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Introduction
Visual analytics of genomic data is widely used in biology to 
help understand the data and communicate its contents, gener-
ate ideas, and to gain insight into biological processes. 
Visualisation plays an essential role in genomics research by 
making it possible to observe correlations and trends in large 
datasets as well as communicate findings to others. Visual ana-
lytics combine visualisation with analysis tools to enable seam-
less use of both approaches for scientific enquiring and offer a 
powerful method for performing complex genomic analyses.

Genomic is the convergence of many sciences including 
genetics, molecular biology, biochemistry, statistics, and com-
puter sciences.1 Since Gregor Mendel discovered the basic 
principles of heredity, which became the foundation of modern 
genetics with the study of heredity,2 huge amounts of genomic 
data have now been collected around the world by different 
organisations. For example, one of the world’s largest pharma-
ceutical companies, AstraZeneca, launched a massive effort to 
compile genome sequences and health records from 2 million 
people. The company and its collaborators hoped to unearth 
rare genetic sequences that are associated with diseases and 
with responses to treatment.3 By the end of 2003, the Human 

Genome Project4 had successfully completed the ambitious 
goal of collecting sequence code covering 3 billion base pairs in 
the human genome, 2 years ahead of the previous projects.5 
Sequencing is becoming the most popular high-throughput 
technology including the study of various genetic diseases as 
well as drug design and discovery for the diseases. With the 
development of computer technologies, genomic data can be 
collected at a faster pace and at a lower cost. The significance of 
this has launched the age of individual genome sequencing 
which supports an era of personalised medicine.6 Personalised 
cancer medicine based on the molecular characteristics of a 
tumour from an individual patient has great potential in the 
therapy of any type of cancer.7 DNA sequencing capacities 
continue to grow rapidly. If the growth continues at the current 
rate by doubling every 7 months, then we should reach more 
than 1 exabyte (1018) of sequence per year in the next 5 years 
and the approach 1 zettabyte (1021) of sequence per year by 
2025.8

In human health, the major need driven by the vast amount of 
genomic data is how to interpret genomic sequences and how to 
find patterns9 over the large collections in high dimensions. Data 
visualisation is a way to convey meaningful concepts in a universal 
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manner that is rapid and efficient and can allow humans to find 
potential value in big data. How we visualise complex data is 
becoming an increasingly significant part of the cognitive system 
and can provide the highest bandwidth channel from the com-
puter to the human. The term visualisation, in the past, meant 
constructing a visual image in the mind. Now, it means a physical 
or graphical representation of data or concepts that clinicians or 
researchers graph with genomic big data. Visualisation, as a cog-
nitive tool, has the following advantages: provides an ability to 
comprehend huge amounts of data; allows the perception of 
emergent properties that were not anticipated; enables problems 
with the data to become immediately apparent; facilitates under-
standing of both large- and small-scale features of the data; and 
facilitates hypothesis formation.10-12 Some intuitive visualisation 
tools are used to visualise multidimensional cancer genomic data, 
and they integrate different types of alterations with clinical data 
to extract useful knowledge from the vast amount of data which 
is generated by high-throughput technologies.13,14

New technologies are starting to be used in visual analytics 
of genomics such as artificial intelligence (AI) and virtual reality 
(VR) or augmented reality (AR). Artificial intelligence is 
already a part of our everyday lives and has been heralded as the 
key to our civilisation’s brightest future.15 Machine learning, as 
an approach to achieve AI, is the practice of using algorithms to 
parse data, learning from it, and then making a determination 
or prediction about something in the world.16 Machine learning 
boosts the next generation of visualisation which is named as 
intelligent visualisation. Intelligent visualisation assists a human 
user to handle tedious or repetitive tasks by learning from previ-
ous sessions and input data. Intelligent visualisation combines 
machine-learning algorithms to make high-level, goal-oriented 
decisions, which makes data visualisation technology directly 
accessible to a wide range of application scientists.17,18

Intelligent data visualisation can be used to find the rela-
tionship between genomic data and diseases and aid in the pro-
cess of targeted personalised therapy.19 In the analysis of 
genomic data, the current statistical analysis methods are not 
enough for achieving data insight from the data-analysed 
applications. Meanwhile, applications of machine learning and 
data visualisation have become more attractive. Intelligent vis-
ualisation combined with machine-learning algorithms for 
genomic data is a big challenge and is becoming a new trend in 
the genomic visualisation evolution. Some modern data visu-
alisation tools use AI technology, modern three-dimensional 
(3D) plots, mobile devices, and VR or AR techniques to tell the 
full story of genomic data. Three-dimensional and VR/AR 
techniques immerse the user into a digitally created space and 
simulate movement in three dimensions to greatly increase the 
bandwidth of data available to our brains.20-22 All the tools 
allow users to interact with the data in a way that is more natu-
ral to human cognition and movement. This includes reaching 
out to manipulate virtual objects constructed from the data 
with our hands, moving around them to view them from a 

clearer perspective and highlighting objects of interest with a 
point of the finger.

In this article, we focus on selected intelligent visual analytic 
tools for genomic and cancer data that are essential to support 
the effective disease and patient assessment. We provide a 
comprehensive comparison of the tools in both aspects: (1) the 
visualisation methods in genomic and cancer data fields and (2) 
the trends of visualisation in genomic analytic fields from 2000 
to now. We reviewed the situation of current genomic and can-
cer data, the potential application to personalised medicine, 
and methods for genomic data visualisation. Here, we assess 
the units of traditional approaches such as scatter plots, heat-
maps, coordinates, networks, and clustering, as well as emerg-
ing technologies involving AI and VR. We also review the 
evolution of genomic data visualisation tools from the speed of 
technology development, effective interactions, current tool 
status, tool integrations, and new features.

Review Strategy
Methods

This systematic review was conducted in accordance with the 
guidelines provided in the PRISMA statement. ‘Computational 
methods and resources for the interpretation of genomic variants 
in cancer’23 was reviewed in 2015, and ‘Expanding the computa-
tional toolbox for mining cancer genomes’24 was reviewed in 
2014. In this article, we focus on tools, methods, and trends for 
visual analytics of genomic data, particularly cancer data. This 
study has no direct involvement of the handling or inclusion of 
personal data, so ethical approval was not necessary.

Search strategy

We commenced with a general search on a search engine, such 
as Google, and then in several databases, namely, BMC 
Genomics, Nature, Genome Research, IEEE, and ACM. We 
also searched through the relevant reports such as Scientific 
Report. In addition, a forward search of authors mentioned and 
the website of a tool in selected articles was also conducted. 
The search terms included ‘Genomic visualisation’, ‘Genomic 
visual analytics’, ‘Cancer data visualisation’, and ‘Genomic data 
visualisation tools’. These words were used for all the other 
database searches. Only studies published in English language 
from year 2000 onwards were included for review. The main 
reviewer extracted and analysed data from all articles in consul-
tation with the other authors.

Bias assessment

In this article, we focused on reviewing the methods and trends 
of all the selected genomic data visualisation tools. There is no 
specific data collection process and no specific source of data, so 
this systematic review has no bias related to data. There is no 
meta-analysis in this systematic review either to avoid statistical 
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procedure bias. We classified the tools in a tabular form and we 
discussed both positive and negative aspects in the main docu-
ment. We aimed to minimise the bias in the discussion by refer-
ring to details that were presented in the previous publications 
or respectable sources.

Outcomes
Related work

Massive genomic datasets are generated by different projects, 
stored and shared with the different group of professionals. To 
help downstream analysts to access and manipulate the massive 
sequencing datasets in a programmatic way, new feature-rich, 
efficient, and robust analysis tools have been developed to pro-
cess data to answer specific scientific questions.25,26 Through 
this, knowledge about associations between genomic factors 
and diseases have rapidly accumulated. Genomic analyses have 
provided new biologic insights into the pathogenesis and clas-
sification of diseases and insights into determinants of success 
and failure of therapies, which lead to develop analytic 
approaches that use multidimensional datasets and embrace 
the complexity of genomic data for personalised medicine.27,28

Personalised medicine is the tailoring of medical treatment 
to the individual characteristics, needs, and preferences of each 
patient. Personalised medicine presents the unique challenge 
for new tools that can efficiently extract knowledge from the 
data, explore the multiple relationships between the data, and 
speed up experts’ decisions about individual patients. Then, 
patients can be treated and monitored in specific ways to meet 
their individual needs.29-32

Personal health data are soaring with increasing number of 
mobile health applications. Mobile health has grown exponen-
tially over the last several years and is expected to worth about 
$20.7 billion by 2018, with nearly 96 million users.33 Thousands 
of applications are being developed and used to collect personal 
health and lifestyle data, which make personalised health more 
personal than ever imagined. Data analytical tools can be used 
to visualise data from the population level to a more personal-
ised approach, from the reactive method to proactive method, to 
focus on prevention, wellness, and most importantly – the 
individual.34,35

In the following two sections, we provide a comprehensive 
comparison of the tools in both aspects: (1) the visualisation 
methods in genomic and cancer data fields (section ‘Comparison 
of traditional and new methods for genomic data visualisation’) 
and (2) the trend of visualisation in genomic analytic fields 
from 2000 to 2018 (section ‘The trend of genomic data visual 
analytics’).

