cascades for each. On simulated cascades, we fit
Hawkes processes with three different settings: fit on all cas-
cades with Eq. (4), and fit on cascades filtered at the event
size 20 with Eq. (4) and Eq. (5). The absolute bias of fitted
n∗ is reported along with the average times the fitting takes.
Fig. 3 shows the bias in learning n∗ values when fitting on
size-biased cascades with Eq. (4) and the correctness of us-
ing Eq. (5) to adjust this bias. It also highlights the efficiency
when learning on small cascades. As the computational com-
plexity of Eq. (4) is quadratic to cascade sizes, Eq. (5) allows
one to bound the complexity to a maximum size thus scaling
to more cascades.
BMM goodness-of-fit. We train BMMs on different size-
biasing conditions imposed on simulated cascades and ex-
amine goodnesses of the fitted BMM on complete cascade
data by conducting Chi-square tests between the empirical
and learnt size distributions. For each experiment, branching
factors are randomly sampled for clusters and used to simu-
late to the same number of cascades for each cluster summing
to 1000 cascades in total. This is repeated for 1000 times.

Table 1 shows the proportion of repeated experiments that
pass the tests at a 0.05 significance level. We tabulate the
tests against two dimensions: the number of clusters — up
to 3 clusters — and cascade size filters — cascades with
sizes less than or equal to Nmax are kept where Nmax ∈
{20, 30, 40, 50} or Nmax → ∞. The passing rates decrease
as less cascades and more clusters are provided. However, we
can see that, overall, BMMs fitted only on short diffusions can
still generalize well to the whole dataset.
Kernel clustering. We measure the correctness of clustering
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Figure 4: Analyzing BMM parameters by aggregating all fitted mod-
els at video categories. At each quantile value of the fitted branching
factors (x axis), mixture probabilities are summarized with median
(solid line) ±25% quantiles (the colored area). The three panels
compare Music, News & Politics, Gaming and Science & Technol-
ogy categories to the average, respectively.

on kernels and power law kernels are used. During each ex-
periment, the sampled kernel parameters are enforced to have
absolute difference 1 between cluster parameters to ensure the
clusters are distinguishable. Other setup follows the BMM
experiments and the clustering purity values are reported in
Table 2. The same observation of performance increase dur-
ing the growth of Nmax and cluster numbers is presented.

6.2 Jointly modeling diffusions on Twitter
Dataset. Retweet cascade datasets provided in prior works
typically have filters on cascade sizes. In order to obtain
a complete set of cascades, we produce the ActiveRT2017
dataset crawled via Twitter public APIs through the entire
2017. In this dataset, all tweets are related to Yotube videos
whose video ids are found in tweet contents. Selected videos
are published by the active Youtube channels where each
video has the maximum cascade size larger than 50 and asso-
ciated to at least 500 cascades. The definition of active videos
can be found in [Rizoiu et al., 2017] and video meta data is
collected using [Wu et al., 2018]. In total, there are about
110k videos and 45 million cascades. Fig. 3a presents a sta-
tistical summary of cascade sizes, in which the CCDF shows
a long tail distribution of cascade sizes. To quantify the data
loss due to cascade size filters, Fig. 3b presents the propor-
tions of events (tweets) being lost when filtering out cascades
smaller than certain sizes. We note that, in our experiments,
we adopt the filter applied in [Zhao et al., 2015] at cascade
size 50 to distinguish short diffusions, accounting for about
46% of the total events.
Pre-learn from short diffusions. In experiments, we con-
duct cascade joint fitting on the diffusions happened at the
early part of 2017, and we then compare it to the state-of-art
models on the cascades initiated later in 2017. While meth-
ods in Section 3 requires terminated cascades, we assume all
cascades in our dataset have stopped diffusing given the data
collection time. Specifically, within ActiveRT2017 dataset,
cascades have sizes less than 50 and stopped earlier than 1st
of May in 2017 are selected, resulting 12, 690, 817 cascades
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Figure 5: Holdout negative log-likelihood per event of four mod-
els on ActiveRT2017 given three different observation times. Red
diamonds show the mean values for each boxplot — lower is better.
in total. As Youtube videos are associated to cascades, we
first apply it as a simple grouping heuristic. Then the clus-
tering procedures described in Section 4 are used to discover
latent groups on this sample. During the clustering phase, we
fix cluster numbers for fitting both BMM and kernel functions
at 8 and 3, respectively. This design choice is applied in con-
sideration of efficiency. The fitted models will be used in all
following experiments.
Profiling Youtube videos. By jointly modeling cascades re-
lated to same videos, each fitted model extracts general dif-
fusion patterns from individual cascades. Here, we investi-
gate the measurement of fitted parameters at an aggregation
level. Fig. 4 depicts fitted BMM parameters of each video
aggregated at a video category level where the categories of
Youtube videos are thematically similar. The branching fac-
tors determine the diffusion speed and thus can be seen as
indications of content virality. We find that overall music and
news video diffusions are more viral than average, whereas
gaming and scientific videos show the opposite behavior.
Generalization on unseen data. We evaluate the improve-
ment of model generalization performances by leveraging
pre-learnt parameters from short diffusions. Given the trained
models for each video, the generalization performance is
evaluated on all cascades related to this video with more
than 50 events (33, 023 cascades). With a cascade Hi and
an observation time T , we first obtain the cluster parameters
through its video id and parameter selections are conducted
on the observed part Hi(T ) following Section 5. We apply
this setting to Hawkes processes with an exponential kernel
function (Joint EXP) and a power-law kernel function (Joint
PL), comparing to their counterparts fitted only on Hi(T )
([Hawkes, 1971] and [Mishra et al., 2016]). We report the
negative log-likelihood values normalized by event counts on
the remaining part, i.e., L(θ | Hi(T ))− L(θ | Hi).

