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Abstract-This research compares several approaches to in- 
ference in the multinomial probit model, based on two Monte 
Carlo experiments for a seven choice model. The methods 
compared are the simulated maximum likelihood estimator 
using the GHK recursive probability,simulator, the method of 
simulated moments estimator using the GHK recursive simu- 
lator and kernel-smoothed frequency simulators, and poste- 
rior means using a Gibbs sampling-data augmentation algo- 
rithm. Overall, the Gibbs sampling algorithm has a slight 
edge, with the relative performance of MSM and SML based 
on the GHK simulator being difficult to evaluate. The MSM 
estimator with the kernel-smoothed frequency simulator is 
clearly inferior. 

I. Introduction 

T HE multinomial probit is an appealing model 
of choice behavior because it allows a flexi- 

ble pattern of conditional covariance among the 
latent utilities of alternatives. Nevertheless, 
multinomial probit applications have been limited 
because the required integrations of the multi- 
variate normal density over subsets of Euclidean 
space are computationally burdensome. The com- 
putational simplicity of the multinomial logit has 
made it the model of choice for applied work. 
However, because the multinomial probit model 
relaxes the assumption of independence of irrele- 
vant alternatives, it is generally preferred in prin- 
ciple to the multinomial logit model (McFadden, 
1984, pp. 1395-1458). Recently the method of 
simulated moments (McFadden, 1989; Pakes and 
Pollard, 1989) and Gibbs sampling with data aug- 
mentation (Albert and Chib, 1993; McCulloch 
and Rossi, 1994) have shown promise of making 
the required computations in the multinomial 
probit model practical. The development of the 
highly accurate GHK probability simulator (see 
Geweke, 1991; Hajivassiliou and McFadden, 

1990; and Keane, 1990, 1994a) has also led to 
renewed interest in simulated maximum likeli- 
hood (Albright, Lerman, and Manski, 1977) as a 
method for estimating multinomial probit models. 

The objective of the research reported here is 
to provide a systematic comparison of the numer- 
ical properties of different simulation-based 
methods of inference in the multinomial probit 
model. Rather than considering the performance 
of these methods on a single model for a single 
data set, we attempt to control for a number of 
features of the inference problem, such as the 
number and nature of the unknown parameters 
of interest and the information content of the 
data on which inference is based. Also, we inves- 
tigate for the first time how the performance of 
MSM estimation is affected by the type of proba- 
bility simulator employed (i.e., GHK vs. kernel 
smoothing). 

While some investigators have examined the 
performance of particular estimators and compu- 
tational techniques, Borsch-Supan and Haji- 
vassiliou (1993), Hajivassiliou (1992), and Hajivas- 
siliou, McFadden, and Ruud (1992) have made 
systematic comparison of alternative probability 
simulators, we are aware of only one systematic 
comparison of different estimators per se: Keane 
(1994a) compares method of simulated moments 
and simulated maximum likelihood estimators for 
an eight period binomial probit model in a Monte 
Carlo study. This paper is the first to compare 
performance of alternative methods of inference 
for the multinomial probit model and the first to 
examine how the relative performance of alterna- 
tive methods differs across model specifications 
and across different data sets. 

In addition to addressing this main objective, 
this work introduces a new factor structure for 
the disturbances that may help to alleviate the 
proliferation of covariance matrix parameter 
problems in MNP models. We also illustrate 
Bayesian inference in a multinomial probit model 
with a factor structure for the first time. (See 
Elrod and Keane (forthcoming) for a discussion 
of factor structures for probit models.) 
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The paper contains two separate Monte Carlo 
experiments. In the first, we generate 10 artificial 
data sets from a 7 alternative model and compare 
the performance of the simulated maximum like- 
lihood estimator using the GHK simulator, the 
MSM estimator using the GHK and kernel- 
smoothed frequency simulators, and posterior 
means using a Gibbs sampling-data augmentation 
algorithm. We consider 9 different model speci- 
fications in which restrictions are placed on dif- 
ferent groups of parameters in order to deter- 
mine how such restrictions affect the relative 
performance of the methods. In this experiment, 
the performance of the MSM and SML estima- 
tors using the GHK simulator and the perfor- 
mance of the Bayesian inference procedure using 
the Gibbs sampling-data augmentation algorithm 
all clearly dominate that of the MSM estimator 
based on kernel smoothing. 

In the second experiment, we use actual data 
on ketchup purchases acquired from the Nielsen 
company to construct regressors and estimate pa- 
rameter values for a 7 alternative choice model. 
We then generate 50 artificial data sets using 
these parameter values and regressors. We then 
compare the performance of MSM and SML 
based on the GHK simulator and posterior means 
using the Gibbs sampling-data augmentation al- 
gorithm. Here, significant biases appear for all 
three methods, suggesting that, given the config- 
uration of data and parameter values, the sample 
size is not large enough for small sample bias to 
become negligible. Bayesian inference appears to 
have a slight edge in performance over the classi- 
cal methods, with MSM-GHK and SML-GHK 
difficult to choose between. Given the computa- 
tional cost of performing 50 replications, and 
given that MSM based on kernel smoothing was 
dominated by other methods in the first experi- 
ment, we do not include it in the second experi- 
ment. 

The next section sets out the multinomial pro- 
bit model and establishes notation, and section 
III describes the design of the experiments. Sec- 
tion IV discusses computational issues for classi- 
cal inference, including probability simulation, the 
simulated maximum likelihood method, and the 
method of simulated moments. Section V does 
the same for Bayesian inference, based on the 
Gibbs sampler and data augmentation. The re- 
sults of the experiments are presented in section 

VI. Section VII concludes by giving our overall 
assessment of the performance of the alternative 
methods across both experiments, presenting tim- 
ing comparisons for the alternative methods, and 
discussing how computation times for the meth- 
ods would be likely to differ in different mod- 
elling contexts. 

II. The Probit Model 

Let individual i choose among a set of mutu- 
ally exclusive alternatives, j = 1,...J, . Assume 
that i's utility from choice j is 

uij = xij + Z1jy1 + i(1) 

where 

xi is a k x 1 vector of individual characteris- 
tics (e.g., age, sex), 

Zij is a p x 1 vector of alternative-specific 
attributes faced by individual i (e.g., price, 
quality), 

Eij is the alternative-specific disturbance in i's 
utility from choice j. 

The probit model is obtained by assuming the Eij 
have a multivariate normal distribution: Ej= 
('Eil I I I X 

IEUY 
)' IIDN(O, E). 

The econometrician observes the utility-maxi- 
mizing choice argmaxj(uij) made by each of N 
individuals, as well as the individuals' characteris- 
tics and the alternative-specific attributes they 
face, but does not observe the individual utilities. 
The econometrician desires to learn about the 38j, 
the yj, X, and the probability that individual i 
would make choice j. 

The model (1) may be written in stacked form, 

u1 =Xij3+Zjy +E, 

where ui = (ui1,.. ., uij)' and the arrangement of 
Xi(J x q), Zj(J x r), f(q x 1), and y(r x 1) re- 
flect cross-equation as well as zero restrictions on 
the f3j and yj (q < Jk, r < Jp). It is well known 
that this model is unidentified (see Bunch, 1991, 
or Dansie, 1985). Identification is achieved by 
working with the differenced system 

U* =Xi*p* + Z+*y* + 

(i = 1,...,N), E* IIDN(O, *) (2) 

where u* is a J x 1 vector with uO, = (u11 - 
ujj)1(or1l- 2ojj + Ujj)1/2, (j = 1, . j. , J- 1); 
U* = 0; var(Ei*) = 1; and Xi*, Z*, ,3*, and y* 
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are the corresponding appropriate transforma- 
tions of Xi, Zi, ,l3, and y, respectively. (We pro- 
vide a specific example of these transformations 
in the next section.) 

The corresponding log-likelihood function is 

LN(1I3*, Y*X I*) 
N J 

N-1 E Edi1 
i=1 j=1 

xln P(jiI3* Iy Y.*, Xi*, Vi), (3) 

where dij = 1 if individual i chooses j and di1 = 0 
otherwise, and P(j113*, y*, E*, Xi*, Z*) = P(O. 
2 u* Vk 1p*, y*, E*, Xi*, Z*). This requires the 
evaluation of a (J - 1)-dimensional integral, 
which is computationally burdensome using clas- 
sical methods (like quadrature) when J > 4 
(Kahaner, 1991). 

III. Experimental Design 

A. Experiment One 

In the first experiment, the comparison of dif- 
ferent methods of inference is made using artifi- 
cial data generated from a seven alternative 
model, 

uij = jl + 8j2Xi + yjlZij + cij 

(j= 1, 7); 
Ei= (Eil, ***Ei7) IIDN(O, E). 

Therefore, in the transformed model 

0j= f + j8 + YjlZ+ Y71Z 
* + C!j 

(j =1*,6); Ui*7 = 0; (4) 
i= i6 IIDN(O,E*). (5) 

For our data generating process we adopt the 
parameter values Pj = 1j2 = Yj = 1 and X = I. 
In the transformed model, this gives 

X* = XZ* Z * -= * - X-Xi Zjij ji Pjj2- 

yj*1 = 1/x /7I =Y - 1/C, 

and (6) 
*= 0.5(I + ee'), 

where e denotes a 6 x 1 vector of units. The 
covariates were generated (xi, Zil1*... * Zi7) 
IIDN(O, I8). The experiment used 10 artificial data 
samples generated from this model, each with 
observations on 5,000 individuals. 

Nine different models were considered. The 
nine models are the Cartesian product of three 

alternative specifications for the coefficients and 
three alternative specifications for the variance 
matrix of the disturbances. 

The first coefficient specification is as in (4), 
where all coefficients are unrestricted. In the 
second coefficient specification, the coefficients 
yjl are restricted to be equal, 

O* = f*3 + f3*3xi + y*(Zij-z17) +(Z 

(j = 1,...,6). (7) 

In the third coefficient specification, the coeffi- 
cients 8j, are restricted to be equal, as are the 
J8j29 

U4j = YJ*1(zij-Zi7) + 'E: (j = 1,...,6). 
(8) 

The first variance specification is as in (5) where 
1* is unrestricted. In classical estimation, we 
parameterize E* by its Cholesky decomposition 
E;* = AA', where A is a lower triangular matrix 
with typical element aij; a1l = 1. For Bayesian 
inference we report the posterior means of the 
a j, for comparison with the classical estimates. In 
the second variance specification E is diagonal 
with diagonal element A + fj where j = 0. In 
differenced form this gives 

Y.* = A(I + ee') + D, (9) 

where D = diag( 1, . .. , j -1). To achieve identi- 
fication, impose A = 1/2 to obtain 0.5(I + ee') + 
D. Then divide all elements of this matrix by 
1 + in order to impose o* = 1. This gives 

= 0.5(1 + (1) 1(I + ee') + (1 + (1) 'D. 

In the final variance specification we impose X = 
I and E* = 0.5(I + ee'), which are the true val- 
ues for the assumed data generating process. 

B. Experiment Two 

In the second experiment, we work only with 
the second coefficient specification (7), in which 
the yj, are restricted to be equal, combined with 
the unrestricted covariance specification (5). 
However, rather than using the parameter values 
P1l = Pj2 = Yjl = 1 and X = I that were used in 
the first experiment, we estimate these coefficient 
values using an actual data set. Specifically, we 
use Nielsen scanner panel data on ketchup pur- 
chases by 1,153 households with 5,353 total 
purchase occasions to estimate the parameters of 
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model (7), (5) via MSM based on the GHK simu- 
lator. 

The Nielsen ketchup data are described in 
detail in Keane (1994b). The alternatives are 32 
ounce sizes of Del Monte, Hunts, and Heinz, 
along with 18, 28, 40, and 64 ounce sizes of 
Heinz. The household-specific characteristic xi 
that we use in estimation is household size. The 
estimated model actually has four brand-specific 
attribute variables zij for j = 1, 7. These are price 
and dummies for the presence of three different 
types of displays. To arrive at a model identical in 
form to (7), in which there is only a single brand- 
specific attribute, we construct a single alterna- 
tive-specific variable which is a linear combina- 
tion of the price and the three display dummies, 
constructed in such a way that the coefficient Y11 
on the constructed z variable is equal to the 
estimated price coefficient. We then construct 50 
artificial data sets of 5,000 observations each, 
using as model parameters the brand intercepts, 
household size and price coefficients, and covari- 
ance matrix elements estimates on the Nielsen 
data and using as covariates the household sizes 
and constructed z variables from the first 5,000 
purchase occasions in the Nielsen data. Note 
that, although the actual data are a panel, since 
we estimate a model that assumes no serial corre- 
lation in the unobservables, the artificial data we 
construct also have no serial correlation. 

Our goal in the second experiment is to pro- 
vide a more stringent test of the performance of 
the three preferred simulation-based approaches 
to inference. In the first experiment, the covari- 
ates were orthogonal. In this experiment the co- 
variates are correlated. For example, prices of 
different brands of ketchup will tend to move 
together due to competitive reactions and also 
because five of the alternatives are from the same 
manufacturer. In addition, certain households will 
tend to shop at low price stores, while others 
shop at higher price stores. Such correlations 
among covariates may reduce the information 
content of any sample of given size, so that larger 
sample sizes may be necessary before small sam- 
ple bias becomes negligible. An additional factor 
is that the error structure estimated from the 
Nielsen ketchup data is substantially more com- 
plex than that assumed in experiment 1. There 
we assumed a simple one factor error structure in 
the differenced model, with all error variances 

equal. A notable feature of the actual data is that 
the estimated error variances differ widely across 
alternatives. Hajivassiliou, McFadden, and Ruud 
(1992) find that the accuracy of probability simu- 
lators deteriorates as error variances become 
more unequal, so that the covariance structure 
assumed in the second experiment may be ex- 
pected to lead to a deterioration in the perfor- 
mance of the simulation-based estimators relative 
to their performance in experiment 1. 

IV. Classical Inference Using Probability 
Simulators 

Classical methods of estimation are all based 
on the log-likelihood function (3). They approxi- 
mate the P(jl3*, y*, E*, Xi*, Z*) using a proba- 
bility simulator and then apply conventional pro- 
cedures to solve moment conditions or maximize 
the log-likelihood function. We turn first to three 
probability simulators and then to two estimation 
procedures. 