Comparison of traditional and new methods for 
genomic data visualisation

Along with personalised cancer medicine development, cancer 
genomic data visualisation in the clinical setting is becoming a 

key topic. Using computational and statistical methodologies, 
effective visualisation is crucial to successful extraction of 
knowledge from oncogenomic data by experts. High-
throughput technologies allow the comparison of the genomic 
sequences, epigenomics profiles, and transcriptomes of tumour 
cells with those of normal cells. Visualisation techniques and 
tools can integrate different type of alterations with clinical 
experience to show vast amount of multidimensional oncog-
enomic data in different types of plots such as heatmaps, 
genomic coordinates, and networks.13,36,37 Efficient tools, that 
support the visual stratification of a tumour genomic profiles 
and that highlight their relationships to know drugs or treat-
ments, will be more useful than the existing research-oriented 
tools.13,38

Researchers and doctors usually combine different visualisa-
tion methods in a typical analysis procedure to assist their 
work. For example, they need first to normalise experimental 
and batch differences between samples and then to identify 
differentially regulated genes based on a fold-change level 
when comparing across samples, such as between a healthy and 
a non-healthy tissue. In this procedure, principal component 
analysis or partitioned clustering algorithms39,40 can be used to 
group together genes with similar behaviour patterns, then 
scatter-plotting is the typical visualisation to represent such 
groupings. Then, categorising genes with similar behaviour 
patterns across time, hierarchical clustering based on expres-
sion correlation can be performed with clustering heatmaps 
which can allow data from distant genome loci to be grouped 
and visualised together for comparison.41,42

Nowadays, new visualisation tools and methods such as 
cluster analysis, AI, and VR are introduced by different groups 
of people including designers, software developers, and scien-
tists. They try to combine existing visualisation tools with new 
technological opportunities, especially AI and VR, to maximise 
human knowledge and intuition.43-45 Figure 1 shows the 
genomic visualisation methods used in recent years: scatter 
plots, cluster, matrix heatmaps, genomic coordinates, networks, 
AI, and VR from screenshots of tools that are frequently used 
in cancer genomics research distributed according to their visu-
alisation principles. Two-dimensional and 3D scatter plots, 
networks, heatmaps, and coordinates are four traditional statis-
tical visualisation methods for genomic data which are still key 
methods in current popular visual analytic tools, and clustering 
could support all the four methods to enhance the classifica-
tion of these methods. Clustering is also an AI technique that 
involves the grouping of data points to classify each data point 
into a specific group. Artificial intelligence algorithms support 
visualisation by automatically identifying patterns and making 
highly accurate prediction, meanwhile visualisation methods 
can interpret AI by framing predictive modelling problem and 
evaluating the outcome. Interactive visualisation work has been 
extended to emerging environments such as VR, AR, large, and 
high-resolution displays as well as mobile devices. Virtual 
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reality, augmented reality, immersive, and mobile are the new 
environments for data visualisation to make the interactions 
with data in a more natural or easier way. Genomic and cancer 
visualisation tools have supported new environments to 
enhance human’s perception in such environments.46 The tools 
usually include multiple visualisation methods, for example, 
Integrative Genomics Viewer (IGV) uses both scatter plot and 
genomic coordinate and UCSC uses scatter plot, clustering, 
and genomic coordinate. We provide a summary of popular 
visualisation methods, their description, and the tools in Table 
1. We also illustrate the popular genomic data visualisation 
methods and the environments in Figure 1, including scatter 
plots, cluster, heatmap, networks, genomic coordinates, AI, and 
VR.

We now explain and evaluate each visualisation method 
with example tools in the following paragraphs. We also ana-
lyse the combinations between these methods and how to use 
them in research and clinical fields.

Scatter plots.  The scatter plots use horizontal and vertical axes 
to plot data points and display how much one variable is 
affected by another. The diagram graphs pairs of numerical 
data, with one variable on each axis, to look for a relationship 
between them.47 A scatter plot is a simple way to visualise 
genetic similarity of the patients. For example, Figure 2 shows 
a scatter plot of 100 acute lymphoblastic leukaemia patients 
with a 2D scatter plot that shows their genetic similarity. 
Patients’ locations are decided by their genetic properties. Two 
patients are close together if their genes are similar, while they 
are located far from each other if their genetic properties are 
different. The visual mapping includes the following: (1) colour 
→ risk stratification (red, very high risk; orange, high risk; blue, 
medium risk; green, normal; and purple, unknown), (2) shape 
→ gender (O, female; X, male), and (3) bar → status (top-bar, 
deceived; no-bar, survived). We can see from it that most of the 
deceased patients are located in the top-left area.51

UCSC Cancer Genomics Browser is a web-based applica-
tion for hosting, visualising, and analysing cancer genomic 
datasets with multidimensional visualisations.57 The UCSC 
scatter plots are used to quickly and easily see the relationship 
between any two variables or columns of data such as glio-
blastoma multiforme (GBM) and lower grade glioma (LGG) 
samples.49

Three-dimensional scatter plot is used to discover relation-
ships between three variables at the same time and is boosted 
by the recent widespread use of VR devices. Even though VR 
has been in development for decades, only recently are into 
producing compelling experiences. Virtual reality reveals spa-
tially complex structures behind 3D data and 3D scatter plots 
and can solve the problematic issues on common 2D scatter 
plots such as overlapping of data and the absence of depth per-
ception.66 Some genomic and cancer data visualisation tools 
such as Medical Data Visualisation started to use 3D scatter 

plots and supported mixed reality devices such as Microsoft 
HoloLens.

Heatmaps.  Heatmap is a 2D graphical false-colour image 
representation of data which makes use of a predefined colour 
scheme, and different colours display different values and 
variations in a data matrix. Heatmap plot is a fundamental 
method in genomic data visualisation and is broadly used to 
unravel patterns hidden in genomic data, especially popular 
used for gene expression analysis and methylation profiling.67 
Many genomic visualisation tools provide heatmap plots, 
such as ngs.plot, Gitools, and PARADIGM. Figure 3 shows 
a heatmap for comparing gene of interests between four 
patients: ALL92, ALL129, ALL321, and ALL323 which 
were chosen by users.

Heatmaps are very handy for large, multidimensional 
dataset visualisation. High-throughput gene expression data 
are often displayed using heat maps: data are displayed in a 
grid where each row represents a gene and each column rep-
resents a sample. Colour and intensity of each box represent 
variations of gene expression. Scientists often use green-
black-red heat maps to visualise gene expression data from 
microarrays.68

Most heatmap representations are also combined with clus-
tering methods to group genes or samples based on their 
expression patterns. Each gene is represented as a row and is 
colour-coded to represent the intensity of its variation, such as 
positive or negative, relative to a reference value, and biological 
samples are represented as columns in the grid.69

Genomic coordinates.  Genomic coordinate plot is a common 
way to visualise oncogenomic data to show alterations tied 
to their genomic loci. UCSC, IGV, RNASeqBrowser, 
GATK, and Savant Genome provide genomic coordinates. 
The different tool may have the different focus but most of 
them can display genomic topography of alterations in each 
tumour samples as genomic tracks to inspect particular 
genome loci.

Integrative Genomics Viewer is a lightweight visualisa-
tion tool for interactive exploration of integrated genomic 
datasets and it makes use of efficient, multi-resolution file 
formats to enable intuitive real-time exploration of diverse, 
large-scale genomic datasets on standard desktop computers. 
Integrative Genomics Viewer can handle large heterogene-
ous dataset to provide a smooth and intuitive user experience 
at all levels of genome resolution. It uses special data tiling 
technique which is a pyramidal data structure to support 
interactive exploration of large-scale genomic datasets on 
standard desktop computers.70

In IGV, all tracks can be annotated with a coordinate appli-
cation colour-coded sample and clinical information. Genomic 
regions can be annotated with text labels.71 Figure 4 shows an 
IGV attribute panel that displays a colour-coded matrix of 
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Table 1.  Summary of popular visualisation methods, their description, and the tools.