Fig. 5 gives the generalization performances as boxplots
with mean values. At individual observation times, the di-
rect comparison between models with pre-learnt parameters
on short diffusions consistently outperform models trained on
given observations. This highlights the improvements from
the proposed fitting approach especially for the exponential
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Figure 6: Cascade final popularity prediction of Joint PL and Seis-
mic, evaluated with Absolute Relative Error — lower is better.

kernel function where a large enhancement is shown. We also
note that models with power law kernels are better than those
with exponential kernels which reinforces the known conclu-
sion from prior works [Mishra et al., 2016]. When observa-
tion times are concerned, we can see that the advantage of
applying the pre-learnt parameters diminishes as time lengths
increase. This provides a hint for our proposed pre-learning
procedure to handle the early-start modeling.
Final popularity prediction. We compare the Joint PL
against Seismic [Zhao et al., 2015] on ActiveRT2017. Instead
of using the same cascades, we only use these cascades ini-
tiated after 1st of June for measuring the effect of historical
diffusion data. This provides a sample of 2, 731 cascades.
The parameters are selected on the observed part for each
cascade and the corresponding final popularity is predicted as
detailed in Section 5. We apply the Absolute Relative Error
(ARE) metric as Seismic for performance evaluation. ARE is
defined as |N̂i−Ni|

Ni
where N̂i and Ni are the predicted popu-

larity and the actual popularity of the cascade i respectively.
From Fig. 6, we can see that the relative prediction perfor-

mance of Joint PL compared to Seismic is better on a shorter
observation time. This supports the pattern shown in general-
ization performances amplifying our conclusion of the bene-
fits from pre-training to early predictions.

7 Conclusion
Overall, this work is concerned with the way how short cas-
cades are handled for modeling information diffusions with
Hawkes processes. Instead of filtering, we propose to jointly
pre-train Hawkes processes on cascades from same groups.
We first adjust the Hawkes likelihood function to correctly fit
on size-biased cascades by leveraging an analytical diffusion
size distribution. To group cascades in real data, apart from
applying simple heuristics, we future propose the procedures
to automatically identify groups from a collection of cascades
which we validate by conducting experiments on synthetic
data. On a retweet cascade dataset, we analyze fitted mod-
els as indications of content virality. We also measure the
improvement on models augmented with our pre-trained pa-
rameters and compare to the state-of-art generative model on
predicting final popularities.
Limitations and future work. Due to the restriction of the
size distribution of Hawkes processes, the current joint fit-
ting on size-biased cascades is restricted to complete and un-
marked processes. We plan to relax these constraints to allow
for joint modeling with more flexibility.
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A Borel mixture model for branching factors
As the final cascade size distribution of Hawkes processes is only determined by the branching factor (Section 2), i.e. the Borel
distribution, we are able to model sizes of a group of cascades as a Borel mixture distribution. Specifically, given a filtered
cascade set Hb and a cluster number K, we aim to find for each Borel distribution, a mixture probability pk = P[K = k] and
a branching factor n∗k. We denote this parameter set as ΘBMM = {p1, . . . , pk, n∗1, . . . , n∗k}. The parameters are estimated via
the EM algorithm following follows [Tomasi, 2004]. The log likelihood function is