A. Alternative Probability Simulators 

Frequency Simulator: Lerman and Manski 
(1981) proposed using a frequency simulator to 
approximate the probabilities appearing in (3). A 
frequency simulator is constructed as follows: 

1. For each of M replications (1 = 1,..., M), 
draw a J - 1 vector of independent stan- 
dard normal random variables, 71 

2. Let Es' = An' and compute u01 - X1*13*+ 
Zi y* + E* for all 1. 

3. Let ) argmax1 -1 J u0-1 for all 1. 
4. Construct 

A~~~~~ M 

PF(j11 ,y Y.*, Xi,Zi) =M [J A71=1 

This simulator is fast, easy to compute, and unbi- 
ased. However, the simulated probabilities PF 

are discontinuous in the parameters ,3*, y*, and 
E*, necessitating use of derivative-free algorithms 
to maximize the simulated log-likelihood function 
obtained when PF is substituted into (3). There is 
also a positive probability that PF= 0, in which 
case (3) cannot be computed at all after substitu- 
tion. 

Kernel-Smoothed Frequency Simulator: To 
avoid the discontinuities in a crude-frequency 
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simulator, McFadden (1989) proposed the use of 
a kernel-smoothed frequency (KS) simulator. For 
kernel-smoothing parameter p and each of M 
replications (1 = 1,..., M), begin with Steps 1 
and 2 of the crude-frequency simulator. Then 
construct 

PKS( jl,*, -y*, E.*, Zi, X.i) 
1 M J-1 - 

= 
- E eu/P r + E eu4 I/P 

This simulator shares the advantages and disad- 
vantages of kernel-smoothers generally. The 
larger the value of p, the smaller the variance in 
the estimator PKS' but the greater the bias. The 
appropriate choice of p will diminish as the num- 
ber of simulations M increases. While rates of 
decrease sufficient to eliminate asymptotic bias 
are known (see sections IVB and IVC), the deter- 
mination of which p to use with a given M 
requires some costly experimentation as a practi- 
cal matter. 

The GHK Recursive Simulator: The GHK re- 
cursive simulator, due to Geweke (1991), Hajivas- 
siliou and McFadden (1990), and Keane (1990, 
1994a), is based on the observation that the choice 
probabilities in the multinomial probit model may 
be written as a sequence of conditional probabili- 
ties that may be simulated recursively. This simu- 
lator is of particular interest, because in a rather 
exhaustive study of many alternative probability 
simulators Hajivassiliou, McFadden, and Ruud 
(1992) concluded that GHK was the most accu- 
rate and reliable method of all those considered. 

Some additional notation is needed to describe 
this simulator. Write equation j of (2) 

0 = X*,B* + Z*y* +E* 

Here Xi* denotes row ] of X* and Zj* denotes 
row j of Z*. The i subscript is dropped in this 
section only for ease of notation. Define 

ak=4-u* fork=l,...,J, 

and 

Ek kE* - j* for k =1,.. .J, 

where it is understood that E* = 0. Further de- 
fine the (J - 1) x 1 vectors: 

Uj l, * * *, U l U jjs ... **,Uj)1 

and 

( 1 X ,e ,e ,*** 
Recall that alternative j is chosen if u* - u* < 0 
for k = 1,..., J which is equivalent to the condi- 
tion that all the elements of uii are less than or 
equal to zero. 

Since fj is a linear transformation of E*, the 
distribution of Ei is IIDN(O, Ei) where Ei is the 
corresponding appropriate transformation of E*. 
Let Ai be the unique lower triangular Cholesky 
factorization ii = A'(A)'. Then ji = A-J7 where 
71 = (7,q . **77j-o 77j+o ... ,70 ]' is a(J -1) x1 
vector of independent standard normal random 
variables. 

Define Ui(,71 ... ,71) as the value of ui when 
the random variables "il through 7p are fixed at 
the draw (,.. .,. 71), where p < k. For p = k, 
Uk(~, ... , ql) is a number, while for p < k it is a 
random variable. Then, the GHK simulator for 
the probability of alternative j is constructed as 
follows: 

(1) Draw 'q1 such that Cij(Y71) < 0 for 1 = 

(j - 1) Draw 71-1 such that 
f-i-(7i * ... l-l< 0 for I = 
1, . .. , M 

(j) Skip m7j 
(j + 1) Draw 7'j+l such that 

+ 167 1l. , 71 1, 77+ 1) < 0 for 1 = 

(J - 1) Draw '71 - such that 
Uj_i 1671 .... ., 71j- 1, 71j+l, * ,71J _d 0 

for 1 = 1, ... I M 

and finally, construct 

PGHK( jlg* ,Y I ,* I* X*,I Z*) 

1=1 
j-l 

x Hl P[ik(r,l .. ... ?k7-) < o] 

J 

k =1 + 2 
11,*** 1- 

k=j+2 

71j+ 1, . 7,71k -1) < ?] 
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This simulator is unbiased and smooth in the 
model parameters. Note that construction of the 
GHK simulator requires only draws from trun- 
cated univariate normals and evaluation of uni- 
variate integrals. To draw from a truncated 
univariate normal is quite simple, since, if a stan- 
dard normal random variate 'q is desired such 
that a < 7q < b, one need only form 'q = 
F-'[(F(b) - F(a))U + F(a)] where F( ) is the 
standard normal distribution function and U is a 
uniform random variate on [0, 1]. 

B. Simulated Maximum Likelihood (SML) 

Albright, Lerman, and Manski (1977) and Ler- 
man and Manski (1981) proposed maximum like- 
lihood using (3) with PF() in lieu of P( ), 

LN (,3*' "Y* * 

N J 

N-1 E E di 
i=1 j=1 

x In [ F( j l ,3 y xi E i, Z* 

If M/N 1/2 > co as N - oo, then this estimator is 
consistent (see Gourieroux and Monfort, 1993; 
Lee, 1993; or McFadden and Ruud, 1994). The 
same M/N11/2 _> c condition guarantees consis- 
tency of the maximum likelihood estimator based 
on PGHK in lieu of P( ) and of the maximum 
likelihood estimator based on PKs(-) in lieu of 
P( ) provided that p -> 0 appropriately as N 
mo. None of the estimators is consistent in N (with 
M fixed) since they all provide biased evaluations 
of ln P(*). 

SML based on the frequency simulator has two 
undesirable characteristics. First, LN will be dis- 
continuous in ,3*, y*, and E*, precluding the use 
of the gradient methods for optimization and 
statistical inference. Second, a simulated choice 
probability of zero precludes construction of LN. 
If the frequency simulator is replaced by a smooth 
probability simulator that is bounded away from 
zero, such as the kernel-smoothed or GHK simu- 
lator, these problems are avoided. However, LN 
still provides a biased evaluation of LN, for fixed 
M. An important open question, which we exam- 
ine in this paper, is whether or not this imparts a 
substantial bias to the simulated maximum likeli- 
hood estimator. 

C. Method of Simulated Moments (MSM) 

McFadden (1989) and Pakes and Pollard (1989) 
observe that the solution of the simulated mo- 
ment conditions 

N J 

N-1 E E Wij 
i=1 j=1 

x [dij P(OWI , y*, *,Xi,Zi)] = 0, 

where Wij is a set of instruments and P(*) de- 
notes any unbiased probability simulator, will 
produce estimates of /3*, y*, and E* that are 
consistent in N, with fixed M. Use of biased 
probability simulators also results in consistent 
estimates if the bias is o(N- 1/2). In the case of 
PKS' this condition requires that p -O 0 appropri- 
ately as N -> oo. Since simulation is used to ob- 
tain the moment conditions, McFadden (1989) 
called this estimator the method of simulated 
moments. 

McFadden (1989) points out that the instru- 
ments (8Pk )/d6)/P() are asymptotically opti- 
mal if M -> oo, where 0 is the vector of free 
parameters in /3*, y*, and E*. Consistency also 
requires that the draws used to form dP( )/dO be 
independent of those used to form dij - 

p( jlp*, 7*, E.*, Xi, zd) 

V. Bayesian Inference Using the Gibbs Sampler 

Bayesian inference using the Gibbs sampler 
(Gelfand and Smith, 1990) and data augmenta- 
tion (Tanner and Wong, 1987) has been applied 
to the multinomial probit model by at least two 
other sets of investigators (Albert and Chib, 1993; 
McCulloch and Rossi, 1994). Here, we describe 
the essentials of the method. 

In conjunction with the log-likelihood function 
(3) posterior densities corresponding to various 
priors are easy to construct as formal expressions. 
The essential difficulty in applying any of these 
expressions is integrating over the unobserved 
components u0, and in Bayesian inference there 
is the further complication of integrating over the 
parameters /3*, y*, and E*. The Gibbs sampler 
with data augmentation resolves both difficulties 
in a systematic way. We describe the method in 
turn for three variance structures discussed in 
section II. 
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The third variance structure is simplest: E is 
scalar, and hence E* = 0.5I + 0.5ee', where e is 
a (J - 1) x 1 vector of units. Let the priors on 
,3* and y* be diffuse: ccp*(/3*) a constant, 

r,*(y*) xa constant. The essence of Gibbs sam- 
pling and data augmentation is that, under weak 
conditions widely satisfied by econometric models 
(including this one), successive sampling from 
conditional distributions produces a Markov chain 
which converges in distribution to the posterior 
distribution (Tierney, 1991; McCulloch and Rossi, 
1994; and Geweke, 1992). So, to implement the 
Gibbs sampler, start by choosing initial values for 
the model parameters /3* and y*. Then, in each 
iteration of the algorithm there are two steps: 

1. Conditional on /3*, y*, and E*, the distribu- 
tion of u0 is truncated (J - 1)-variate normal. If 
the observed choice is j, the truncations are 
created by the linear restrictions u* - U* < 0 
for k = 1,..., J. A simple method for drawing 
from a truncated multivariate normal distribution 
described in Geweke (1991) can be applied. Es- 
sentially, this method exploits the fact that condi- 
tional on /3*, y*, and the u* for k = 1, u* has a 
truncated univariate normal distribution, from 
which the construction of synthetic random vari- 
ables is trivial. 

2. Conditional on u0, (2) is a seemingly unre- 
lated regressions model (Zellner, 1962), and the 
posterior distribution of /3* and y* in this model 
is joint normal with mean and variance given by 
familiar generalized least squares expressions 
(Zellner, 1971). While these expressions may be 
used directly, they require the inversion of a 
symmetric, positive-definite (m + r) x (m + r) 
matrix. In the experiments undertaken for this 
study the matrix [Xi*lZf] of covariates is sparse, 
with many more zero than nonzero entries. Tech- 
niques described in Geweke, Keane, and Runkle 
(1994) for such systems were employed for the 
computations reported in this paper, greatly in- 
creasing speed and reducing storage require- 
ments. 

Beginning from the arbitrary initial values for 
,3* and y*, the Gibbs sampling-data augmenta- 
tion algorithm alternates between Steps 1 and 2. 
At the ilh iteration drawings /3*(l) and y*(l) are 
produced. As the number of iterations grows 
large the sequence {/3*(l), y*(l)} converges in dis- 
tribution to the posterior distribution. Therefore, 

the sequence {g(f3*(l), y*(l))} converges in distri- 
bution to the posterior distribution of the func- 
tion g(,3*, y*). The assessment of convergence, 
and of the numerical accuracy of approximations 
to posterior moments, is an important task to 
which contributions are currently being made (see 
Geweke, 1992; Schervish and Carlin, 1992; and 
Zellner and Min, 1992). 

In the first and least restrictive specification E 
must be renormalized in some way. We accom- 
plish this through the diffuse but proper prior 
specification, 

.* - IW(0.5(Ij_ + ee'), 1) 

while retaining flat, improper priors for /3* and 
y*. (This approach is similar to McCulloch and 
Rossi (1994), except that they also use proper 
priors for the coefficients.) This modification leads 
to a third step in each iteration: 

3. Conditional on /3*, y*, and the u*, the 
distribution of E* is inverted Wishart (Zellner, 
1971, pp. 395-396). An appropriate drawing may 
be made by generating the synthetic random vari- 
ables from the inverted Wishart distribution as 
described in Geweke (1988) and then normalizing 
E* and the coefficients /3* and y*. 

Of course, the synthetic random variables in Steps 
1 and 2 are then drawn conditional on E* from 
Step 3 of the previous iteration, in lieu of the 
fixed E* = 0.5I + 0.5ee' used for the first vari- 
ance structure. For comparison with the classical 
results, we record as functions of interest in each 
iteration the normalized values ,l3*(l)(ol(l)Y 1/2 

and y*(l)(.*l(l))-l/2 in lieu of /3*(l) and y*(l), and 
the Cholesky decomposition of E*(-*l('))- 1/2 

rather than E 
The other variance structure taken up in the 

experiments specifies that the variance matrix E 

in the unnormalized model (1) is diagonal. This 
induces the variance structure (9), which is equiv- 
alent to the factor model: 

Eij = af, + ~Ij, 

where a = 0.51/2, the latent variables (fi, i, . . 

iJ-d1) are mutually independent with fi 
IIDN(0, 1), j IIDN(0, A), and A = 

diag(j1,...,5j_ ). Since this model is identified 
we may adopt the conventional diffuse priors 
rr'6(5) a 81-1, 7ro*(/3*) a constant, and 7r*(y*) 
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a constant. Thus (2) becomes 

f- af = Xi*3* + Zi*Y* + i* (10) 

The functions of interest are p*(1)(u (l))- 1/2, 

y* 1 l*ll))1/2 and, for comparison with (9), j 
= Sj - 0.5. The foregoing procedures may still be 
applied, with modification as follows. 

1. Drawings of u* conditional on ,3*, y*, f = 

(f1,. .. ' f,Y, and the variance matrix A are made 
as before. 

1.5. Following Step 1 and before Step 2, draw- 
ings from the distribution of the fi conditional on 
u~I, IX3*, y*, a, and A are made from the appro- 
priate distribution, 

fi N [ea(a 2ee' + A) 1(Ou - X*i** * ) 

I a- 2e(a 2ee' + 1e'J. 