Description Example vVisualisation 
tools

Two-
dimensional 
scatter plot

The scatter diagram graphs pairs of numerical data, with one variable on each 
axis, to look for a relationship between them. If the variables are correlated, the 
points will fall along a line or curve. The better the correlation, the tighter the 
points will hug the line.47

IGV48

UCSC49

Three-
dimensional 
scatter plot

Three-dimensional scatter plots are used to plot data points on three axes in the 
attempt to show the relationship between three variables. Each row in the data 
table is represented by a marker whose position depends on its values in the 
columns set on the X, Y, and Z axes. The fourth variable can be set to correspond 
to the colour or size of the markers, thus adding yet another dimension to the 
plot.50

Medical Data 
Visualisation51

Heatmap A heatmap is a graphical representation of data that uses a system of colour-
coding to represent different values. A common method of visualising gene 
expression data is to display it as a heatmap. In heatmaps, the data are displayed 
in a grid where each row represents a gene and each column represents a 
sample. The colour and intensity of the boxes are used to represent changes in 
gene expression.52

ngs.plot53

Gitools54

PARADIGM55

Clustering A cluster is a group of similar elements. Each cluster can be represented by a 
profile, either a summary measure such as a cluster means or one of the elements 
itself, which is called a medoid or centroid.56

Medical Data 
Visualisation51

UCSC57

Network A network graph uses information from both the link and the node datasets to 
generate a graphical depiction of the network. The nodes and links in a network 
graph can be arranged in a variety of layout patterns.58

Cytoscape59

Genomic 
coordinate

Genomic coordinate can visualise single-nucleotide polymorphism (SNP) 
including their physical location relative to their host gene and the structure of the 
relevant transcripts to provide intuitive supplements to the understanding of their 
functions.60

UCSC57

IGV48

RNASeqBrowser61

GATK25

Savant Genome62

Artificial 
intelligence 
(AI)

Artificial intelligence is a term of cognitive technologies and a big forest of 
academic and commercial work around the science and engineering intelligent 
machines. Artificial intelligence has many branches with many significant 
connections and commonalities among them, in which machine-learning is one of 
the branches.15

DeepVariant63

GDC DAVE64

Virtual reality 
(VR)

Virtual reality is by immersing the user in a digitally created space and simulated 
movement in three dimensions, it should be possible to greatly increase the 
bandwidth of data available to our brains.65

UWS Microsoft HoloLens 
Visualisation

phenotypic and clinical data. Just below the command bar is a 
header panel with an ideogram representation of the currently 
viewed chromosome, along with a genome coordinate ruler 
that indicates the size of the region in view. The remainder of 
the window is divided into one or more data panels and an 
attribute panel. Data are mapped to the genomic coordinates of 
the reference genome and are displayed in the data panels as 
horizontal rows called ‘tracks’. Each track typically represents 
one sample, experiment, or genomic annotation. If any sample 
or track attributes have been loaded, they are displayed as a 
colour-coded matrix in the attribute panel. Each column in the 
matrix corresponds to an attribute, and a track’s attribute values 
are displayed as a row of coloured cells adjacent to the track.70

Networks.  Networks can show functional relationships 
between different genomic entities to allow the researchers to 
explore visually clusters of nodes representing highly intercon-
nected altered genes that can constitute driver pathways or 

subnetworks. Cytoscape provides network visualisation in 
genomic research.

Cytoscape is an open-source software for visualising com-
plex networks and integrating these with any type of attribute 
networks desktop data such as genomic data and clinical 
patient information. Cytoscape is most powerful when used in 
conjunction with large databases of protein-protein, protein-
DNA, and genetic interactions that are increasingly available 
for humans and model organisms. The software is extensible 
through a straightforward plug-in architecture, allowing rapid 
development of additional computational analyses and 
features.59

Figure 5 shows breast cancer genomic data visualisation 
with network method from Cytoscape v3.4.0. The upper net-
work shows the gene ontology (GO) analysis based on the bio-
logical process of the 513 differentially expressed genes 
(DEGs), and the bottom network shows the KEGG pathway 
analysis of the 513 DEGs.72
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Figure 1.  Genomic data visualisation methods and environments: scatter plots, cluster, heatmap, networks, genomic coordinates, AI, and VR for 

visualisation. Two-dimensional and 3D scatter plots, networks, heatmaps, and coordinates are four traditional statistical visualisation methods for 

genomic data which are still main methods in current popular visual analytic tools and clustering could support all the four methods to enhance the 

classification of these methods. Artificial intelligence algorithms support visualisation by automatically identifying patterns and making highly accurate 

prediction, while visualisation methods can aid or interpret AI by framing predictive modelling problem and evaluating model. Virtual reality/augmented 

reality/immersive/big screen/tablets are new environments for data visualisation to make the interactions with data in a more natural or easier way.

Figure 2.  A scatter plot of 100 acute lymphoblastic leukaemia patients. Two-dimensional scatter plot showing their genetic similarity. The visual mapping 

includes the following: (1) colour → risk stratification (red, very high risk; orange, high risk; blue, medium risk; green, normal; and purple, unknown), (2) 

shape → gender (O, female; X, male), and (3) bar → status (top-bar, deceived; no-bar, survived). It shows that most of the deceased patients are located 

in the top-left area.51
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Cluster.  Cluster is a strategy that is used to combine other vis-
ualisation methods such as scatter plots, heatmaps, and net-
works. For example, Medical Data Visualisation uses scatter 
plot cluster, while UCSC uses heatmap cluster. A cluster is 
usually a group of similar elements that can be represented by a 
profile, either a summary measure such as a cluster means or 
one of the elements itself.

Clustering combined with heatmaps enable grouping of 
genes or samples which can be obtained through high-
throughput sequencing methods such as RNA sequencing or 
DNA microarray studies together. Clustering is useful in visu-
alising similarity of gene expression pattern.68 Figure 6 shows a 
clustering heatmap to explore relationships between somatic 
mutation profiles, genomic subtypes, and survival. It illustrates 

Figure 3.  Heatmap for comparing gene between different patients: ALL92, ALL129, ALL321, and ALL323.51

Figure 4.  Integrative Genomics Viewer’s genomic coordinates show a colour-coded matrix of phenotypic and clinical data. Just below the command bar 

is a header panel with an ideogram representation of the currently viewed chromosome, along with a genome coordinate ruler that indicates the size of 

the region in view. Data are mapped to the genomic coordinates of the reference genome and are displayed in the data panels as horizontal rows called 

‘tracks’. Each track typically represents one sample, experiment, or genomic annotation.70
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the somatic mutation profile of the significantly mutated genes 
in The Cancer Genome Atlas (TCGA) project acute myeloid 
leukaemia (AML) cohort, as well as the corresponding AML 
subtype designations for these samples.73

Clustering method can combine scatter plots, network, and 
genomic coordinate methods to show a group of similar elements. 

Clustering data can identify a subset of representative examples 
to process sensory signals and detect patterns in data. Clustering 
data based on a measure of similarity is a critical step in scientific 
data analysis and in engineering systems. A common approach is 
to use data to learn a set of centres such as the sum of squared 
error between data points and their nearest centres is small.74

Figure 5.  Network visualisation from Cytoscape v3.4.0. The upper network shows the GO analysis based on the biological process of the 513 DEGs, and 

the bottom network shows the KEGG pathway analysis of the 513 DEGs.72

Figure 6.  UCSC shows clustering heatmaps to explore relationships between somatic mutation profiles, genomic subtypes, and survival. (A) Somatic 

mutations for the most significantly mutated genes in The Cancer Genome Atlas (TCGA) project AML tumour samples. Samples are arranged in rows and 

genes in columns. A strong concordance is observed between miRNA cluster 3 (orange), DNA methylation cluster 3 (also orange), and intermediate 

cytogenetic risk (light blue); and between miRNA cluster 5 (green), DNA methylation cluster 5 (also green), and favourable cytogenetic risk (dark blue).  