LBMM =
∑
Hi∈Hb

log

K∑
k=1

pk
B(Ni | n∗k)∑

Nj∈N∗ B(Nj | n∗k)
(14)

For simplicity, let q(k,Ni) = pk
B(Ni|n∗k)∑

Nj∈N∗
B(Nj |n∗k)

. We first introduce the probability ofHi being a member of k:

p(k | Ni) =
q(k,Ni)∑K
j=1 q(j,Ni)

(15)

By employing Jensen’s inequality, we get

LBMM =
∑
Hi∈Hb

log

K∑
k=1

q(k,Ni) (16)

=
∑
Hi∈Hb

log

K∑
k=1

p(k | Ni)
q(k,Ni)

p(k | Ni)
(17)

≥
∑
Hi∈Hb

K∑
k=1

p(k | Ni) log
q(k,Ni)

p(k | Ni)
(18)

Optimizing Eq. (18) is equivalent to optimizing the following QBMM function

QBMM =
∑
Hi∈Hb

K∑
k=1

p(k | Ni) log q(k,Ni) (19)

At the Maximization step, the parameters are updated by maximizing QBMM .

• For updating n∗k, we take the derivative of QBMM w.r.t. n∗k

∂QBMM

∂n∗k
=

∑
Hi∈Hb

∂
∑K
k=1 p(k | Ni) log q(k,Ni)

∂n∗k
(20)

=
∑
Hi∈Hb

p(k | Ni)
∂ log q(k,Ni)

∂n∗k
(21)

=
∑
Hi∈Hb

p(k | Ni)
∂

∂n∗k

[
log pk

B(Ni | n∗k)∑
Nj∈N∗ B(Nj | n∗k)

]
(22)

=
∑
Hi∈Hb

p(k | Ni)

 ∂

∂n∗k
logB(Ni | n∗k)− ∂

∂n∗k
log

∑
Nj∈N∗

B(Nj | n∗k)

 (23)

=
∑
Hi∈Hb

p(k | Ni)

[ ∂
∂n∗k

B(Ni | n∗k)

B(Ni | n∗k)
−

∑
Nj∈N∗

∂
∂n∗k

B(Nj | n∗k)∑
Nj∈N∗ B(Nj | n∗k)

]
(24)



we note that ∂B(Ni|n∗k)
∂n∗k

has a special solution

∂B(Ni | n∗k)

∂n∗k
=

∂

∂n∗k

[
(Nin

∗
k)Ni−1e−Nin

∗
k

Ni!

]
(25)

=
Ni(Ni − 1)(Nin

∗
k)Ni−2e−Nin

∗
k −Ni(Nin∗k)Ni−1e−Nin

∗
k

Ni!
(26)

=

Ni−1
n∗k

(Nin
∗
k)Ni−1e−Nin

∗
k −Ni(Nin∗k)Ni−1e−Nin

∗
k

Ni!
(27)

=
Ni −Nin∗k − 1

n∗k
B(Ni | n∗k) (28)

Plugging this result back to Eq. (24)

∂QBMM

∂n∗k
=

∑
Hi∈Hb

p(k | Ni)

Ni −Nin∗k − 1

n∗k
−

∑
Nj∈N∗

Nj−Njn
∗
k−1

n∗k
B(Nj | n∗k)∑

Nj∈N∗ B(Nj | n∗k)

 (29)

Let the derivative be 0 will lead to the equation∑
Hi∈Hb

p(k | Ni)
∑

Nj∈N∗
(Ni −Nj)(1− n∗k)B(Nj | n∗k) = 0 (30)

Although there is no clean analytical solution available to this equation, numerical roots can still be efficiently found within
n∗k ∈ (0, 1] which give the optimal n∗k, i.e., (n∗k)new. Specifically, we note that when there is no filtering imposed on H,
an analytical solution exists,

(n∗k)new =

∑
Hi∈Hb p(k | Ni)(Ni − 1)∑
Hi∈Hb p(k | Ni)Ni

(31)

• Updating pk shares same derivation steps from [Tomasi, 2004]

pnewsk =

∑
Hi∈Hb p(k | Ni)
|Hb |

(32)

Because final sizes of Hawkes processes are highly skewed towards small sizes, the estimation complexity can be reduced
by counting the number of presences of various cascade sizes in Hb, i.e., obtaining a set C ′ = {(ci, Ni)} where there are ci
cascades with size Ni. The summation overHb can be then replaced by this set for efficiency.
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