2. Conditional on the fi, u*, and A, (10) is a 
seemingly unrelated regressions model. The con- 
ditional distribution of f3* and y* is therefore 
joint normal with mean and variance given by the 
generalized least squares formulas. 

3. Conditional on fi and u*, the posterior 
distribution of the Si are independent inverted 
gamma (Zellner, 1971), from which synthetic ran- 
dom variables may be constructed in trivial fash- 
ion as described in Geweke (1986). 

All results are reported for m = 10,000 itera- 
tions of the Gibbs sampling-data augmentation 
algorithm. In every case, iterations began with the 
starting values ,B* = 0, y* = 0, E* = 0.See' + 
0.51. Experimentation with starting values much 
further from population values showed that draws 
from the posterior distribution converged to the 
neighborhood of the population values within 100 
iterations. Accordingly, only the first 200 itera- 
tions were discarded to reduce sensitivity 
to initial conditions. The posterior mean of a 
function of interest g-E[g(,3*, y*, *)] is ap- 
proximated by the corresponding moment from 
the sample generated by the algorithm, g=- 
m lEm1g(3*(l), y*(l), E*(1)). The posterior vari- 
ance is approximated by 

mrn1 E [ g(3*(), Y*(l), *(l)) - gm 
1=1 

and the posterior standard deviation is approxi- 
mated by the square root of this expression. 

VI. Results of the Experiments 

A. Experiment One 

In the first experiment, each of the nine models 
described in section II was estimated using 10 
artificial data sets, whose construction is also 
described in section II. The purpose of this exper- 
iment is to compare four estimators of these nine 
models: 

1. Posterior means using the Gibbs sampling- 
data augmentation algorithm with m = 10,000 it- 
erations; 

2. Method of simulated moments using the 
GHK probability simulator with M = 30 draws to 
simulate the choice probabilities and the deriva- 
tives needed to form the optimal weights and 
using Gauss-Newton iterations to solve the simu- 
lated moment conditions; 

3. Method of simulated moments using the KS 
probability simulator with M = 100 draws to sim- 
ulate the choice probabilities and the optimal 
weights, with both p = 0.10 and p = 0.20, again 
using Gauss-Newton iterations for solution; 

4. Simulated maximum likelihood using the 
GHK probability simulator with M = 30 draws to 
simulate the choice probabilities and using BHHH 
iterations to maximize the simulated log-likeli- 
hood function. 

We did not employ the frequency simulator for 
reasons discussed in section IVA. In the case of 
MSM based on the GHK simulator, the value of 
M was chosen such that increases in M had 
negligible effect on the point estimates. In the 
cases of MSM based on the KS simulator and 
SML based on the GHK simulator, M was cho- 
sen to give computation times close to that for 
MSM based on GHK. In the case of Gibbs sam- 
pling the choice m = 10,000 has become fairly 
standard and the resultant accuracy as indicated 
by the numerical standard errors (computed as 
described in Geweke (1992) but not reported 
here) appears to be quite acceptable. 

In tables 1-9 we report the means over the 10 
artificial data sets of the point estimates or poste- 
rior means and also of the asymptotic standard 
errors (ASEs) or posterior standard deviations 
(PSDs), for all parameters in each model. Note 
that for the unrestricted E* specification these 
parameters include A, and in the diagonal vari- 
ance models they include the {j. 
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Several interesting patterns arise when one 
compares the performance of different estimators 
and when one compares the general performance 
of the estimators across model specifications and 
across different groups of parameters. We will 
now compare the performance of each method 
for each set of parameters in each model, fo- 
cussing primarily on how the MSEs for those sets 

of parameters compare across methods and 
models. 

Table 1 contains results for the unrestricted 
model, consisting of coefficient specification (4) 
and variance specification (5). For the yj*}, the 
MSEs for MSM-KS with p = 0.10 or 0.20 and for 
SML-GHK are all roughly 2.5 to 3 times greater 
than those for MSM-GHK. The MSEs for 

TABLE 1.-COEFFICIENT SPECIFICATION (4), UNRESTRICTED * SPECIFICATION 

Bayesian MSM-KS 
Inference MSM-GHK SML-GHK p = 0.10 p = 0.20 

6 DGP 6 MSE PSD 6 MSE ASE 6 MSE ASE 6 MSE ASE 6 MSE ASE 

81* 0.000 0.041 0.073 0.106 0.032 0.143 0.124 0.042 0.115 0.084 0.021 0.168 0.199 0.013 0.107 0.151 

p*1 0.000 -0.001 0.077 0.114 -0.007 0.102 0.119 -0.030 0.084 0.097 0.000 0.235 0.191 -0.032 0.158 0.149 

p81 0.000 0.000 0.082 0.116 0.029 0.121 0.117 -0.048 0.119 0.101 -0.071 0.274 0.173 -0.081 0.165 0.140 

p81 0.000 -0.001 0.088 0.110 -0.007 0.141 0.118 -0.051 0.099 0.101 0.029 0.167 0.172 -0.016 0.104 0.140 

p8 * 0.000 -0.013 0.070 0.119 - 0.006 0.116 0.116 - 0.088 0.124 0.107 -0.017 0.183 0.165 - 0.059 0.134 0.136 

p81 0.000 0.017 0.147 0.112 0.025 0.191 0.117 -0.044 0.144 0.101 0.014 0.165 0.166 0.013 0.119 0.136 

p8 * 0.000 0.009 0.029 0.029 0.009 0.030 0.029 0.003 0.023 0.027 0.008 0.032 0.030 0.007 0.029 0.028 
1*2 0.000 - 0.009 0.037 0.031 - 0.009 0.040 0.029 - 0.014 0.035 0.028 - 0.010 0.029 0.029 - 0.012 0.032 0.027 

p82 0.000 - 0.013 0.034 0.030 - 0.011 0.031 0.029 -0.012 0.035 0.028 -0.003 0.027 0.028 -0.008 0.030 0.027 
p82 0.000 0.005 0.042 0.030 0.005 0.041 0.029 0.003 0.043 0.028 0.010 0.040 0.029 0.006 0.042 0.028 

3*2 0.000 0.006 0.026 0.030 0.006 0.026 0.029 0.006 0.026 0.029 0.004 0.036 0.029 0.006 0.032 0.027 
p82 0.000 0.000 0.028 0.030 0.001 0.028 0.029 0.006 0.028 0.029 0.012 0.032 0.029 0.009 0.029 0.027 

y1* 0.707 0.701 0.052 0.055 0.711 0.074 0.060 0.657 0.232 0.045 0.633 0.242 0.086 0.693 0.242 0.065 

y2*1 0.707 0.706 0.046 0.077 0.718 0.058 0.083 0.682 0.234 0.069 0.629 0.264 0.121 0.701 0.255 0.094 

y3*1 0.707 0.714 0.069 0.080 0.716 0.083 0.082 0.693 0.241 0.071 0.668 0.270 0.112 0.728 0.264 0.089 
'Y 0.707 0.718 0.072 0.077 0.729 0.102 0.082 0.705 0.243 0.071 0.624 0.252 0.114 0.703 0.254 0.091 
'Y 0.707 0.724 0.064 0.082 0.728 0.079 0.081 0.726 0.250 0.075 0.648 0.255 0.110 0.726 0.264 0.088 

'Y*1 0.707 0.704 0.085 0.077 0.706 0.111 0.082 0.699 0.245 0.071 0.635 0.264 0.109 0.687 0.252 0.088 

17*1- 0.707 - 0.719 0.056 0.054 - 0.726 0.078 0.060 - 0.678 0.234 0.045 - 0.632 0.236 0.083 - 0.692 0.241 0.063 

a*21 0.500 0.517 0.100 0.112 0.507 0.134 0.128 0.449 0.189 0.082 0.435 0.280 0.186 0.401 0.254 0.152 
a2* 0.866 0.906 0.084 0.106 0.829 0.266 0.111 0.846 0.292 0.089 0.776 0.308 0.157 0.836 0.314 0.137 

a3*1 0.500 0.515 0.101 0.109 0.527 0.130 0.123 0.488 0.207 0.083 0.443 0.297 0.187 0.444 0.243 0.151 

a'Y2 0.289 0.355 0.099 0.108 0.342 0.110 0.120 0.279 0.120 0.079 0.196 0.284 0.176 0.285 0.197 0.140 

a3* 0.816 0.818 0.094 0.100 0.821 0.122 0.104 0.796 0.284 0.088 0.684 0.234 0.141 0.748 0.309 0.127 
a*1 0.500 0.513 0.094 0.106 0.495 0.125 0.121 0.441 0.175 0.085 0.429 0.258 0.188 0.427 0.257 0.150 

a4*2 0.289 0.277 0.104 0.107 0.312 0.153 0.121 0.267 0.113 0.078 0.330 0.207 0.181 0.318 0.210 0.145 

a*43 0.204 0.187 0.108 0.105 0.149 0.114 0.114 0.149 0.105 0.078 0.085 0.255 0.171 0.079 0.203 0.137 
a* 0.791 0.793 0.086 0.093 0.805 0.116 0.102 0.796 0.274 0.087 0.630 0.281 0.140 0.689 0.265 0.127 
a*1 0.500 0.563 0.108 0.113 0.556 0.126 0.120 0.507 0.189 0.087 0.497 0.266 0.200 0.525 0.245 0.152 
a*2 0.289 0.286 0.089 0.110 0.264 0.087 0.119 0.240 0.121 0.083 0.248 0.144 0.191 0.273 0.149 0.145 

a5*3 0.204 0.201 0.103 0.111 0.225 0.099 0.112 0.189 0.102 0.081 0.169 0.170 0.168 0.170 0.125 0.133 

a5*4 0.158 0.139 0.107 0.108 0.128 0.098 0.108 0.146 0.081 0.077 0.187 0.163 0.156 0.137 0.153 0.127 
a*5 0.775 0.764 0.082 0.097 0.782 0.087 0.098 0.802 0.284 0.091 0.627 0.317 0.136 0.702 0.283 0.123 

a61 0.500 0.503 0.102 0.107 0.503 0.184 0.121 0.485 0.197 0.087 0.530 0.262 0.191 0.488 0.226 0.152 
a*2 0.289 0.294 0.109 0.109 0.305 0.147 0.120 0.267 0.120 0.081 0.300 0.238 0.171 0.275 0.195 0.142 
a*3 0.204 0.231 0.129 0.103 0.242 0.151 0.112 0.232 0.130 0.078 0.146 0.176 0.166 0.150 0.177 0.134 
a* 0.158 0.152 0.080 0.106 0.132 0.103 0.108 0.158 0.108 0.076 0.102 0.167 0.167 0.119 0.148 0.129 
a*5 0.129 0.160 0.131 0.100 0.143 0.155 0.103 0.178 0.124 0.074 0.112 0.186 0.148 0.103 0.148 0.124 
a*6 0.764 0.711 0.135 0.090 0.719 0.157 0.098 0.741 0.265 0.084 0.584 0.296 0.136 0.623 0.275 0.123 

Note: 0 parameter, DGP-data generating value, 00average parameter estimate, MSE-root mean square error, PSD-average posterior standard 
deviation, ASE-average asymptotic standard error. 
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Bayesian inference are roughly 10%-20% smaller 
than those for MSM-GHK and are best in 7 of 7 
cases. For MSM-GHK there is close agreement 
between the MSE and the mean ASE, suggesting 
that the asymptotic distribution theory provides a 
good approximation to the small sample distribu- 
tion of the MSM estimates. For Bayesian infer- 
ence there is also close agreement between the 
MSE and the mean PSD. However, for MSM-KS 
and SML-GHK the mean ASE greatly underesti- 
mates the MSE, suggesting that these methods 
produce standard errors for the y},* estimates that 
are biased downward by factors of 2.5 to 3. 

For the /2 the MSEs are similar across all 5 
methods. MSM-KS (p = 0.10) is best in 3 of 6 
cases, SML-GHK is best in 1 of 6, and MSM- 
GHK, SML-GHK, and Bayesian inference are 
tied for best in 2 of 6. For the .3* the MSEs for 
MSM-KS (p = 0.10) are generally the largest. 
There is considerable improvement in going to 
MSM-KS (p = 0.20), which produces MSEs 
roughly comparable to those for MSM-GHK. The 
MSEs for Bayesian inference are lowest in 5 of 6 
cases, and the MSEs for SML-GHK are generally 
second best. 

For the aij the MSEs for MSM-KS (p = 0.10) 
are generally about 2 times greater than those for 
MSM-GHK. Those for MSM-KS (p = 0.20) are 
somewhat better but are still generally much 
larger than for MSM-GHK. For SML-GHK, the 
MSEs for the diagonal elements aij are generally 
about 2 times larger than those for MSM-GHK. 
The MSEs for Bayesian inference are generally 
about 20% smaller than those for MSM-GHK 
and are smallest in 15 of 20 cases. 

We see in table 1 that the ranking of methods 
in terms of MSE depends on the type of parame- 
ter considered, but the most striking feature of 
the results is the poor performance of MSM-KS 
and SML-GHK for the yj*} parameters. Overall, 
the performances of MSM-GHK and Bayesian 
inference appear to dominate, with Bayesian in- 
ference getting the slight edge (especially in terms 
of MSE for the vA and .3J parameters). 

Despite the appearance of certain problems for 
specific methods for specific parameters, we find 
the overall precision of the estimates and poste- 
rior means in table 1 somewhat surprising, given 
that the unrestricted model contains 20 covari- 
ance matrix parameters and that such parameters 
are notoriously difficult to estimate in discrete 

choice models (see Keane, 1992). This difficulty 
arises due to the loss of information involved in 
only observing discrete outcomes rather than the 
underlying continuous latent variables that deter- 
mine outcomes. 

In table 2 we impose the restriction that the YJ*1 
are equal for all j. This is a restriction that one 
would often impose in practice. For example, the 
zij may be prices, and the restriction may corre- 
spond to imposing homogeneity of degree zero on 
demand. The ranking of methods in terms of 
MSE for Y*1 is (1) Bayesian inference at 0.043, 
(2) SML-GHK at 0.057, (3) MSM-GHK at 0.064, 
(4) MSM-KS (p = 0.10) at 0.075, and (5) MSM-KS 
(p = 0.20) at 0.091. The improvement of these 
MSEs from those in table 1 is dramatic. The 
MSEs for y<i are often 2 to 3 times smaller than 
those for the individual yj*} in table 1. 