(B) Column 1 represents the miRNA expression clusters, Column 2 represents the DNA methylation clusters, and Column 3 represents cytogenetic risk 

category for the AML cohort. 
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Artif icial intelligence for genomic data visualisation.  In recent 
years, AI has started to be used in big data visualisations, 
including multivariate genomic data for development of 
quicker hardware.75 Machine learning is one branch of the field 
of AI, and it is a way of solving problems without explicitly 
codifying the solution and a way of building systems that 
improve themselves over time. Machine-learning goals are 
typically used to build predictive or descriptive models from 
characteristic features within a dataset and then use those fea-
tures to draw conclusions from other similar datasets. For 
example, in cancer detection, diagnosis, and management, 
machine learning helps identify significant factors in high-
dimensional datasets of genomic, proteomic, chemical, or clini-
cal data which can be used to understand the predicate 
underlying diseases, as well as to provide possible insights into 
effective disease-management strategies. Machine learning 
combined with data visualisation should have three stages: 
developing an algorithm, applying genomic data to the algo-
rithm, and predicting new unlabelled data.76 Figure 7 shows a 
canonical example of a machine-learning application with 
these three stages. A training set of DNA sequences is provided 
as input to a learning procedure, along with binary labels indi-
cating whether each sequence is centred on a transcription start 
site (TSS) or not. The learning algorithm produces a model 
that can then be subsequently used, in conjunction with a pre-
diction algorithm, to assign predicted labels (such as ‘TSS’ or 
‘not TSS’) to unlabelled test sequences. In Figure 7, the red-
blue gradient might represent, for example, the scores of vari-
ous motif models (one per column) against the DNA sequence.

DeepVariant is a tool that uses the latest AI techniques to 
build a more accurate picture of a person’s genome from 

sequencing data. The tool fed the data from millions of high-
throughput reads and fully sequenced genomes from the 
Genome in a Bottle (GIAB) project, a public-private effort to 
promote genomic sequencing tools and techniques, to a deep-
learning system and painstakingly tweaked the parameters of 
the model until it learned to interpret sequenced data with a 
high level of accuracy.77 DeepVariant is a genomic variant caller 
which uses deep neural networks to call genetic variants in ger-
mline genomes. It is originally developed by Google Brain and 
Verily Life Science and it won the 2016 PrecisionFDA Truth 
Challenge award for Highest SNP Performance.63

The future of big data visual exploration will involve the 
tight integration of visualisation tools with traditional tech-
niques from such disciplines as statistics, machine learning, 
operations research, and simulation. Visual exploration also 
needs to combine fast automatic data mining algorithms with 
the intuitive power of the human mind which can improve the 
quality and speed of the data exploration process.78

Virtual reality and augmented reality.  Virtual reality enables the 
psychophysical immersive experience in an artificially com-
puter-generated virtual environment.79 Augmented reality, 
usually, is built upon VR in integrating and overlaying the vir-
tual environment into the user’s real world and allowing the 
user to interact with the virtual objects in the context of his or 
her actual surroundings.80,81 Special equipment such as a head-
mounted display (HMD) or cave automatic virtual environ-
ment (CAVE) system is required for the use of VR/AR 
technologies. The sensor and camera on the equipment will 
help the system to determine and track the user moment and 
move the point of view accordingly.

Figure 7.  A canonical example of a machine-learning application for DNA sequences, A training set of DNA sequences is provided as input to a learning 

procedure, along with binary labels indicating whether each sequence is centred on a transcription start site (TSS) or not. The learning algorithm 

produces a model that can then be subsequently used, in conjunction with a prediction algorithm, to assign predicted labels (such as ‘TSS’ or ‘not TSS’) 

to unlabelled test sequences.76
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Shan et al80 developed an AR visualisation which runs on the 
mobile platform to deliver real-time 3D brain tumour volume 
rendering. It allows the clinician to visualise and communicate 
with the patients on their tumour sizes and locations. The visu-
alisation uses the facial features of the patient as the tracking 
point to project the reconstructed brain tumour model onto the 
same location as the subject’s actual anatomy. Chang et al81 have 
created a 3D AR visualisation for archaeological purposes. It 
uses the ARToolKit in rendering the objects. The purpose of 
the visualisation is to create a platform for underground cultural 
heritage protection and research.

Some analysts even think the application of AI to VR ena-
bles important possibilities such as AI-based continuous image 
recognition reporting results in a VR display.82 One of the big-
gest challenges of big data is extracting information in a way 
that enables clinicians to quickly use the vast amount of data to 
analyse the purpose of making better decisions in a timely 
manner. Immersive environments such as AR and VR can 
measure people’s reactions of large datasets to understand the 
subconscious process of the human brain to determine the 
optimum amount of information. Virtual reality either simpli-
fies the visualisations so as to reduce the cognitive load, thus 
keeping the user less stressed and more able to focus, or it will 
guide the person to the areas of the data representation that are 
not as heavy in information.83,84

Children Cancer Data Visualisation tool can show the whole 
group of patients’ data with a 3D scatter plot and check a single 
patient’s details. It can also zoom and rotate the visualisation 
plot, compare gene among several patients, and interact with 
users and shows the comparison visualisation between selected 
patients.22 The tool supports different mobile operating systems 
such as iOS and Android, and VR devices. Figure 8 shows a 3D 
scatter plot from the tool running on Microsoft HoloLens, 
which is a pair of mixed reality smart glasses developed and 
manufactured by Microsoft. HoloLens gained popularity for 

being one of the first computers running the Windows Mixed 
Reality platform under the Windows 10 operating system and 
it can trace its lineage to Kinect, an add-on for Microsoft’s Xbox 
gaming console that was introduced in 2010.85

The trend of genomic data visual analytics

We compared genomic data visualisation tools via the timeline 
since 2000s. We evaluated the trend of visual analytics and the 
current status of these tools. Particularly, the usefulness of the 
software and how the tools assist with genomic analysis are 
evaluated.

Rapidly evolving genomic and cancer data, and intelligent visualisa-
tions.  ‘A picture is worth a thousand words’ – this is an adage 
especially for life science which is one of the biggest generators 
of enormous datasets because of recent and rapid technological 
advances. The complexity of genomic data makes these datasets 
incomprehensible without effective visualisation methods. 
Genomic data visualisation is a rapidly evolving field and great 
progress has been achieved in many areas including hardware 
acceleration, standardised exchangeable file formats, dimension-
ality reduction, visual feature selection, multivariate data analy-
ses, interoperability, 3D rendering, and visualisation of complex 
data at different resolutions, especially the area of image process-
ing combined with AI-based pattern recognition.86

Interactive visualisation of complex genomic data is an 
effective way to bring the insight of information and to dis-
cover the relationships, non-trivial structures, and irregulari-
ties that may pertain to the disease course of the patient. 
Basic statistics and visualisations without effective interac-
tion and capabilities to control the visual data mining process 
are often insufficient for the analysis and exploration process. 
Intelligent visualisation can focus on patient-to-patient com-
parisons through the biological data and then display the 

Figure 8.  Children Cancer Data Visualisation tool running in Microsoft HoloLens. It shows a 3D scatter plot and checks individual patient’s details.
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multidimensional data in cooperation with the automated 
analysis.51 Intelligent genomic visualisation can support 
experts in the process of hypotheses generation concerning 
the roles of genes in diseases and find the complex interde-
pendencies between genes by bringing gene expressions into 
context with pathways.87

The evolution of genomic data visual analytics.  Figure 9 shows 
the tools for visual analytics of genomic and cancer data 
grouped in the years they started to be developed or extracted 
from papers written during those years. We can see that 
between 2000 and 2015, most genomic data visualisation tools 
only use some traditional methods such as scatter plots, heat-
maps, genomic coordinates, networks, and clustering. From 
2016, new visualisation techniques started to be used such as 
machine-learning algorithms for predictions and personalised 
medicine. Some visualisation tools can be ran on environments 
such as mobile devices and VR/AR/immersive big screen. 
Some tools were used for a short time such as X:Map and 
GenomeComp, while some tools were developed very early 
before 2010, but kept being updated and added new features 
until now such as GATK and Cytoscape, which are still very 
popular genomic data visualisation tools now. Integration 
among tools is also a key to keep a tool lasting for a longer time. 
For example, Epiviz can obtain annotation data from the 
UCSC, Gitools can get heatmaps from IGV, and RNASeq-
Browser is compatible with UCSC as shown in Figure 9 with 
purple arrows.