For the /*2 the drop in MSEs is slight, and the 
MSEs are rather similar across methods. MSM- 
GHK is best or tied for best in 3 of 6 cases, 
followed by SML-GHK and MSM-KS (p = 0.10) 
at 2 of 6 and Bayesian inference at 1 of 6. 

For the 3J* the drop in MSEs that results from 
imposing equality of the yj*, is dramatic. For 
Bayesian inference the drops range from 10% to 
75%. For SML-GHK they fall by roughly a factor 
of 2, and for MSM-GHK and MSM-KS they fall 
by factors of 2 to 3. The MSEs for MSM-KS 
(p = 0.10) are worst in 6 of 6 cases. Those for 
MSM-KS (p = 0.20) are 10% to 20% smaller, but 
are in all cases second worst. The MSEs for 
Bayesian inference are best or tied for best in 5 
of 6 cases, but are generally less than 10% smaller 
than those for MSM-GHK and SML-GHK. 

For the ai the drops in MSEs are also often 
dramatic. For MSM-KS the MSEs generally fall 
by factors of 1.5 to 3, the improvement for 
Bayesian inference is generally about 10%, and 
that for MSM-GHK is generally about 10% to 
30%. For SML-GHK, the MSEs for the diagonal 
elements aij improve by roughly a factor of 3, 
and those for the other elements often improve 
by factors of 2. The MSEs for MSM-KS (p = 0.10) 
are worst in 11 of 20 cases while those for MSM- 
KS (p = 0.20) are worst in 9 of 20 cases. The 
MSEs for the MSM-KS methods are often about 
50% to 100% greater than those for MSM-GHK. 
The MSEs for SML-GHK are best in 11 of 20 
cases, Bayesian inference is best in 8 of 20 cases, 
and MSM-GHK is best in 1 of 20 cases. 
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TABLE 2.-COEFFICIENT SPECIFICATION (7), UNRESTRICTED ; SPECIFICATION 

Bayesian MSM-KS 
Inference MSM-GHK SML-GHK p = 0.10 p = 0.20 

6 DGP 6 MSE PSD 6 MSE ASE 6 MSE ASE 6 MSE ASE 6 MSE ASE 

81* 0.000 0.012 0.051 0.050 0.014 0.054 0.048 0.010 0.051 0.048 0.024 0.080 0.062 0.019 0.069 0.056 

p*1 0.000 - 0.019 0.037 0.051 - 0.019 0.043 0.051 - 0.024 0.040 0.051 - 0.003 0.066 0.065 - 0.017 0.055 0.059 
p81 0.000 - 0.007 0.072 0.052 - 0.006 0.068 0.050 -0.020 0.074 0.051 -0.011 0.099 0.063 -0.022 0.086 0.058 

13* 0.000 - 0.005 0.051 0.051 - 0.003 0.053 0.050 -0.021 0.059 0.051 -0.001 0.077 0.062 - 0.008 0.071 0.057 
p81 0.000 - 0.006 0.064 0.051 - 0.003 0.066 0.050 -0.024 0.070 0.051 0.002 0.092 0.061 -0.010 0.082 0.057 
p81 0.000 - 0.003 0.048 0.051 0.000 0.048 0.050 -0.023 0.052 0.051 0.003 0.065 0.062 -0.001 0.056 0.057 
J *p 0.000 0.008 0.031 0.029 0.009 0.029 0.029 0.008 0.028 0.029 0.013 0.036 0.033 0.013 0.034 0.031 
p82* 0.000 - 0.009 0.039 0.029 - 0.007 0.040 0.029 - 0.008 0.037 0.030 - 0.007 0.035 0.032 - 0.007 0.038 0.030 
p82 0.000 - 0.011 0.033 0.029 - 0.010 0.031 0.029 -0.011 0.033 0.030 - 0.005 0.027 0.032 -0.008 0.030 0.030 
p82 0.000 0.005 0.042 0.029 0.005 0.039 0.029 0.005 0.041 0.030 0.014 0.041 0.032 0.009 0.043 0.031 
p82 0.000 0.006 0.026 0.029 0.006 0.025 0.029 0.008 0.025 0.031 0.004 0.035 0.032 0.008 0.030 0.030 
p82 0.000 0.002 0.026 0.029 0.002 0.026 0.029 0.002 0.028 0.031 0.010 0.031 0.032 0.006 0.029 0.030 

Y* 0.707 0.710 0.043 0.042 0.719 0.064 0.047 0.738 0.057 0.039 0.725 0.075 0.068 0.774 0.091 0.051 

a21 0.500 0.502 0.127 0.088 0.490 0.132 0.105 0.497 0.093 0.074 0.485 0.144 0.157 0.460 0.202 0.129 
a*2 0.866 0.911 0.087 0.084 0.915 0.123 0.092 0.931 0.103 0.076 0.928 0.139 0.137 0.939 0.140 0.117 

a31 0.500 0.490 0.090 0.093 0.511 0.084 0.100 0.516 0.093 0.074 0.505 0.139 0.155 0.502 0.164 0.127 
a*2 0.289 0.353 0.091 0.096 0.340 0.103 0.117 0.326 0.096 0.084 0.248 0.166 0.189 0.331 0.161 0.151 
a*3 0.816 0.817 0.090 0.071 0.823 0.113 0.078 0.858 0.103 0.066 0.802 0.125 0.116 0.800 0.134 0.099 

a41 0.500 0.493 0;081 0.088 0.477 0.094 0.099 0.458 0.088 0.075 0.460 0.201 0.158 0.442 0.188 0.126 
a*2 0.289 0.284 0.088 0.104 0.305 0.151 0.118 0.310 0.081 0.082 0.365 0.197 0.193 0.374 0.205 0.155 
a*3 0.204 0.191 0.105 0.101 0.151 0.118 0.112 0.169 0.084 0.081 0.128 0.192 0.183 0.101 0.176 0.147 
a* 0.791 0.786 0.062 0.068 0.791 0.078 0.071 0.841 0.083 0.063 0.761 0.085 0.104 0.770 0.073 0.091 

a51 0.500 0.538 0.086 0.086 0.536 0.076 0.097 0.530 0.066 0.076 0.538 0.155 0.167 0.583 0.162 0.126 
a*2 0.289 0.288 0.081 0.104 0.265 0.091 0.116 0.276 0.063 0.085 0.310 0.108 0.201 0.307 0.129 0.155 
a*3 0.204 0.208 0.117 0.103 0.226 0.105 0.110 0.228 0.085 0.081 0.216 0.131 0.181 0.209 0.100 0.143 
a*4 0.158 0.141 0.091 0.102 0.134 0.078 0.107 0.159 0.055 0.079 0.162 0.128 0.169 0.149 0.137 0.138 
a*5 0.775 0.752 0.067 0.064 0.770 0.078 0.065 0.819 0.089 0.060 0.735 0.131 0.094 0.743 0.108 0.084 
a*1 0.500 0.487 0.099 0.089 0.490 0.111 0.098 0.505 0.091 0.078 0.554 0.158 0.158 0.534 0.132 0.128 
a*2 0.289 0.295 0.104 0.105 0.307 0.150 0.117 0.320 0.090 0.086 0.358 0.232 0.185 0.348 0.198 0.154 
a*3 0.204 0.236 0.128 0.101 0.249 0.159 0.110 0.267 0.118 0.082 0.203 0.137 0.180 0.173 0.179 0.145 
a*4 0.158 0.142 0.083 0.104 0.142 0.091 0.106 0.176 0.085 0.080 0.092 0.155 0.180 0.133 0.134 0.140 
a*5 0.129 0.157 0.129 0.098 0.148 0.151 0.102 0.184 0.107 0.077 0.118 0.162 0.166 0.096 0.158 0.137 
a*6 0.764 0.719 0.082 0.063 0.730 0.095 0.061 0.797 0.083 0.058 0.713 0.106 0.089 0.721 0.099 0.079 

Note: 0 -parameter, DGP -data generating value, 0 -average parameter estimate, MSE -root mean square error, PSD -average posterior standard 

deviation, ASE- average asymptotic standard error. 

Overall, the method that improves most with 
the yj*} equality restriction is SML-GHK, due to 
the large drop in the MSE for y*i relative to 
those for the yj* in table 1, and the large drops in 
the MSEs for the aij. In the second table, 
Bayesian inference again has a slight overall edge 
in performance in terms of MSEs, with MSM- 
GHK and SML-GHK difficult to choose between: 
the former tends to have slightly better MSEs for 
the ,3* while the latter does better for the aij. 
Again, the MSM-KS point estimates clearly have 
the largest MSEs. 

In table 3 we impose the further restriction 
that the 8*3 are zero for all j and k = 1, 2. This 

restriction is perhaps harder to justify than that 
in table 2 in terms of basic theory. However, it is 
common in marketing applications to construct 
models where only brand attributes determine 
choices (perhaps with the coefficients on at- 
tributes depending on household characteristics) 
and where the error structure arises from house- 
holds' heterogeneous preferences for unobserved 
brand attributes (see, e.g., Elrod and Keane, 
1994). Thus, a model without 38* is in fact of 
independent interest. 

With this restriction, the MSEs for the Y*X fall 
by about 20% from those in table 2. The ranking 
of methods in terms of MSE for {y is again (1) 
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TABLE 3.-COEFFICIENT SPECIFICATION (8), UNRESTRICTED ; SPECIFICATION 

Bayesian MSM-KS 

Inference MSM-GHK SML-GHK p = 0.10 p = 0.20 

6 DGP 6 MSE PSD 6 MSE ASE 6 MSE ASE 6 MSE ASE 6 MSE ASE 

Yl 0.707 0.703 0.034 0.037 0.709 0.051 0.042 0.723 0.043 0.034 0.717 0.064 0.063 0.762 0.076 0.046 

a*1 0.500 0.500 0.118 0.080 0.483 0.121 0.098 0.490 0.091 0.064 0.474 0.129 0.150 0.447 0.197 0.121 
a*2 0.866 0.892 0.074 0.078 0.900 0.118 0.086 0.915 0.094 0.068 0.917 0.139 0.134 0.919 0.130 0.111 

a31 0.500 0.481 0.076 0.079 0.506 0.070 0.094 0.509 0.077 0.065 0.494 0.120 0.148 0.490 0.137 0.119 
a*2 0.289 0.352 0.088 0.098 0.348 0.099 0.117 0.340 0.098 0.081 0.255 0.157 0.188 0.338 0.151 0.150 
a*3 0.816 0.805 0.071 0.060 0.814 0.099 0.069 0.839 0.080 0.055 0.783 0.102 0.109 0.778 0.113 0.090 

a41 0.500 0.482 0.078 0.076 0.471 0.089 0.093 0.452 0.076 0.066 0.449 0.190 0.149 0.433 0.185 0.118 
a*2 0.289 0.294 0.094 0.097 0.311 0.148 0.117 0.321 0.082 0.079 0.371 0.190 0.191 0.376 0.199 0.154 
a3 0.204 0.184 0.093 0.095 0.150 0.117 0.112 0.172 0.086 0.078 0.124 0.192 0.182 0.106 0.170 0.146 
a* 0.791 0.780 0.052 0.056 0.783 0.066 0.060 0.822 0.066 0.050 0.751 0.090 0.094 0.754 0.093 0.078 
a*1 0.500 0.526 0.075 0.076 0.531 0.073 0.092 0.523 0.066 0.067 0.534 0.138 0.158 0.571 0.144 0.119 
a*2 0.289 0.290 0.084 0.102 0.273 0.093 0.116 0.289 0.067 0.081 0.306 0.107 0.200 0.315 0.128 0.154 
a*3 0.204 0.205 0.106 0.097 0.222 0.102 0.110 0.227 0.082 0.078 0.220 0.130 0.180 0.212 0.108 0.142 
a*4 0.158 0.147 0.095 0.097 0.133 0.077 0.107 0.163 0.048 0.075 0.167 0.134 0.168 0.145 0.134 0.137 
a*5 0.775 0.743 0.047 0.052 0.763 0.058 0.053 0.796 0.053 0.046 0.721 0.126 0.082 0.724 0.094 0.069 
a*1 0.500 0.478 0.090 0.080 0.486 0.103 0.092 0.502 0.070 0.069 0.544 0.126 0.149 0.528 0.110 0.119 
a*2 0.289 0.310 0.101 0.098 0.315 0.151 0.117 0.335 0.100 0.083 0.359 0.224 0.183 0.353 0.197 0.152 
a*3 0.20i4 0.235 0.114 0.096 0.247 0.150 0.110 0.270 0.115 0.079 0.205 0.141 0.178 0.179 0.169 0.144 
a* 0.158 0.144 0.080 0.095 0.138 0.091 0.106 0.175 0.077 0.077 0.094 0.162 0.178 0.131 0.143 0.140 
a*5 0.129 0.162 0.131 0.095 0.149 0.148 0.102 0.183 0.106 0.074 0.119 0.168 0.165 0.096 0.161 0.137 
a* 0.764 0.715 0.069 0.049 0.727 0.085 0.049 0.773 0.060 0.044 0.702 0.088 0.075 0.712 0.083 0.063 

Note: 0 -parameter, DGP -data generating value, 0 -average parameter estimate, MSE -root mean square error, PSD- average posterior standard 
deviation, ASE- average asymptotic standard error. 

Bayesian inference at 0.034, (2) SML-GHK at 
0.043, (3) MSM-GHK at 0.051, (4) MSM-KS (p = 
0.10) at 0.064, and (5) MSM-KS (p = 0.20) at 
0.076. 

For the ai the MSEs for SML-GMK fall by 
about 0% to 20%, while those for Bayesian infer- 
ence, MSM-GHK and MSM-KS typically fall by 
about 0% to 10%. SML-GHK is best in 13 of 20 
cases, Bayesian inference is best in 6 of 20, and 
MSM-GHK is best in 1 of 20. MSM-KS (p = 0.10) 
is worst or tied for worst in 12 of 20, while 
MSM-KS (p = 0.20) is worst or tied for worst in 
9 of 20. 

Overall, in table 3, it is difficult to choose a 
best method. Bayesian inference performs best 
for }y{, while SML-GHK has a slight edge for the 
ai,. MSM-GHK is clearly third for both but is not 
far behind. SML-GHK is the method most helped 
by the restriction, since in the second experiment 
it produced MSEs for the 8J* that were larger 
than those obtained by MSM-GHK and Bayesian 
inference. Again, MSM-KS is clearly dominated 
by other methods. 

In table 4 we return to the general model and 
impose the restriction that the covariance matrix 

of the untransformed model is diagonal. This 
corresponds to a model where the only unobserv- 
ables are unique attributes of alternatives for 
which households have heterogeneous prefer- 
ences and where the alternatives have different 
levels of the unique attributes. 

Comparing the results in table 4 to those in 
table 1, we see that imposing diagonality on X 

leads in some cases to dramatic reductions in the 
MSE for the yj1. These fall by factors of about 1.5 
to 2 for MSM-GHK, 2.5 to 5 for SML-GHK, 2 to 
3 for MSM-KS (p = 0.20), and 2 to 5 for MSM-KS 
(p = 0.10). For Bayesian inference, however, the 
MSEs rise more often than not. The MSEs for 
MSM-GHK are best in 7 of 7 cases, and it is clear 
that MSM-GHK dominates along this dimension. 
The MSEs for Bayesian inference and SML-GHK 
are similar. Those for MSM-KS are generally 
about 50% to 300% greater than those for MSM- 
GHK, but are often not much larger than those 
for Bayesian inference or SML-GHK. MSM-KS 
(p = 0.10) is worst in 3 of 7 cases, and MSM-KS 
(p = 0.20) is worst in 4 of 7 cases. 

For the J3* the effect of imposing the diagonal 
X restriction is inconsistent. For MSM-GHK, as 
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TABLE 4.-COEFFICIENT SPECIFICATION (4), DIAGONAL 1* SPECIFICATION 

Bayesian MSM-KS 
Inference MSM-GHK SML-GHK p = 0.10 p = 0.20 

6 DGP 6 MSE PSD 6 MSE ASE 6 MSE ASE 6 MSE ASE 6 MSE ASE 

8* 0.000 - 0.118 0.142 0.096 -0.021 0.164 0.161 -0.025 0.133 0.117 -0.013 0.109 0.293 0.044 0.347 0.237 
821 0.000 -0.162 0.189 0.115 -0.015 0.143 0.154 0.074 0.159 0.150 0.097 0.248 0.261 0.158 0.362 0.220 
83*1 0.000 -0.141 0.173 0.108 -0.010 0.131 0.153 0.122 0.222 0.167 0.020 0.183 0.243 0.099 0.285 0.212 
84*1 0.000 -0.163 0.208 0.113 0.006 0.140 0.123 -0.005 0.156 0.097 -0.035 0.177 0.215 -0.014 0.157 0.166 
p851 0.000 -0.158 0.178 0.107 - 0.032 0.099 0.120 - 0.070 0.123 0.107 -0.023 0.181 0.209 - 0.037 0.156 0.163 
p861 0.000 -0.124 0.219 0.108 -0.022 0.154 0.119 -0.101 0.177 0.114 -0.109 0.194 0.191 -0.110 0.176 0.154 
81*2 0.000 0.009 0.030 0.030 0.059 0.169 0.148 0.089 0.151 0.140 0.059 0.260 0.266 0.129 0.355 0.221 
p2* 0.000 - 0.010 0.039 0.031 0.008 0.098 0.146 0.106 0.144 0.147 0.028 0.170 0.236 0.071 0.188 0.205 
p832 0.000 - 0.013 0.033 0.030 - 0.059 0.140 0.144 0.083 0.178 0.144 - 0.017 0.164 0.232 0.007 0.263 0.201 
p842 0.000 0.004 0.043 0.031 0.005 0.026 0.029 0.004 0.026 0.030 0.009 0.031 0.033 0.009 0.030 0.031 
p852 0.000 0.007 0.026 0.030 - 0.012 0.038 0.029 - 0.011 0.036 0.031 - 0.012 0.027 0.032 - 0.011 0.033 0.030 
p862 0.000 0.000 0.029 0.030 - 0.015 0.035 0.029 - 0.017 0.038 0.031 - 0.008 0.026 0.032 - 0.012 0.032 0.030 

y* 0.707 0.763 0.070 0.039 0.704 0.049 0.048 0.725 0.050 0.041 0.728 0.049 0.075 0.771 0.081 0.057 
Y21 0.707 0.771 0.080 0.082 0.710 0.034 0.076 0.750 0.063 0.069 0.729 0.127 0.129 0.777 0.116 0.098 
Y3* 0.707 0.768 0.083 0.077 0.709 0.058 0.074 0.774 0.092 0.073 0.782 0.122 0.114 0.821 0.131 0.090 
1Y4*1 0.707 0.784 0.110 0.081 0.722 0.072 0.074 0.788 0.112 0.074 0.764 0.145 0.113 0.805 0.139 0.091 
Y51 0.707 0.781 0.089 0.076 0.723 0.043 0.074 0.807 0.114 0.077 0.761 0.100 0.109 0.810 0.127 0.088 
'Y61 0.707 0.757 0.099 0.078 0.698 0.082 0.074 0.783 0.112 0.074 0.749 0.126 0.109 0.778 0.113 0.088 

-7* 0.707 -0.694 0.040 0.047 -0.715 0.033 0.047 - 0.737 0.046 0.042 - 0.733 0.046 0.073 -0.776 0.080 0.056 

{1* 0.000 0.281 0.327 0.210 0.017 0.061 0.043 0.013 0.056 0.044 0.001 0.042 0.059 0.005 0.040 0.052 
2 0.000 0.373 0.420 0.243 0.008 0.078 0.122 - 0.078 0.148 0.123 - 0.039 0.117 0.194 -0.054 0.128 0.159 
3 0.000 0.293 0.361 0.218 0.025 0.072 0.042 0.047 0.137 0.054 0.023 0.077 0.054 0.024 0.068 0.049 
4 0.000 0.378 0.465 0.242 0.112 0.218 0.122 0.027 0.273 0.131 0.102 0.314 0.190 0.092 0.247 0.158 

{5 0.000 0.320 0.387 0.226 0.035 0.097 0.042 0.052 0.152 0.055 0.021 0.046 0.053 0.024 0.057 0.049 
6 0.000 0.307 0.519 0.225 0.073 0.231 0.016 0.095 0.301 0.040 0.066 0.208 0.025 0.065 0.205 0.022 

Note: 0 -parameter, DGP -data generating value, 0 -average parameter estimate, MSE -root mean square error, PSD average posterior standard 
deviation, ASE -average asymptotic standard error. 

compared to table 1, the MSE rises substantially 
(50% to 500%) for all the J3* except P42* for 
which it falls substantially. SML-GHK and MSM- 
KS follow similar patterns, but for Bayesian infer- 
ence the changes in the MSEs from table 1 are 
negligible. The MSEs for Bayesian inference are 
best in 4 of 6 cases, while MSM-GHK, SML-GHK, 
and MSM-KS (p = 0.10) are each best or tied for 
best in 1 of 6 cases. MSM-KS (p = 0.20) is worst 
in 3 of 6 cases,' and Bayesian inference, MSM- 
GHK, and SML-GHK are each worst in 1 of 6 
cases. Overall, Bayesian inference has the edge, 
with MSM-GHK (second best in 3 of 6 cases) 
second, SML-GHK third, and MSM-KS again 
generally dominated. 

For the BJ3 the change in MSEs from table 1 is 
again inconsistent. For MSM-GHK the MSEs 
rise noticeably in 3 of 6 cases and fall noticeably 
in 2 cases. For SML-GHK the MSEs rise substan- 
tially in 5 of 6 cases. For Bayesian inference and 
MSM-KS (p = 0.20) the MSEs rise substantially 

in all 6 cases. For MSM-KS (p = 0.10) the MSEs 
fall substantially in 2 cases and rise in 2 cases. In 
terms of MSEs, MSM-GHK is best in 5 of 6 cases 
and MSM-KS (p = 0.10) is best in the other. 
MSM-KS (p = 0.20) is worst in 3 of 6 cases, 
Bayesian inference is worst in 2 of 6 cases, and 
MSM-KS (p = 0.10) is worst in the other. Over- 
all, MSM-GHK appears best, with other methods 
difficult to rank. 

For the 6i, MSM-KS (p = 0.20) is best in 3 of 6 
cases, MSM-GHK is best in 2 of 6 cases, and 
MSM-KS (p = 0.10) is best in 1 of 6 cases. SML- 
GHK generally performs worst among the classi- 
cal methods. The Bayesian posterior means for 
the 6j are all upward biased with posterior stan- 
dard deviations that are nearly as large as the 
bias. The numerical standard errors (not reported 
here) were also quite large-as great as one-half 
the posterior standard deviation. These results 
are all consistent with a posterior density that is 
nearly flat over a wide range of the 6i. 
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TABLE 5.-COEFFICIENT SPECIFICATION (7), DIAGONAL 1* SPECIFICATION 

Bayesian MSM-KS 

Inference MSM-GHK SML-GHK p = 0.10 p = 0.20 

6 DGP 6 MSE PSD 6 MSE ASE 6 MSE ASE 6 MSE ASE 6 MSE ASE 

p,1 0.000 -0.011 0.053 0.049 0.012 0.115 0.081 0.007 0.105 0.074 0.027 0.237 0.111 0.021 0.177 0.099 
p21 0.000 - 0.042 0.052 0.050 0.011 0.085 0.079 0.038 0.106 0.082 0.044 0.204 0.104 0.046 0.147 0.096 
p3*1 0.000 - 0.030 0.079 0.049 0.012 0.120 0.079 0.045 0.127 0.081 0.025 0.220 0.099 0.039 0.180 0.094 
p4*1 0.000 - 0.026 0.059 0.050 0.004 0.053 0.051 0.002 0.054 0.047 0.008 0.085 0.067 0.006 0.070 0.059 
p5*1 0.000 - 0.027 0.073 0.049 - 0.020 0.041 0.051 - 0.028 0.040 0.050 - 0.002 0.067 0.064 - 0.015 0.053 0.058 
p6*1 0.000 - 0.022 0.052 0.049 - 0.019 0.067 0.051 - 0.038 0.079 0.050 - 0.026 0.104 0.063 - 0.035 0.087 0.058 
p1*2 0.000 0.007 0.030 0.029 0.061 0.131 0.078 0.064 0.115 0.081 0.066 0.218 0.104 0.079 0.188 0.095 
p2* 0.000 - 0.009 0.039 0.030 0.024 0.071 0.077 0.048 0.080 0.079 0.027 0.120 0.098 0.045 0.115 0.092 
p3*2 0.000 - 0.012 0.032 0.030 - 0.010 0.071 0.076 0.029 0.077 0.078 - 0.002 0.153 0.098 0.005 0.125 0.091 
p4*2 0.000 0.004 0.041 0.029 0.006 0.026 0.029 0.003 0.025 0.029 0.009 0.032 0.033 0.008 0.030 0.031 
p42 0.000 0.005 0.026 0.030 -0.010 0.037 0.029 -0.011 0.036 0.030 -0.012 0.030 0.032 -0.011 0.034 0.030 
p6*2 0.000 0.001 0.027 0.030 -0.013 0.033 0.029 -0.016 0.036 0.030 -0.008 0.026 0.032 -0.011 0.030 0.030 

}Y11 0.707 0.721 0.029 0.026 0.710 0.020 0.027 0.722 0.026 0.026 0.722 0.040 0.035 0.770 0.070 0.028 

* 0.000 0.061 0.130 0.085 0.001 0.051 0.053 - 0.014 0.055 0.052 0.006 0.074 0.068 - 0.004 0.066 0.062 
2 0.000 0.117 0.159 0.093 0.007 0.042 0.035 0.010 0.050 0.036 0.010 0.036 0.040 0.009 0.043 0.038 

{* 0.000 0.066 0.123 0.087 - 0.005 0.066 0.054 - 0.021 0.071 0.053 0.001 0.099 0.065 - 0.011 0.083 0.061 
{* 0.000 0.084 0.116 0.089 0.015 0.043 0.034 0.020 0.057 0.037 0.017 0.065 0.040 0.021 0.061 0.038 
{* 0.000 0.061 0.143 0.086 0.008 0.041 0.053 - 0.009 0.046 0.053 0.009 0.066 0.066 0.004 0.050 0.061 
6* 0.000 0.059 0.113 0.086 0.024 0.062 0.035 0.029 0.083 0.038 0.032 0.076 0.040 0.030 0.076 0.038 

Note: 0 -parameter, DGP -data generating value, 0 -average parameter estimate, MSE -root mean square error, PSD- average posterior standard 

deviation, ASE- average asymptotic standard error. 

Overall, in table 4, MSM-GHK appears to 
dominate other methods. It clearly has the small- 
est MSE for the yj*}, performs best overall for the 
fj*, is dominated for the J3 by Bayesian infer- 
ence but remains better than other methods, and 
is second best for the 6j. Again, MSM-KS is 
dominated by other methods. 

In table 5 we impose both the restrictions that 
the y}1 are equal for all j and that X is diagonal. 
These restrictions result in some dramatic reduc- 
tions in MSEs from the unrestricted model (table 
1), the model with only the equal YJ*} restriction 
imposed (table 2), and the model with only the 
diagonal E restriction imposed (table 4). For 
example, for MSM-GHK the MSE for y<i is 3 to 
5.5 times smaller than those for the individual YJ*1 
in table 1, 1.5 to 4 times smaller than for the 
individual yj*} in table 4, and 3 times smaller than 
for y*1 in table 2. For SML-GHK the MSE is 
roughly 10 times smaller than those for the indi- 
vidual yj*} in table 1, 2 to 4.5 times smaller than 
for the individual yj*} in table 4, and 2 times 
smaller than for Y*i in table 2. For Bayesian 
inference the MSE is roughly 30% to 60% smaller 
than those for the individual yj*1 in table 1, 20% 

to 75% smaller than for the individual y}*l in table 
4, and 33% smaller than for Y*1 in table 2. 
Similar substantial improvements are also ob- 
served for MSM-KS. 