Table 2 shows the tool list for visual analytics of genomic 
and cancer data. Some tools have not been updated recently 
such as GenomeComp, X:Map, PARADIGM, and ngs.plot, 
while most tools are still being maintained very well or 
upgraded with new technologies such as IGV and other tools 
as shown in Figure 9. Some non-updated tools are still used 
and can be downloaded from online. GenomeComp is a visu-
alisation tool which is implemented as a stand-alone pro-
gramme that can compare, parse, and visualise large genomic 
sequences, especially closely related genomes such as interspe-
cies or interstrain.90 It was developed by Laboratory of 
Bioinformatics, Institute of Biophysics, Beijing, and use Perl/
TK, and can run on Linux, Unix, Mac OS X, and Microsoft 
Windows operating systems. The last version update happened 
in 2004.98 X:Map is a genome annotation database browser 
developed by the University of Manchester, UK, around 2008. 
It is a tool designed for annotation and visualisation of genome 
structure for Affymetrix exon array analysis.89 PARADIGM is 
a tool which focuses on inferring patient-specific genetic activ-
ities incorporating curated pathway interactions among genes 
and can predict the degree to which a pathway’s activities are 
altered in the patient using probabilistic inference.55

CircleMap is one of the PARADIGM visualisation meth-
ods that produce heatmaps with a circular layout. Different 
datasets coming from the same samples can be plotted as 

different layered circles that form a node. The data layers are 
plotted application maintaining the sample order, which can be 
adjusted by the user. CircleMap visualisation can be used to 
display multiple datasets centred around each gene in a path-
way.55 The tool is a factor graph framework for pathway infer-
ence on high-throughput genomic data and was developed by 
Charles Vaske and Steve Benz from the Regents of the 
University of California, Santa Cruz in around 2010.

ngs.plot is a tool to quick mining and visualisation of next-
generation sequencing data by integrating genomic databases. 
The tool visualises massive datasets and genomic information 
based on big sequencing data and it can produce 1 billion 
sequencing reads in a few days. ngs.plot uses two steps to 
quickly mine and visualise genome samples. The first step is to 
define a region of interest and the second step is to plot some-
thing meaningful.53 It is platform independent, and the pro-
gramming languages are R and Python. It was produced by 
Peter Briggs from the University of Manchester, supported by 
the Friedman Brain Institute and the National Institutes of 
Health, and was developed in around 2014.

New visualisation techniques are applied to tools.  More and more 
modern visualisation methods are applied to popular genomic 
visualisation tools. For example, Genome Analysis Toolkit 
(GATK) now has features for deep learning with AI technol-
ogy using variants and annotations encoded as tensors, which 
carry the precise read and reference sequences, read flags, as 
well as base and mapping qualities.99 Genome Analysis Toolkit 
is a structured programming framework designed to process 
exomes and whole genomes generated with illumine sequenc-
ing technology and can also be adapted to handle a variety of 
other technologies and experimental designs. This toolkit 
focuses on the variant discovery and also includes many utili-
ties to perform related tasks such as processing and quality 
control of high-throughput sequencing data.88 The GATK 
provides a small but rich set of data access patterns that encom-
pass the majority of analysis tool needs and it can separate spe-
cific analysis calculations from common data management 
infrastructure for correctness, stability, and efficiency.25

DeepVariant is also a visualisation tool that uses machine-
learning technique to identify all the mutations that an indi-
vidual inherits from their parents and modelled loosely on the 
networks of neurons in the human brain.100 DeepVariant helps 
turn high-throughput sequencing readouts into a picture of a 
full genome. The tool developers are the researchers from the 
Google Brain team, who fed the data to a deep-learning system 
to interpret sequenced data with a high level of accuracy.77

VarDict is a tool that uses polymerase chain reaction 
(PCR) technology to amplify genes before submitting them 
to sequencing. VarDict’s abilities to detect PCR artefacts, 
such as amplicon bias and mispaired primers, together with 
the linear scalability to depth, make it desirable in such stud-
ies to reduce both false positives and false negatives. VarDict 
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Figure 9.  Timeline and integration of tools; the blue arrows stand for timeline and the purple arrows stand for integration. Between 2000 and 2015, most 

genomic data visualisation tools only used some traditional methods such as scatter plots, heatmaps, genomic coordinates, networks, and clustering. 

From 2016, new visualisation methods started to be used such as machine-learning algorithms for predictions and personalised medicine.
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Table 2.  Tools for visual analytics of genomic and cancer data.

Tool name/
website

Description Visualisation 
methods

Developer/
year

Tool type

Genome Analysis 
Toolkit (GATK)
https://software.
broadinstitute.org/
gatk/

Genome Analysis Toolkit (GATK) is designed to 
process exomes and whole genomes generated 
with illumine sequencing technology and can 
also be adapted to handle a variety of other 
technologies and experimental designs. This 
toolkit focuses on the variant discovery and also 
includes many utilities to perform related tasks 
such as processing and quality control of 
high-throughput sequencing data.88

Genomic 
coordinates, 
cluster, 2D scatter 
plot, AI

Broad Institute of 
MIT and Harvard
2004 to current

Structured Java 
programming 
framework

X:Map
http://xmap.picr.
man.ac.uk

X:Map is a tool which is designed specifically for 
high-density microarrays that are required to show 
for each gene, transcript, and exon the probe sets 
that match it, their specificity, and for each probe, 
their locations of potential hybridisation and for 
each individual exon, its sequence.89

Heatmap, genomic 
coordinates

University of 
Manchester, UK
2008

Genome 
annotation 
database browser

GenomeComp
http://www.mgc.
ac.cn/
GenomeComp/

GenomeComp is a visualisation tool which is 
implemented as a stand-alone programme that 
can compare, parse, and visualise large genomic 
sequences, especially closely related genomes 
such as interspecies or interstrain.90

Genomic 
coordinates

Laboratory of 
Bioinformatics, 
Institute of 
Biophysics, 
Beijing
2002-2004

Use Perl/TK, run 
in Linux, Unix, Mac 
OS X, and 
Microsoft Windows

Epiviz
http://epiviz.cbcb.
umd.edu/

Epiviz is a genomic information visualisation tool 
which can quickly and easily visualise and 
compare large amounts of genomic information 
resulting from high-throughput sequencing 
experiments. It is the first system to provide tight 
integration between a state-of-the-art analytics 
platform and a modern, powerful, integrative 
visualisation system for functional genomics.91

Heatmaps, 2D 
scatter plot, 
genomic 
coordinates

University of 
Maryland
2014 to now

Web-based 
genome browsing 
application

Gitools
http://www.gitools.
org/

Gitools is a desktop application for analysis and 
visualisation of matrices using interactive 
heatmaps which contain multiple dimensions. It 
has interactive capabilities to allow the user to 
filter, sort, move, and hide rows and columns in the 
heatmaps. Gitools is especially useful for cancer 
genomic analysis as it includes all the methods 
implemented for some integrative sources and can 
import data directly from some other tools.54

Heatmaps Biomedical 
Genomics Group 
located in 
Barcelona at the 
Biomedical 
Research Park in 
Barcelona
2011 to current

Desktop 
application

UCSC
https://genome-
cancer.ucsc.edu/

UCSC Cancer Genomics Browser is a web-based 
application for hosting, visualising, and analysing 
cancer genomic datasets. The browser provides 
interactive views of data from genomic regions to 
annotated biological pathways and user-
contributed collections of genes.57

Heatmap, cluster UCSC in the 
University of 
California system
2015 to current

Web-based 
application

Integrative 
Genomics Viewer 
(IGV)
http://software.
broadinstitute.org/
software/igv/

Integrative Genomics Viewer (IGV) is a 
lightweight visualisation tool for interactive 
exploration of integrated genomic datasets and it 
supports a wide range of genomic data including 
aligned sequence reads, mutations, copy 
number, RNAi screen, gene expression, 
methylation, and genomic annotations.71

Heatmap, genomic 
coordinates, 
cluster, 2D scatter 
plot

Broad Institute, 
the University of 
California
2013 to current

Visualisation tool 
for integrated 
genomic datasets

Savant Genome 
Browser
http://www.
genomesavant.
com/p/home/index/

Savant Genome Browser is a sequence 
annotation, desktop visualisation, and analysis 
browser for genomic data. This tool was 
primarily developed for the effective visualisation 
of large sets of high-throughput sequencing 
data. Multiple visualisation modes enable the 
exploration of genome-based sequence, points, 
intervals, or continuous datasets. Plug-ins are 
available, among which is the WikiPathways 
plug-in, which aids the navigation of the data by 
the integration of pathways.62

Genomic 
coordinates, 
heatmap, cluster

The 
Computational 
Biology Lab at the 
University of 
Toronto.92

2010 to current

Desktop 
visualisation and 
analysis browser 
for genomic data
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Tool name/
website