In terms of MSE for Ry, MSM-GHK is best at 
0.020, SML-GHK is second at 0.026, Bayesian 
inference is third at 0.029, MSM-KS (p = 0.10) is 
fourth at 0.040, and MSM-KS (p = 0.20) is fifth 
at 0.070. 

For the j*2 Bayesian inference is best or tied 
for best in 4 of 6 cases, and SML-GHK and 
MSM-KS (p = 0.10) are each best in 1 of 6 cases. 
MSM-KS (p = 0.10) is worst in 3 of 6 cases, and 
Bayesian inference, MSM-GHK, and SML-GHK 
are each worst in 1 of 6 cases. Overall, Bayesian 
inference has the edge, with MSM-GHK (second 
best in 4 of 6 cases) second, followed by SML- 
GHK. Again, MSM-KS is generally dominated by 
other methods. 

For the 38* Bayesian inference is best or tied 
for best in 4 of 6 cases. SML-GHK and MSM- 
GHK give very similar MSEs. Again, MSM-KS is 
dominated by other methods. 

For the 6, MSM-GHK is best in 5 of 6 cases. 
SML-GHK and MSM-KS (p = 0.20) give similar 
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TABLE 6.-COEFFICIENT SPECIFICATION (8), DIAGONAL Y.* SPECIFICATION 

Bayesian MSM-KS 
Inference MSM-GHK SML-GHK p = 0.10 p = 0.20 

6 DGP 6 MSE PSD 6 MSE ASE 6 MSE ASE 6 MSE ASE 6 MSE ASE 

{y* 0.707 0.702 0.015 0.018 0.704 0.012 0.018 0.704 0.013 0.017 0.717 0.020 0.022 0.759 0.054 0.018 

* 0.000 0.011 0.064 0.046 0.015 0.074 0.048 0.012 0.071 0.046 0.013 0.106 0.058 0.018 0.102 0.053 
2 0.000 0.025 0.054 0.047 0.029 0.066 0.048 0.028 0.061 0.047 0.032 0.088 0.058 0.038 0.087 0.053 

{* 0.000 - 0.004 0.038 0.046 - 0.003 0.038 0.047 0.006 0.042 0.046 - 0.005 0.070 0.056 0.000 0.055 0.052 
{* 0.000 0.020 0.051 0.047 0.024 0.051 0.048 0.028 0.051 0.047 0.024 0.056 0.057 0.032 0.061 0.053 
{* 0.000 - 0.009 0.047 0.045 - 0.008 0.044 0.047 0.002 0.047 0.046 - 0.015 0.070 0.055 - 0.005 0.062 0.052 
6* 0.000 0.002 0.052 0.045 0.003 0.054 0.047 0.016 0.055 0.047 0.006 0.075 0.056 0.012 0.077 0.052 

Note: 0 -parameter, DGP -data generating value, 0 -average parameter estimate, MSE -root mean square error, PSD- average posterior standard 
deviation, ASE- average asymptotic standard error. 

MSEs, and MSM-KS (p = 0.10) gives the largest 
MSEs among the classical methods. Bayesian 
posterior means for the 6j again show a substan- 
tial upward bias. This bias is smaller than in table 
4, but great enough that Bayesian inference has 
the highest MSE in all 6 cases. 

Overall, MSM-GHK performs best in table 5. 
It gives the smallest MSE for y* and generally 
has the smallest MSEs for the 6j. For the .3J and 
23* Bayesian inference is best with MSM-GHK 
edging out SML-GHK for second best. Clearly, if 
one's primary interest is in the 8* , then Bayesian 
inference dominates other methods. 

In table 6 we impose the restrictions that the 
Yj1 are equal for all j, that X is diagonal, and that 
the f3* are zero for all j and k = 1, 2. Across all 
methods, this reduces the MSEs for y*1 by from 
20% to 60% from those in table 5. The effect on 
the MSEs for the 6j is mixed for the classical 
methods, but Bayesian posterior means improve 
to the point that they show the smallest or tied 
for smallest MSE in 5 out of 6 cases. The MSE 
for all 7 free parameters are extremely close for 
MSM-GHK, SML-GHK and Bayesian inference. 
Thus, it is impossible to choose among these 
methods. MSM-KS is again dominated by other 
methods. 

In tables 7 to 9 we impose the restriction that 
i is the identity matrix. This restriction does not 

lead to particularly interesting models, since the 
whole point of simulation estimation is to make 
estimation feasible without such strong covari- 
ance restrictions. Nevertheless, it is interesting to 
look at these results to see how attempting to 
estimate large numbers of covariance matrix pa- 

rameters reduces the precision with which regres- 
sor coefficients are estimated. 

In table 7 only the restriction that E is diago- 
nal is imposed. This restriction produces some 
dramatic MSE reductions. For example, as com- 
pared to table 1, for MSM-GHK this reduces the 
MSE for the yj*} by factors of 2 to 4.5. As com- 
pared to table 4, where only a diagonal X restric- 
tion is imposed, the MSE reductions range from 
less than 10% to factors of 3.5. For the f*3 the 
MSE reductions from table 1 are only about 5% 
to 10%, but for the f37 the MSE reductions are 
from 60% to 80%. 

In table 7 the MSEs for all 18 free parameters 
are so close across MSM-GHK, SML-GHK, and 
Bayesian inference that it is impossible to choose 
among these methods. MSM-KS is again domi- 
nated in terms of MSEs for all parameters. How- 
ever, MSM-KS (p = 0.10) clearly dominates 
MSM-KS (p = 0.20), and for the yj*} its degree of 
inferiority is not nearly as great as in previous 
experiments. 

In table 8 we impose the restrictions that the 
YJ*i are equal for all j and that X is the identity 
matrix. In some cases this leads to dramatic MSE 
reductions. For example, for MSM-GHK the MSE 
for y* is roughly 5 to 10 times smaller than those 
for the individual yj*} in table 1. It is 6 times 
smaller than that for y*1 in table 2, but not quite 
2 times smaller than that for Y*i in table 5, where 
E is only restricted to be diagonal. Thus, compar- 
ing tables 2, 5, and 8, we see that most of the 
reduction in MSE for y*1 is achieved by imposing 
diagonality on X rather than going all the way to 
an identity matrix restriction. For the !* > the 
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TABLE 7.-COEFFICIENT SPECIFICATION (4), SCALAR 1* SPECIFICATION 

Bayesian MSM-KS 

Inference MSM-GHK SML-GHK p = 0.10 p = 0.20 

6 DGP 6 MSE PSD 6 MSE ASE 6 MSE ASE 6 MSE ASE 6 MSE ASE 

p8 0.000 0.010 0.050 0.036 0.009 0.049 0.036 0.008 0.047 0.035 0.006 0.053 0.040 0.008 0.053 0.036 
p8 0.000 0.017 0.041 0.035 0.017 0.041 0.036 0.013 0.040 0.035 0.021 0.045 0.041 0.021 0.046 0.036 
P* 0.000 - 0.002 0.028 0.035 - 0.003 0.026 0.036 - 0.004 0.025 0.035 - 0.014 0.035 0.039 - 0.010 0.032 0.035 
p8 * 0.000 0.014 0.036 0.035 0.015 0.035 0.036 0.010 0.031 0.035 0.015 0.030 0.041 0.015 0.033 0.036 
p8 * 0.000 - 0.008 0.032 0.036 - 0.008 0.031 0.035 - 0.013 0.033 0.036 - 0.016 0.043 0.039 - 0.011 0.038 0.035 
G*1 0.000 0.005 0.041 0.035 0.004 0.040 0.036 0.001 0.039 0.035 0.000 0.044 0.039 0.005 0.047 0.036 
p82 0.000 0.009 0.029 0.029 0.007 0.028 0.029 0.006 0.027 0.029 0.011 0.034 0.033 0.011 0.033 0.031 
p82* 0.000 - 0.008 0.037 0.029 - 0.008 0.039 0.029 - 0.008 0.037 0.029 - 0.009 0.033 0.032 - 0.007 0.037 0.030 

832 0.000 -0.010 0.030 0.029 -0.010 0.030 0.029 -0.011 0.030 0.029 -0.008 0.024 0.032 - 0.009 0.027 0.030 
p8 2 0.000 0.004 0.040 0.029 0.003 0.039 0.029 0.002 0.038 0.029 0.011 0.037 0.032 0.006 0.040 0.031 
p82 0.000 0.006 0.025 0.029 0.006 0.024 0.029 0.006 0.023 0.029 0.001 0.031 0.032 0.005 0.028 0.030 
p82 0.000 0.002 0.026 0.029 0.003 0.026 0.029 0.001 0.027 0.029 0.008 0.027 0.032 0.005 0.027 0.030 

'y 0.707 0.707 0.027 0.027 0.707 0.027 0.028 0.701 0.027 0.027 0.722 0.032 0.031 0.762 0.063 0.027 
2*1 0.707 0.689 0.027 0.027 0.688 0.028 0.028 0.684 0.030 0.027 0.698 0.025 0.032 0.739 0.039 0.028 

'Y* 0.707 0.707 0.032 0.027 0.707 0.031 0.027 0.704 0.032 0.027 0.727 0.037 0.029 0.763 0.065 0.027 
y4*1 0.707 0.700 0.022 0.027 0.701 0.022 0.028 0.697 0.023 0.027 0.711 0.029 0.032 0.751 0.050 0.028 
Y51 0.707 0.714 0.028 0.028 0.715 0.028 0.027 0.712 0.028 0.027 0.731 0.044 0.030 0.768 0.068 0.027 
6*1 0.707 0.703 0.024 0.027 0.703 0.024 0.027 0.699 0.026 0.027 0.720 0.039 0.029 0.756 0.057 0.027 

'Y* - 0.707 -0.710 0.032 0.027 - 0.709 0.031 0.027 - 0.702 0.030 0.027 -0.716 0.034 0.031 -0.760 0.062 0.027 

Note: 0 -parameter, DGP -data generating value, 0 -average parameter estimate, MSE -root mean square error, PSD -average posterior standard 
deviation, ASE -average asymptotic standard error. 

TABLE 8.-COEFFICIENT SPECIFICATION (7), SCALAR Y.* SPECIFICATION 

Bayesian 
MSM-KS 

Inference MSM-GHK SML-GHK p = 0.10 p = 0.20 

6 DGP 6 MSE PSD 6 MSE ASE 6 MSE ASE 6 MSE ASE 6 MSE ASE 

p8 0.000 0.009 0.036 0.029 0.008 0.035 0.029 0.007 0.033 0.029 0.009 0.039 0.032 0.009 0.040 0.030 
p8 0.000 0.006 0.023 0.029 0.006 0.024 0.029 0.003 0.024 0.028 0.012 0.028 0.032 0.009 0.027 0.031 

2*1 0.000 - 0.004 0.034 0.029 - 0.003 0.033 0.029 - 0.004 0.032 0.029 - 0.010 0.032 0.032 - 0.008 0.034 0.030 
p81 0.000 0.009 0.035 0.029 0.010 0.034 0.029 0.007 0.033 0.028 0.011 0.031 0.032 0.011 0.034 0.031 

31 0.000 - 0.006 0.026 0.029 - 0.005 0.024 0.029 - 0.008 0.026 0.029 - 0.009 0.028 0.032 - 0.006 0.028 0.030 
.8* 0.000 0.001 0.029 0.029 0.001 0.028 0.029 - 0.001 0.026 0.029 0.002 0.030 0.032 0.003 0.032 0.030 

412 0.000 0.008 0.029 0.029 0.008 0.029 0.029 0.006 0.027 0.029 0.011 0.034 0.033 0.011 0.033 0.031 
p82 0.000 - 0.008 0.038 0.029 - 0.007 0.039 0.029 - 0.008 0.037 0.029 - 0.009 0.034 0.032 - 0.007 0.038 0.030 
p12 0.000 -0.010 0.031 0.029 -0.009 0.030 0.029 -0.011 0.031 0.029 -0.008 0.025 0.032 -0.009 0.028 0.030 

.82 0.000 0.003 0.040 0.029 0.003 0.039 0.029 0.002 0.038 0.029 0.011 0.037 0.032 0.006 0.040 0.031 
612 0.000 0.006 0.025 0.029 0.006 0.024 0.029 0.005 0.023 0.029 0.001 0.031 0.032 0.005 0.028 0.030 

.82 0.000 0.002 0.026 0.029 0.003 0.026 0.029 0.001 0.027 0.029 0.007 0.027 0.032 0.005 0.027 0.030 

y* 0.707 0.703 0.011 0.011 0.703 0.011 0.012 0.699 0.013 0.011 0.717 0.017 0.013 0.756 0.051 0.011 
Note: 0 parameter, DGP-data generating value, 0--average parameter estimate, MSE-root mean square error, PSD-average posterior standard 

deviation ASE- average asymptotic standard error. 

TABLE 9.-COEFFICIENT SPECIFICATION (8), SCALAR T; SPECIFICATION 

Baesa MSM-KS 

Inference MSM-GHK SML GHK P = 0.10 P = 0.20 

6 DGP 6 MSE PSD 6 MSE ASE 6 MSE ASE 6 MSE ASE 6 MSE ASE 

Y*11 0.707 0.702 0.012 0.011 0.703 0.011 0.012 0.699 0.013 0.011 0.716 0.016 0.013 0.755 0.050 0.011 

Note: 0 -parameter, DGP -data generating value, 0 -average parameter estimate, MSE -root mean square error, PSD -average posterior standard 
deviation, ASE- average asymptotic standard error. 
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MSEs for MSM-GHK in table 8 are on the order 
of 2 times smaller than those in table 2, but the 
MSEs for the /32 are almost identical. 

In table 8 the MSEs for all 13 parameters are 
almost identical for MSM-GHK, SML-GHK, and 
Bayesian inference. MSM-KS (p = 0.10) also 
produces very similar MSEs for the Bj*k, but its 
MSE for y{ is roughly 50% larger. MSM-KS 
(p = 0.20) also produces very similar MSEs for 
the 3*k, but it is clearly inferior to other methods 
for y1i. 

In table 9 we impose the 3 restrictions that the 
Yj1 are equal for all j, that E is the identity 
matrix, and that the /jk are zero for all j and 
k = 1,2. Thus -y1* is the only free parameter. 
MSM-GHK, SML-GHK, and Bayesian inference 
produce very similar results (with a slight edge to 
MSM-GHK), and MSM-KS is dominated by other 
methods. 

Throughout tables 1-9 a number of very clear 
patterns emerge. One is that the diagonal X 
specification leads to important gains in effi- 
ciency. For example, comparing tables 2, 5, and 8 
we see that the MSE for -y} estimated by MSM- 
GHK falls from 0.064 to 0.020 with the diagonal 
X restriction imposed and then falls to 0.011 
when the further restriction that X is the identity 
matrix is imposed. Thus, most of the gain that 
can be achieved by restricting X is already 
achieved by restricting it to be diagonal rather 
than going all the way to a X = I restriction. This 
fact is important, because in many choice applica- 
tions in areas like marketing and transportation it 
is a truism among practitioners that the most 
important deviations from IIA are due to unequal 
error variances. 

Another important pattern is that the MSEs 
for the f*3 do not fall appreciably when restric- 
tions are placed on the model. For example, 
comparing tables 2 and 8, we see that for MSM- 
GHK the MSEs for the J3* are identical to 3 
decimal places in 3 of 6 cases and differ by less 
than 4% in the other 3 cases. Meanwhile, the 
MSEs for the J3 fall by factors of roughly 2 and 
the MSEs for y* fall by a factor of 6. Comparing 
tables 1 and 8, we see that the MSEs for the f32 
fall by at most 8%, while the MSEs for the 8*j3 
fall by factors of roughly 4 to 7. The intuitive 
reason for this pattern is that the 8*2 are identi- 
fied from household differences in choice proba- 
bilities that arise due to differences in the x*, 

while the parameters f>, yj*}, and ai are all 
identified primarily from differences in aggregate 
choice probabilities for alternatives with different 
attributes. Thus, it is difficult to disentangle dif- 
ferences among the 8J*, yj}, and aij because 
different patterns for these parameters can gen- 
erate roughly equivalent aggregate choice proba- 
bilities conditional on the Z!J. Thus restrictions 
on the *3, yj*}, and aij can be expected to lead to 
substantial MSE reductions among the fl3*1, y}*, 

and a parameters, but not for the 17*. (Of 
course, it is simple to show that as long as x* 
varies across i, it is impossible to choose alterna- 
tive values for 813, /3*7, yj*}, and aij that will 
generate identical choice probabilities for all i. 
However, the fact that it is possible to choose 
alternative values for the model parameters that 
generate nearly identical choice probabilities is 
exactly the "fragile identification problem" in the 
multinomial probit model described by Keane 
(1992).) 

Another pattern is that means of the point 
estimates and posterior means tend to be close to 
each other, relative to their distance from the 
data generating values: when the mean point 
estimate or mean of the posterior mean across 
replications is greater than the data generating 
value for one method, it tends to be greater for 
all methods. This feature is present for all models 
and groups of parameters, but is more prevalent 
for the coefficients than for the variance parame- 
ters and is most striking in the models with smaller 
numbers of parameters. 

In terms of an overall ranking of methods, it is 
clear that this differs across models. In the unre- 
stricted model of table 1, Bayesian inference has 
a slight edge over MSM-GHK because it pro- 
duces slightly lower MSEs for the 137* and yj5. 
SML-GHK performs worse because it has high 
MSEs for the Yv1 and the diagonal elements of 
the aij and also because it generates mean ASEs 
that severely understate the MSE. However, as 
soon as we impose an equality restriction on the 
yj* in table 2, the advantage of MSM-GHK over 
SML-GHK disappears, while Bayesian inference 
appears to have a slight edge in terms of MSE. 
Performance of all three methods is very similar 
in table 3, where an equality restriction is also 
imposed on the 137*. In tables 4 and 5, where a 
diagonal structure is imposed on Y. (and where 
Yj1 are unrestricted or forced to be equal, respec- 
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tively), MSM-GHK dominates other methods. In 
tables 6 through 9, which are highly restricted 
models, the MSEs for Bayesian inference, MSM- 
GHK, and SML-GHK are essentially indistin- 
guishable. 

A clear pattern, however, is that MSM-KS is 
dominated by other methods in all models. The 
MSEs for this method are consistently greater 
than for other methods, both when p = 0.10 and 
p = 0.20. For p = 0.20 asymptotic standard er- 
rors are smaller than for p = 0.10, which is char- 
acteristic of kernel-smoothers but introduces an 
important downward bias in test size. MSM-KS 
also suffers from several other disadvantages. 
Most important, it requires care in choice of a 
tuning parameter while the other methods do 
not. In experiments not reported here in tabular 
form, we found that convergence required p 2 
0.05, and for values of p above 0.20 bias in- 
creased very quickly. Systematic evidence of the 
increased bias that results from increasing p from 
0.1 to 0.2 can be seen in tables 1-9. 

Finally, we attempted to repeat the experiment 
using only the first 1,000 observations of the 
artificial data set. For all of the methods, compu- 
tational problems emerged for some of the mod- 
els. As one would expect, problems were concen- 
trated in the models with more free parameters. 
The most common problems were estimated sin- 
gularity of the Hessian in the classical methods 
and estimated singularity of the variance matrix 
Y.* for the Bayesian method. But across the nine 
models, computations were carried to completion 
successfully more often than not. The difficulties 
involved in obtaining estimates of the larger mod- 
els using only 1,000 observations are attributable 
to the relative lack of information contained in 
discrete choice data that we referred to earlier. 

B. Experiment Two 

In the second experiment only the model with 
the Y}*1 restricted to be equal was estimated. This 
model was estimated using 50 artificial data sets 
constructed to have properties similar to the 
Nielsen data on household ketchup purchases. 
The construction of these data is described in 
section II. In this experiment we compare three 
estimators of this model: 

1. Posterior means using the Gibbs sampling- 
data augmentation algorithm with m = 10,000 it- 
erations. 

2. Method of simulated moments using the 
GHK probability simulator with M = 30 draws to 
simulate the choice probabilities and the deriva- 
tives that enter the optimal weights and using 
Gauss-Newton iterations to solve the simulated 
moment conditions. 

3. Simulated maximum likelihood using the 
GHK probability simulator with M = 30 draws to 
simulate the choice probabilities and using BHHH 
iterations to maximize the simulated log-likeli- 
hood function. 

We do not consider MSM-KS because it is 
already clear from experiment 1 that it is domi- 
nated by other methods. There are two reasons 
why we only consider the model with an equality 
restriction imposed on the y, in this experiment. 
First, we would like to do one Monte Carlo 
experiment that is more thorough by using 50 
artificial data sets rather than only 10. However, 
it is not computationally feasible for us to do this 
many replications on all 9 models. Since, for 
reasons described earlier, the model with the 
equality restriction imposed on the yj* is the most 
realistic model, it seems natural to choose that 
one. Second, given that the data are less behaved 
here than in experiment 1, we do not feel it is 
feasible to estimate the unrestricted model using 
only 5,000 observations, as severe problems would 
probably arise in identifying the covariance ma- 
trix parameters. 

The results of the second experiment are re- 
ported in table 10. In terms of MSE, the results 
for Y*i are very similar across the three methods. 
For the 8*3, Bayesian inference produces MSEs 
that are usually about 10% to 30% smaller than 
the classical methods, and it is best or tied for 
best in 5 of 6 cases. The MSEs for MSM-GHK 
and SML-GHK are very similar. For the 1j*T 
Bayesian inference produces MSEs that are often 
10% to 50% smaller than those from the classical 
methods, and again it is best or tied for best in 5 
of 6 cases. Again, MSM-GHK and SML-GHK 
produce very similar MSEs. For the aij it is not 
nearly so obvious how to rank the estimators. 
Bayesian inference is best in terms of MSE in 10 
of 20 cases, while MSM-GHK is best in 6 of 20 
and SML-GHK is best in 4 of 20. Although these 
figures might appear to give Bayesian inference a 
slight edge, it is again true that the MSEs for the 
classical methods are very close, so that in all 10 
cases where Bayesian inference is not best it is in 
fact the worst of the three methods. 
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TABLE 10.-COEFFICIENT SPECIFICATION (5), UNRESTRICTED 1* SPECIFICATION 

Bayesian 
Inference MSM-GHK SML-GHK 

0 DGP 0 MSE PSD 0 MSE ASE 0 MSE ASE 

1*1 -0.307 -0.315 0.091 0.102 -0.318 0.106 0.111 -0.319 0.110 0.091 
P* -0.961 -0.995 0.186 0.189 - 1.066 0.225 0.213 - 1.071 0.228 0.182 

31* 0.163 0.041 0.214 0.173 - 0.027 0.282 0.219 - 0.034 0.289 0.183 
P* - 0.946 - 1.042 0.535 0.381 - 1.593 1.042 0.818 - 1.591 1.044 0.591 
P5*1 1.402 1.101 0.423 0.237 1.230 0.307 0.298 1.226 0.308 0.240 

P*1 0.954 0.921 0.102 0.105 0.891 0.116 0.108 0.888 0.118 0.097 
1*2 -0.033 -0.031 0.016 0.018 - 0.029 0.018 0.021 - 0.029 0.018 0.018 
2*2 -0.011 -0.019 0.029 0.028 - 0.009 0.032 0.033 - 0.010 0.032 0.028 
3*2 - 0.040 - 0.034 0.028 0.029 - 0.019 0.036 0.034 - 0.019 0.035 0.028 
4*2 - 0.035 - 0.035 0.046 0.043 0.001 0.069 0.073 0.000 0.068 0.047 

iP52 -0.359 -0.430 0.116 0.077 -0.397 0.098 0.099 -0.398 0.097 0.088 
P62 -0.171 -0.171 0.022 0.026 -0.170 0.022 0.027 -0.171 0.022 0.025 

7* -1.981 -1.958 0.121 0.120 - 1.991 0.122 0.125 -1.997 0.122 0.118 

a11 1.000 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000 
a*21 0.615 0.569 0.210 0.189 0.557 0.221 0.196 0.541 0.214 0.143 
a2*2 1.019 1.061 0.139 0.129 1.031 0.127 0.129 1.032 0.125 0.115 
a3*1 0.410 0.386 0.275 0.243 0.448 0.205 0.265 0.457 0.195 0.147 
a3*2 0.443 0.358 0.358 0.325 0.346 0.255 0.401 0.339 0.256 0.163 
a3*3 1.407 1.347 0.213 0.171 1.305 0.185 0.184 1.299 0.189 0.150 
a4*1 0.322 0.366 0.435 0.384 0.514 0.451 0.654 0.530 0.453 0.244 
a4*2 0.401 0.380 0.391 0.429 0.339 0.424 1.061 0.324 0.420 0.254 
a4*3 1.483 1.275 0.458 0.347 0.906 0.672 0.808 0.849 0.729 0.268 
a4*4 1.096 0.991 0.216 0.249 1.460 0.550 0.477 1.457 0.551 0.313 
aS*1 0.351 0.290 0.273 0.291 0.285 0.237 0.333 0.293 0.229 0.190 
aS*2 0.024 0.027 0.430 0.370 0.104 0.328 0.655 0.107 0.337 0.200 
aS*3 0.497 0.253 0.471 0.357 0.255 0.399 0.623 0.238 0.406 0.202 
aS*4 0.238 0.189 0.312 0.362 0.103 0.277 1.461 0.082 0.286 0.187 
aS*S 0.905 0.859 0.208 0.234 1.003 0.283 0.428 1.004 0.284 0.249 
a6*1 0.506 0.514 0.147 0.165 0.524 0.154 0.162 0.510 0.166 0.113 
a6*2 0.641 0.603 0.231 0.223 0.407 0.333 0.245 0.368 0.363 0.137 
a6*3 0.955 0.970 0.143 0.170 0.760 0.251 0.185 0.726 0.282 0.130 
a6*4 0.361 0.387 0.184 0.216 0.223 0.221 0.376 0.197 0.235 0.126 
a*5 - 0.100 0.036 0.256 0.250 0.059 0.200 0.584 0.053 0.194 0.121 
a6*6 0.845 0.618 0.240 0.142 1.025 0.217 0.146 1.062 0.247 0.101 

Note: 0 -parameter, DGP -data generating value, 0 average parameter estimate, MSE -root mean square error, PSD -average posterior standard 
deviation, ASE -average asymptotic standard error. 

One obvious feature of the results in table 10 is 
that the MSEs for all parameters except the f3*2 
are generally much larger than that for the corre- 
sponding parameter in table 2. This illustrates 
how the information in the sample that is useful 
for identifying the parameters fJ>, yj} and ai 
declines when the z!J are not IID. On the other 
hand, there is no general tendency for the MSE 
for the f3* to be larger or smaller in table 10 than 
in table 2. 

Given these patterns, we believe that the larger 
MSEs in experiment 2 are the result of the more 
complex pattern of correlation among the covari- 
ates and of the complicated error structure of the 

model, rather than any inherent inaccuracy of 
simulation estimators. Thus, the increase in MSEs 
between table 2 and table 10 would, most likely, 
exist with any estimator. But our paper presents 
no evidence to compare the MSEs for simulation 
estimators to those of the exact MLE, because in 
our experiments it is not possible to compute the 
exact MLE. However, Keane (1994a) showed that 
in a random-effects panel model the standard 
errors of simulation-based estimators were quite 
close to those of the MLE, even when a rather 
small number of draws are used. 

Another obvious feature of table 10 is that 
large biases are apparent for several of the pa- 
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rameters. Examples of parameters for which 
highly significant biases appear for one or more 
of the methods (in the sense that the estimated 
bias exceeds the empirical standard deviation of 
the bias by several standard deviations) are f38* 
413 51 J3*, a431 a44, a53, a63, a64, and a66. Such 
substantial biases as appear for these parameters 
were not apparent for methods other than MSM- 
KS in table 2. It is also important to note that, 
when one method shows substantial bias for a 
particular parameter, in most cases the other 
methods tend to be biased in the same direction. 
This evidence indicates that the sample size of 
5,000 is not adequate to eliminate small sample 
bias given the configuration of regressors and 
parameter values in the second experiment. The 
fact that a sample size of 5,000 did appear suffi- 
cient to render negligible any small sample bias in 
the first experiment is likely due to the IID prop- 
erty of the regressors in that experiment. 