Description Visualisation 
methods

Developer/
year

Tool type

PARADIGM
http://sbenz.github.
io/Paradigm/

PARADIGM is a tool which focuses on inferring 
patient-specific genetic activities incorporating 
curated pathway interactions among genes and 
can predict the degree to which a pathway’s 
activities are altered in the patient using 
probabilistic inference. CircleMap is one of the 
PARADIGM visualisation methods that produce 
heatmaps with a circular layout.55

Heatmap Charles Vaske, 
Steve Benz, 
University of 
California, Santa 
Cruz
2010

A factor graph 
framework for 
pathway inference 
on high-throughput 
genomic data

CaleydoStratomeX
http://caleydo.org/
tools/stratomex/

CaleydoStratomeX is a visual analytic framework 
prepared for the visualisation of interdependencies 
between multiple datasets. It allows exploration of 
relationships between multiple groupings and 
different datasets. It can cluster genomic data of 
different alterations and represents them as matrix 
heatmaps. The different groupings are connected 
by ribbons whose width corresponds to the 
number of samples shared by the connected 
clusters. Clinical data and pathway maps can be 
integrated to characterise the clusters.93

Heatmap, cluster Marc Streit, Linz, 
Alexander Lex, 
Nils Gehlenborg, 
Christian Partl, 
Samuel Gratzl, 
Hanspeterpfister, 
Dieter 
Schmalstieg, and 
Peter J. Park.94

2012 to current

StratomeX is a 
visual analytic 
framework for the 
analysis of multiple 
stratified datasets

Regulome Explorer
http://explorer.
cancerregulome.
org

Regulome Explorer is a tool for the visualisation 
options that includes circular and linear genomic 
coordinates and networks.95 The Cancer Genome 
Atlas takes an integrated approach towards a 
systems-level understanding of regulatory 
disruptions in cancer which are intertwined within 
complex dynamical networks through a multitude 
of interactions among different types of 
molecules.96

Heatmap,
genomic 
coordinates

Institute for 
Systems Biology 
and MD Anderson 
Cancer Centre
2016 to current

A tool for the 
integrative 
exploration of 
associations 
between clinical 
and molecular 
features of data

Cytoscape
http://www.
cytoscape.org

Cytoscape is an open-source software for 
visualising complex networks and integrating these 
with any type of attribute Networks Desktop data 
such as genomic data and clinical patient 
information.59

Networks US National 
Institute of 
General Medical 
Sciences 
(NIGMS) and 
National 
Resource for 
Network Biology 
(NRNB).
2003 to current

An open-source 
software platform 
for visualising 
complex networks

ngs.plot
https://code.google.
com/p/ngsplot

ngs.plot is a tool to help understand the 
relationship between the millions of functional DNA 
elements and their protein regulators and 
demonstrate how they work in conjunction to 
manifest diverse phenotypes. ngs.plot uses two 
steps to quickly mine and visualise genome 
samples: the first step is to define a region of 
interest and the second step is to plot something 
meaningful.53

Heatmap Peter Briggs from 
the University of 
Manchester
supported by the 
Friedman
Brain Institute; 
and the National 
Institutes of 
Health
2014

A quick mining and 
visualisation tool 
for NGS data
Programming 
language is R and 
Python

GDC DAVE 
(Genomic Data 
Commons Data 
Analysis, 
Visualisation, and 
Exploration)
https://gdc.cancer.
gov/analyse-data/
gdc-dave-tools

GDC DAVE Tools allow users to interact intuitively 
with GDC data and promote the development of a 
true cancer genomics knowledge base, which 
including the following key features: view most 
frequently mutated genes, plot high-impact 
mutations using oncoGrid, perform survival 
analysis, visualise mutations for protein-coding 
regions, view cancer distribution, view top mutated 
genes across projects, view genes annotated by 
COCMIC, build and compare custom cohorts, and 
perform set operations.64

Heatmap, 2D 
scatter plot, cluster

The National 
Cancer Institute 
(NCI) Centre for 
Cancer Genomics 
(CCG) from 
Maryland, USA
2016 to current

GDC Data Portal

VarDict
https://github.com/
AstraZeneca-NGS/
VarDict

VarDict is a novel and versatile variant caller for 
both DNA- and RNA-sequencing data and it 
simultaneously calls SNA, MNV, InDels, complex 
and structural variants, expanding the detected 
genetic driver landscape of tumours.97

Heatmap, genomic 
coordinates

AstraZeneca 
which is in the 
United States.
2016 to current

VarDict is 
implemented in 
Perl

Table 2. (Continued)
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is a novel and versatile variant caller for both DNA- and 
RNA-sequencing data and it simultaneously calls special 
nucleic acids (SNAs), murine norovirus (MNV), insertion 
and deletion (InDels), complex and structural variants, and 
expanding the detected genetic driver landscape of tumours. 
VarDict has three main features: (1) performing scales line-
arly to sequencing depth, enabling ultra-deep sequencing 
used to explore tumour evolution or detect tumour DNA cir-
culating in blood; (2) performing amplicon-aware variant 
calling for PCR-based targeted sequencing which is often 
used in diagnostic setting; and (3) detecting differences in 
somatic and loss of heterozygosity variants between paired 
samples. VarDict uses data from TCGA Lung 
Adenocarcinoma dataset to call known driver mutations in 
KRAS, EGFR, BRAF, PIK3CA, and MET in 16% more 
patients than previously published variant calls.97

Some visualisation tools start to be available on VR/AR/
immersive big screen and mobile devices such as Children 
Cancer Data Visualisation tools. It can show the whole group 
of patients’ data with a 3D scatter plot and check a single 
patient’s details, zoom and rotate the visualisation plot, com-
pare gene among several patients, and interact with users and 
shows the comparison visualisation between selected patients.22 
The tool now supports mobile devices, VR devices, and other 
immersive environments.

Tools are integrated with each other.  Some visualisation tools can 
be integrated to do the tool-to-tool communication. For exam-
ple, Epiviz can obtain annotation data from the UCSC57 
genome browser.91 Epiviz is a genomic information visualisa-
tion tool that can quickly and easily visualise and compare large 
amounts of genomic information resulted from 

high-throughput sequencing experiments. As the first system 
to provide tight integration between a state-of-the-art analytic 
platform and a modern, powerful, integrative visualisation sys-
tem for functional genomics, Epiviz can interactively support a 
number of widely used, state-of-the-art methods for (1) ChIP-
seq where iterative visualisation of data and results of peak-
calling algorithms is necessary; (2) RNA-seq analysis where 
both location-based coverage and feature-based expression lev-
els are required; and (3) methylation analyses using location-
based analysis at multiple genomic scales.91

Gitools can get heatmaps from IGV71 through load com-
mand and then send locate commands for selected rows in the 
heatmaps to IGV via IGV logo in the Gitools toolbar, which 
makes it easy to spot and compare genes of interest within 
IGV.101 Gitools is a desktop application for analysis and visu-
alisation of matrices using interactive heatmaps which contain 
multiple dimensions. It has interactive capabilities to allow the 
user to filter, sort, move, and hide rows and columns in the 
heatmaps. Gitools is especially useful for cancer genomic anal-
ysis as it includes all the methods implemented for some inte-
grative sources and can import data directly from some other 
tools. Gitools can be used by researchers without advanced 
knowledge on bioinformatics as well as more experienced users 
who need to perform many of the operations available using 
the command line.54

Savant Genome Browser is a sequence annotation, desktop 
visualisation, and analysis browser for genomic data. This tool 
was primarily developed for the effective visualisation of large 
sets of high-throughput sequencing data. Multiple visualisa-
tion modes enable the exploration of genome-based sequence, 
points, intervals, or continuous datasets. Plug-ins are available, 
among which is the WikiPathways plug-in, which aids the 

Tool name/
website

Description Visualisation 
methods

Developer/
year

Tool type

DeepVariant
https://github.com/
google/deepvariant

DeepVariant is a tool that uses the latest AI 
techniques to build a more accurate picture of a 
person’s genome from sequencing data. The tool 
fed the data from millions of high-throughput reads 
and fully sequenced genomes to a deep-learning 
system and painstakingly tweaked the parameters 
of the model until it learned to interpret sequenced 
data with a high level of accuracy.77

Artificial 
intelligence, 
genomic 
coordinates, 
heatmap

Google Brain and 
Verily Life 
Science.
2016 to current

Deep neural 
networks to call 
genetic variants in 
germline genomes

RNASeqBrowser RNASeqBrowser is a visualisation tool that 
incorporates and extends the function of the UCSC 
genome browser and NGS visualisation tools such 
as IGV.61

Genomic 
coordinates, cluster

JA, Australian 
Government 
Department of 
Health
2015 to current

A visualisation tool 
that incorporates 
and extends the 
function of UCSC 
and IGV

Children Cancer 
Data Visualisation

Children Cancer Data Visualisation tool can show 
the whole group of patients’ data with a 3D scatter 
plot and check a single patient’s details, zoom and 
rotate the visualisation plot, compare gene among 
several patients, and interact with users and shows 
the comparison visualisation between selected 
patients22

3D scatter plot, 
heatmap, cluster, 
VR

Western Sydney 
University
2016 to current

Developed by 
Java, Unity 3D

Table 2. (Continued)
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navigation of the data by the integration of pathways.62 Savant 
also planned to expand by allowing users to automatically 
download annotation tracks from various public resources such 
as the UCSC Genome Browser.62

RNASeqBrowser is another tool that can be compatible 
with UCSC files and extend the functionality over IGV. 
RNASeqBrowser is a visualisation tool that adds several new 
types of tracks to show NGS data such as individual raw reads, 
SNPs, and InDel; it can dynamically generate RNA secondary 
structure which is useful for identifying non-coding RNA such 
as miRNA, and it overlays NGS wiggle data to display differ-
ential expression. Paired reads are also connected in the browser 
to enable easier identification of novel exon/intron borders and 
chimaeric transcripts. Strand-specific RNA-seq data are also 
supported by RNASeqBrowser that displays reads above (posi-
tive strand transcript) or below (negative strand transcripts) the 
central line.61

Tools allow more interactions and more visual analytical meth-
ods.  The active tools usually allow users to interact intuitively 
with data and choose multi-visualisation methods to support 
different research purpose. For example, the Genomic Data 
Commons Data Analysis, Visualisation, and Exploration 
(GDC DAVE)Visualisation tools use scatter plot to visualise 
mutations and their frequency across cases mapped to a graph-
ical visualisation of protein-coding regions and use heatmap to 
visualise the top mutated genes across projects and the number 
of cases affected. GDC DAVE Tools’ web interface can analyse 
cancer genomic data, in real time, online, without the need to 
download or process the data. Users can navigate from project 
cohorts to individual patients, to specific genes and mutations 
of interest. DAVE uses specialised graphs to visualise genomic 
signatures of cancer and identify potential drivers of disease 
and also visualise patient survival curves and identify the 
molecular consequence of a mutation on resultant protein.102 
DAVE Tools allow users to interact intuitively with GDC data 
and promote the development of a true cancer genomic knowl-
edge base, which includes the following key features: view most 
frequently mutated genes, plot high-impact mutations using 
oncoGrid, perform survival analysis, visualise mutations for 
protein-coding regions, view cancer distribution, view top 
mutated genes across projects, view genes annotated by COC-
MIC, build and compare custom cohorts, and perform set 
operations.64

Discussion
Genomic research is critical to progress against cancer. Through 
the study of cancer genomes, abnormalities in genes have been 
revealed to drive the development and growth of many types of 
cancer. Genomic and cancer data visualisation tools can assist 
in improving our understanding of the biology of cancer and 
lead to new methods of diagnosing and treating the disease. 
Over the past decade, large-scale research projects have begun 

to survey and catalogue the genomic changes associated with a 
number of types of cancer which have revealed unexpected 
genetic similarities across different types of tumours. For 
instance, mutations in the HER2 gene, distinct from amplifi-
cations of this gene, for which therapies have been developed 
for breast, esophageal, and gastric cancers, have been found in a 
number of cancers, including breast, bladder, pancreatic, and 
ovarian.103

Personalised medicine refers to diagnosis and treatment 
based on a person’s entire DNA sequence. Variants in the DNA 
sequence determine the differences between individuals and 
differences between types of cells such as tumour cells and 
non-tumour cells. Targeted genomic cancer medicine uses the 
latest genome sequencing to look at the genetics of cancer 
rather than treating it based on location to allow us to under-
stand the inherited cancer risk and find more effective treat-
ments for people with cancer.104

The cancer genomic research field is rapidly evolving in 
parallel with advances in high-throughput genomic technolo-
gies. This evolution of the field requires continuous advance-
ment in visualisation techniques and tools. As this rapid 
scientific evolution continues, cancer researchers are highly 
dependent on computers to manage, analyse, and visualise data. 
The conventional genomic and cancer data visualisation tools 
are two-dimensional and present data by enhancing with the 
creative use of colour and size, combination of space and time, 
and advanced computer graphics. Most visualisation tools have 
four visualisation methods: two-dimensional scatter plot, net-
works, heatmaps, and genomic coordinates. These traditional 
visualisation methods are used to graph genomic and cancer 
data, for example, IGV supports all the four visualisation 
methods.

Genomic and cancer data visualisation is entering a new era 
with emerging sources of AI and new visual environment 
equipment such as VR/AR/immersive big screen and mobile 
devices. New technologies and evolving cognitive framework 
are opening new horizons to enable more accurate and contex-
tual data visualisation.

Artificial intelligence is playing an integral role in the evolu-
tion of the field of genomics. Genomics is closely related to 
precision medicine whose market size projected to reach 
$87 billion by 2023.105 The field of personalised medicine is an 
approach to patient care that encompasses genetics, behaviours, 
and environment with a goal of implementing a patient- or 
population-specific treatment method in contrast to a one-
size-fits-all approach. Artificial intelligence and machine 
learning have been applied in genomics for analysing genome 
sequencing, gene editing, clinical workflow, and direct- 
to-consumer genomics. Future applications of machine learn-
ing in the field of genomics are diverse and may potentially 
contribute to the development of patient or population-specific 
pharmaceutical drugs to look at the role of genetics in the con-
text of how an individual responds to drugs.106 While the field 



Qu et al	 17

is still quite new, there is already some evidences of research 
involving machine learning. For example, what is regarded as 
the first study to apply machine-learning models to determine 
a stable dose of Tacrolimus in renal transplant patients was 
published in February 2017. Tacrolimus is commonly adminis-
tered to patients following a solid organ transplantation to pre-
vent ‘acute rejection’ of the new organ.107

Virtual reality and related technologies have been adopted in 
health care industry. Medical researchers have been exploring 
ways to create 3D models of patients’ internal organs using VR 
since the 1990s. Recently, VR and related technologies are used 
to plan complex operations, reduce anxiety in cancer patients, 
and help patients overcome balance and mobility problems 
resulting from stroke or head injury. Virtual reality environment 
is expected to bring a revolution in genomic data visualisation as 
one could integrate meta-genomic data in virtual worlds. 
Approaching the problem from a different angle, mixed reality 
devices such as Google Glass, HoloLens, and Magic Leap offer 
an AR experience which can facilitate the learning process of the 
biological systems because it builds on exploratory learning.

In summary, genomic and cancer data visualisation tools are 
essential to facilitate decision-making for the treatment meth-
ods or targeted medicine. New technologies have been used in 
recent years to create visualisation tools that can explore com-
plex genomic data. Further efforts are needed to develop new 
tools to meet the changing needs of the field.

Acknowledgements
The authors would like to thank Hien Dang and Jesse Tran for 
their invaluable comments and proof reads.

Author Contributions
ZQ led the writing of the manuscript and did the pilot group 
study with the end-users of genomic visualisation tools who are 
cancer researchers and medical doctors. CWL contributed par-
tially to the manuscript. QVN and YZ provided guidance and 
revision on the article, particularly on the technologies and 
methodology. DRC gave general direction on genomics and 
cancer research perspective as well as revision on the manu-
script. DRC and QVN provide oversight and leadership to the 
team and initiated the projects.

ORCID iD
Zhonglin Qu  https://orcid.org/0000-0003-4500-004X

References
	 1.	 Dubey RC. Advanced Biotechnology. New Delhi, India: S. Chand & Company 

Pvt. Ltd; 2014.
	 2.	 Biography: Gregor Mendel Biography.com. The Biography.com website; 2017.
	 3.	 Ledford H. AstraZeneca launches project to sequence 2 million genomes. 

Nature. 2016;532:427.
	 4.	 Croce N. Science and Technology Behind the Human Genome Project. 1st ed. New 

York, NY: Britannica Educational Publishing; 2015.
	 5.	 Francis S, Collins AP, Jordan E, Chakravarti A, Gesteland R, Walters L. New 

goals for the U.S. human genome project: 1998-2003. Science. 2012;282:682–689.