The agreement between empirical MSEs and 
the means of the asymptotic standard errors or 
posterior standard deviations is not as close as in 
the first experiment. For SML-GHK the mean 
ASE is less than the empirical MSE for 32 of 33 
parameters, and the differences are often large. 
For MSM-GHK the relation between the MSE 
and ASE depends on the set of parameters con- 
sidered. For the /B3,, 83, and yj,} there is gener- 
ally close agreement between MSEs and mean 
ASEs, and there is no systematic tendency for 
one to be greater than the other. But for the aij, 
the mean ASE overstates the MSE in 13 of 20 
cases. More importantly, the degree by which the 
ASE exceeds the MSE is often very substantial. 
For Bayesian inference, the mean posterior stan- 
dard deviation lies substantially below the MSE 
for a few of the /*k particularly for 8*1, P31, and 
P52. But for the remaining i* > and also for y*1, 
there is generally close agreement between MSEs 
and mean PSDs. For the aij, the agreement be- 
tween the MSEs and the mean PSDs is better 
than for the classical methods, and there is no 
systematic tendency for one to lie above the other 
(i.e., the mean PSD is less than the MSE in 11 of 
20 cases). Also, for Bayesian inference the agree- 
ment between the MSE and mean PSD in table 
10 generally appears to be just as close as in table 
2. This is of course not surprising, because the 
PSDs for Bayesian inference are based on the 
exact finite sample posterior distributions of pa- 

rameter value draws rather than on asymptotic 
sampling theory. 

A problem with MSM-GHK that is not appar- 
ent from table 10 is the difficulty involved in 
solving the simulated moment conditions. The 
Gauss-Newton iterations used to solve the simu- 
lated moment conditions are given by 

N J 

Delta(O) = E E WIjdi - P(iIO)] 
i=1 j=1 

N J - 

x E wiJaP( .)/dO 
_i=l j=l 

where the W.j are simulations of the quantities 
(dPa( )/d0)/AP(). Recall that these are the 
asymptotically optimal instruments as M -x 00, 

provided that the Wij are evaluated at an initial 
consistent (but not efficient) estimate of 0. It is 
also important to note that the matrix 

N J - 

EEwiiaP( )/ao 
_i=l j=l 

may be replaced by any positive definite matrix 
and the search algorithm is still guaranteed to 
eventually find a root. This means, for example, 
that one may evaluate [Efi_1Ej= W>9P( )/I-1 
at an initial value of 0 and then hold it fixed 
throughout the search. This leads to important 
gains in computational time because the cost of 
evaluating derivatives on each iteration is avoided. 
Note that the calculation of the necessary deriva- 
tives is much more time consuming for MSM 
estimation than for SML estimation. SML re- 
quires only that the derivatives of the choice 
probabilities for the chosen alternatives be calcu- 
lated, while MSM requires that the derivatives of 
the choice probabilities for all alternatives be 
calculated. 

One important problem that arises in solving 
the simulated moment conditions is sensitivity of 
the results to the construction of the initial con- 
sistent estimate 00 of 0 that is used to form the 
optimal initial weights and as the starting point 
for the search algorithm. We find that in models 
with small numbers of parameters the choice of 
00 has very little impact on parameter estimates 
and standard errors, so that, as a practical mat- 



INFERENCE IN THE MULTINOMIAL PROBIT MODEL 629 

ter, obtaining an initial consistent estimate of 0 is 
not even necessary. This also tends to be true in 
larger models if the data are very well behaved 
(as in experiment 1). Rather than obtaining an 
initial consistent estimate of 0 it is typically suf- 
ficient to start at some neutral values (such as 
covariance matrix set to the identity, regressor 
coefficients set to zero, and constants set to zero 
or perhaps to values that replicate the aggregate 
choice frequencies). But in more difficult estima- 
tion contexts (such as experiment 2) the choice of 
00 becomes important. 

Another important problem that arises in solv- 
ing the simulated moment conditions involves the 
forming of the derivatives (dP( )/ao)/P(.) that 
are needed to construct the step. In larger mod- 
els with badly behaved data the Gauss-Newton 
search algorithm described above, where the 
derivatives (dP( )/dO)/P( ) are held fixed at their 
initial values, works poorly. We suspect this is 
because as one moves away from the initial 0 the 
derivatives evaluated at that 0 become less useful 
in determining an optimal step. 

These problems of sensitivity of MSM esti- 
mates to initial values and difficulty in finiding 
steps once one moves far away from the initial 0 
were quite severe in the second experiment. We 
found that very different results were obtained if 
we started from SML-GHK parameter estimates 
vs. starting from neutral parameter values, and 
that the former results were much more reason- 
able. Thus, we were forced to use SML-GHK 
estimates as starting values. Obviously, it reduces 
the appeal of MSM-GHK if one must obtain 
SML-GHK estimates first. 

Overall, in the second experiment, Bayesian 
inference appears to have a clear advantage over 
other methods. It dominates in terms of MSE for 
the 8k and produces MSEs that are similar to 
MSM-GHK and SML-GHK for the other param- 
eters. Also, the agreement between MSE and 
mean PSD for Bayesian inference is generally 
better than that between MSE and mean ASE for 
the classical methods. MSM-GHK and SML-GHK 
results are similar in terms of MSEs, but MSM- 
GHK dominates in terms of agreement between 
the MSE and the mean ASE. It must be remem- 
bered, however, that SML-GHK has an impor- 
tant ease of use advantage, since it was necessary 
to use SML-GHK estimates as starting values for 
MSM-GHK. 

VII. Conclusion 

Overall, our results indicate that the perfor- 
mance of all the alternative simulation-based ap- 
proaches to inference in the multinomial probit 
model is satisfactory. With few exceptions, the 
methods produce parameter estimates or poste- 
rior means that are reasonably close to the data 
generating values even in models with large num- 
bers of parameters. 

There are, however, some clear differences in 
the performance of the methods. Overall, across 
experiments 1 and 2, it appears that Bayesian 
inference based on the Gibbs sampler outper- 
forms classical methods. We conclude this for two 
reasons. First, the MSEs of the posterior means 
generated by Gibbs sampling are usually at least 
slightly smaller than the MSEs of the classical 
point estimates (although this is certainly not 
universally true across all models and all sets of 
parameters). Secondly, the performance of 
Bayesian inference does not deteriorate so clearly 
as that of the classical methods when we move 
from the well-behaved data of experiment 1 to 
the less well-behaved data of experiment 2. 

Among the classical methods it is difficult to 
choose between MSM-GHK and SML-GHK. In 
the completely unrestricted model of table 1, 
MSM-GHK dominates both in terms of MSE and 
agreement between mean ASE and MSE (the 
ASE for SML-GHK tends to underestimate the 
MSE). But, as soon as equality restrictions are 
placed on the yj, (tables 2 and 3) the perfor- 
mances of the two methods in terms of MSE 
become difficult to distinguish. However, in mod- 
els where reasonable covariance matrix restric- 
tions are imposed (tables 4 and 5), MSM-GHK 
has an edge over SML-GHK. In very simple 
models (tables 6-9) these methods are indistin- 
guishable. In the second experiment, MSM-GHK 
and SML-GHK produce very similar results in 
terms of MSE, but MSM-GHK dominates in 
terms of agreement between MSE and mean ASE. 
However, MSM-GHK suffers from a clear ease of 
use disadvantage that arises because of the dif- 
ficulty in solving the simulated moment condi- 
tions when the data are ill-behaved as in experi- 
ment 2. This actually forces us to use SML-GHK 
estimates as starting values for MSM-GHK in 
order to obtain reasonable results. One clear 
result is that MSM-KS is dominated by all other 
methods. Thus we conclude that, for models of 
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this type, the choice between estimation methods 
(i.e., MSM vs. SML) is of secondary importance 
relative to the choice of probability simulator 
(i.e., GHK vs. KS vs. other alternatives). 

Three of the methods we have studied-MSM- 
GHK, SML-GHK, and Bayesian inference based 
on the Gibbs sampling-data augmentation algo- 
rithm-provide similar point estimates or poste- 
rior means of parameters and similar bases for 
inference via their asymptotic standard errors or 
posterior standard deviations in many of the 
models we consider. In this context, ease of use 
comparisons and comparisons of computation 
times become important. For this reason we re- 
port in table 11 the results for each method of 
inference of regressions of computation times 
from experiment 1 on the number of parameters 
in the particular model and this quantity squared. 
We also report the predicted computation times 
for models with 5, 20, and 40 parameters. 

Clearly, the computation times for all the 
methods are of the same order of magnitude. 
Computation times for SML-GHK and MSM- 
GHK are very similar in the first experiment, but 
MSM-KS dominates by roughly a factor of 1.5 to 
2. This fact is partially explainable by the fact 
that we had difficulties in achieving convergence 
of the MSM-KS parameter estimates to the same 
tolerance level as was obtained for SML-GHK 
and MSM-GHK. In a number of the runs in 
experiment 1, the MSM-KS algorithm terminated 
due to inability to find an objective function im- 
proving step, rather than because convergence to 
the desired tolerance had been achieved. Thus, 
the faster timings for MSM-KS are partially due 
to early termination of the search algorithm. 

Bayesian inference using m = 10,000 produces 
similar times across models regardless of the 
number of parameters. This is because the main 
time cost in the Gibbs sampling algorithm is in 
drawing the latent variables, and this cost is inde- 
pendent of the number of parameters. For the 
classical methods the main component of cost is 
the calculation of derivatives, and this grows lin- 
early with the number of parameters. Thus, Gibbs 
sampling has a timing disadvantage relative to the 
classical methods for small models, but a timing 
advantage in larger models. We also determined 
the number of iterations, m, needed to achieve a 
relative numerical efficiency level (defined as the 

ratio of numerical variance to posterior variance) 
of 10% for the parameter y*1 in each of the nine 
models of experiment 1, and calculated the time 
necessary for Bayesian inference at those levels 
of m. In that case, the time requirement for 
Bayesian inference does rise substantially with 
the number of parameters. Given the fixed level 
of relative numerical efficiency, Bayesian infer- 
ence still maintains a time advantage over the 
classical methods for large models, and it no 
longer suffers a clear disadvantage for small 
models. 

The differences in computation times that ap- 
pear in table 11 do not seem great enough to 
dictate choice of method. Note that computation 
times will depend on the parameters M for the 
probability simulators and m for the Gibbs 
sampling-data augmentation algorithm. It ap- 
pears that our choices of M = 30 for MSM-GHK 
and SML-GHK, M = 100 for MSM-KS, and m 
= 10,000 for Gibbs sampling generate roughly 
comparable computation times for all three 
methods (i.e., well within an order of magnitude). 
Other reasonable choices for M and m would not 
drastically alter this conclusion. Given this, we 
feel that programming time and ease of use should 
be dominant considerations. Here, Bayesian in- 
ference and SML appear to have the edge over 
MSM for the reasons discussed in section VIB. 

It is impossible, based on the results presented 
here, to provide any universal comparison of 
computation times for the different methods or 
any comparison across methods of accuracy that 
can be achieved per hour of computation. Fur- 
thermore, extrapolation of the computation times 
given here to other contexts may be very mislead- 
ing. There are two main reasons for this. First, 
the most important components of time for any 
method are programming time and actual pro- 
gram "babysitting" time (i.e., the time one must 
devote to obtaining starting values, restarting 
programs that have "bombed" for various rea- 
sons, tinkering with optimization algorithms in 
order to achieve convergence to an optimum, 
etc.). The real cost of these types of time inputs is 
far greater than the cost of CPU time, yet these 
types of costs are extremely difficult to quantify. 

Second, there are myriad reasons why even 
purely computational times are very difficult to 
quantify exactly. As an example, note that MSM 
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TABLE 11.-TIME COMPARISON 

Predicted Time 

Method Constant P P2 P= 5 P= 20 P =40 

Simulated Maximum Likelihood (SML-GHK) 4563.87 452.88 26.95 7502.05 24401.76 65800.15 
Method of Simulated Moments (MSM-GHK) 1892.16 1374.02 7.08 8939.19 32203.37 68176.12 
Kernel-Smoothing (MSM-KS) 3364.89 181.86 18.23 4729.95 14294.10 39807.16 
Bayesian Inferencea 11760.23 242.34 -4.46 12860.41 14822.49 14315.53 
Bayesian Inferenceb 658.03 785.31 -4.77 4465.32 14455.65 24435.83 

Note: P -number of parameters in the model. Time reported in CPU seconds on a SUN Sparc 10/51. 
a10,000 iterations. 
bLevel of relative numerical efficiency fixed so that ratio of numerical variance to posterior variance is 0.10 for y*1. 

estimation requires the initial calculation of the 
derivatives of the probabilities of all possible 
choices in order to construct the optimal weight- 
ing matrix. But on subsequent iterations this ma- 
trix is held fixed and derivative calculations are 
not necessary. On the other hand, SML requires 
the calculation of derivatives on each iteration, 
but only for the chosen alternatives. Thus, the 
calculation of the initial weighting matrix for 
MSM is very time consuming, while subsequent 
iterations are relatively fast. For SML all itera- 
tions are roughly equally time consuming. Clearly, 
there is some number of iterations large enough 
that MSM is faster than SML, but how many 
iterations will be necessary in order to achieve 
convergence to an optimum is completely prob- 
lem-specific, in terms of both model and data set. 
Also, MSM can become very slow if a number of 
restarts, with recalculation of the weighting ma- 
trix, are necessary to achieve convergence. For 
Bayesian inference based on Gibbs sampling, on 
the other hand, the number of cycles necessary to 
achieve a given level of numerical accuracy will 
depend on the serial correlation in the Gibbs 
draws, which is again completely problem-specific. 

Given these caveats, we are unable to provide 
any universal time comparisons that go beyond 
the simple statement of how long inference re- 
quired in our specific problems. Nevertheless, our 
experience leads us to believe that implementa- 
tion of all the methods that we have considered 
in workstation environments will be comparable 
and quite feasible for a wide range of problems. 

We conclude by cautioning that our results on 
relative performance of methods are specific to 
the cross-sectional multinomial probit model. For 
instance, in our other work (Geweke, Keane, and 
Runkle, 1994) we find clear advantages of MSM- 

GHK over SML-GHK in the context of certain 
types of panel data probit models. 
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