	 6.	 McClean P. A history of genetics and genomics. https://www.ndsu.edu/pubweb 
/~mcclean/plsc411/History-of-Genetics-and-Genomics-arrative-and-over 
heads.pdf. Up-dated 2011.

	 7.	 Wistuba II, Gelovani JG, Jacoby JJ, Davis SE, Herbst RS. Methodological and 
practical challenges for personalized cancer therapies. Nat Rev Clin Oncol. 
2011;8:135–141.

	 8.	 Stephens ZD, Lee SY, Faghri F, et al. Big Data: astronomical or genomical? 
PLoS Biol. 2015;13:e1002195.

	 9.	 Colbran LL, Chen L, Capra JA. Short DNA sequence patterns accurately identify 
broadly active human enhancers. BMC Genomics. 2017;18:536.

	 10.	 Ware C. Information Visualization: Perception for Design. Burlington, MA: Morgan 
Kaufmann; 2013.

	 11.	 Keahey TA. Using visualization to understand big data (advanced visualization). 
https://dataconomy.com/wp-content/uploads/2014/06/IBM-WP_Using-vis 
-to-understand-big-data.pdf. Up-dated 2013.

	 12.	 Green TM, Ribarsky W, Fisher B. Visual analytics for complex concepts using a 
human cognition model. Paper presented at: 2008 IEEE Symposium on Visual 
Analytics Science and Technology; October 19-24, 2008; Atlantic City, NJ.

	 13.	 Schroeder MP, Gonzalez-Perez A, Lopez-Bigas N. Visualizing multidimen-
sional cancer genomics data. Genome Med. 2013;5:9.

	 14.	 Nguyen QV, Qian Y, Huang ML, Zhang JW. TabuVis: A tool for visual analytics 
multidimensional datasets. Science China Informat Sci. 2013;56:1–12.

	 15.	 Mills M. Artificial Intelligence in law: the state of play 2016 Thomson Reuters. 
https://www.neotalogic.com/wp-content/uploads/2016/04/Artificial-Intelli-
gence-in-Law-The-State-of-Play-2016.pdf. Up-dated 2016.

	 16.	 What’s the difference between artificial intelligence, machine learning, and deep 
learning? https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial 
-intelligence-machine-learning-deep-learning-ai/.

	 17.	 Ma KL. Machine learning to boost the next generation of visualization technology. 
IEEE Comput Graph Appl. 2007;27:6–9.

	 18.	 Fuchs R, Waser J, Groller ME. Visual human+machine learning. IEEE Trans 
Vis Comput Graph. 2009;15:1327–1334.

	 19.	 Nguyen QV, Gleeson A, Ho N, Huang ML, Simoff S, Catchpoole D. Visual 
analytics of clinical and genetic datasets of acute lymphoblastic leukaemia. In: Lu 
B-L, Zhang L, Kwok J, eds. Neural Information Processing: 18th International 
Conference (ICONIP 2011), Shanghai, China, November 13–17, 2011, Proceed-
ings, Part I. Berlin, Germany: Springer; 2011:113–120.

	 20.	 How augmented reality will change data visualization. http://blog.i2econsulting 
.com/how-augmented-reality-will-change-data-visualization/.

	 21.	 Leung MKK, Delong A, Alipanahi B, Frey BJ. Machine learning in genomic 
medicine: a review of computational problems and data sets. Proc IEEE. 2016; 
104:176–197.

	 22.	 Nguyen QV, Khalifa NH, Alzamora P, et al. Visual analytics of complex genom-
ics data to guide effective treatment decisions. J Imaging. 2016;2:29.

	 23.	 Tian R, Basu M, Capriotti E. Computational methods and resources for the 
interpretation of genomic variants in cancer. BMC Genomics. 2015;16:S7.

	 24.	 Ding L, Wendl MC, McMichael JF, Raphael BJ. Expanding the computational 
toolbox for mining cancer genomes. Nat Rev Genet. 2014;15:556–570.

	 25.	 McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapRe-
duce framework for analyzing next-generation DNA sequencing data. Genome 
Res. 2010;20:1297–1303.

	 26.	 Chittaro L. Visualization of Patient Data at Different Temporal Granularities on 
Mobile Devices. Udine, Italy: Department of Math and Computer Science, Uni-
versity of Udine; 2006.

	 27.	 Sikic BI, Tibshirani R, Lacayo NJ. Genomics of childhood leukemias: the virtue 
of complexity. J Clin Oncol. 2008;26:4367–4368.

	 28.	 Procter JB, Thompson J, Letunic I, Creevey C, Jossinet F, Barton GJ. Visualiza-
tion of multiple alignments, phylogenies and gene family evolution. Nat Methods. 
2010;7:S16–S25.

	 29.	 Margaret A, Hamburg MD. Paving the way for personalized medicine FDA’s role 
in a new era of medical product development FDA. https://www.fdanews.com 
/ext/resources/files/10/10-28-13-Personalized-Medicine.pdf. Up-dated 2013.

	 30.	 Vogenberg FR, Isaacson Barash C, Pursel M. Personalized medicine: part 1: evo-
lution and development into theranostics. Pharm Therapeut. 2010;35:560–576.

	 31.	 Savoia C, Volpe M, Grassi G, Borghi C, Agabiti Rosei E, Touyz RM. Personal-
ized medicine-a modern approach for the diagnosis and management of hyper-
tension. Clin Sci (Lond). 2017;131:2671–2685.

	 32.	 Cordeiro JV. Ethical and legal challenges of personalized medicine: paradig-
matic examples of research, prevention, diagnosis and treatment. Rev Portuguesa 
Saúde Pública. 2014;32:164–180.

	 33.	 Juniper: digital health: vendor analysis, emerging technologies & market forecasts 
2017–2022. https://www.juniperresearch.com/researchstore/iot-m2m/digital 
-health/subscription/vendor-analysis-emerging-technologies. Up-dated 2018.

	 34.	 Krisa D, Tailor SI. Data visualization in health care: optimizing the utility of 
claims data through visual analysis. https://support.sas.com/resources/papers 
/proceedings14/SAS176-2014.pdf. Up-dated 2014.

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/


18	 Cancer Informatics ﻿

	 35.	 Boudreaux ED, Waring ME, Hayes RB, Sadasivam RS, Mullen S, Pagoto S. 
Evaluating and selecting mobile health apps: strategies for healthcare providers 
and healthcare organizations. Transl Behav Med. 2014;4:363–371.

	 36.	 Bhojwani D, Kang H, Menezes RX, et al. Gene expression signatures predictive 
of early response and outcome in high-risk childhood acute lymphoblastic leuke-
mia: a children’s oncology group study. J Clin Oncol. 2008;26:4376–4384.

	 37.	 Rebeiz M, Posakony JW. GenePalette: a universal software tool for genome 
sequence visualization and analysis. Dev Biol. 2004;271:431–438.

	 38.	 Albuquerque MA, Grande BM, Ritch EJ, et al. Enhancing knowledge discovery 
from cancer genomics data with Galaxy. Gigascience. 2017;6:1–13.

	 39.	 Pollard KS, van der Laan MJ. Cluster analysis of genomic data. In: Gentleman 
R, Carey VJ, Huber W, Irizarry RA, Dudoit S, eds. Bioinformatics and Computa-
tional Biology Solutions Using R and Bioconductor (Statistics for Biology and 
Health). New York, NY: Springer; 2005:209–228.

	 40.	 Ciaramella A, Cocozza S, Iorio F, et al. Interactive data analysis and clustering 
of genomic data. Neural Netw. 2008;21:368–378.

	 41.	 Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: 
paths toward the comprehensive functional analysis of large gene lists. Nucleic 
Acids Res. 2009;37:1–13.

	 42.	 Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display  
of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998;95: 
14863–14868.

	 43.	 Olshannikova E, Ometov A, Koucheryavy Y, Olsson T. Visualizing Big Data 
with augmented and virtual reality: challenges and research agenda. J Big Data. 
2015;2:22.

	 44.	 García-Hernández RJ, Anthes C, Wiedemann M, Kranzlmüller D. Perspectives 
for using virtual reality to extend visual data mining in information visualization. 
Paper presented at: 2016 IEEE Aerospace Conference; March 5-12, 2016; Big 
Sky, MT.

	 45.	 Golestan Hashemi FS, Razi Ismail M, Rafii Yusop M, et al. Intelligent mining 
of large-scale bio-data: bioinformatics applications. Biotech Biotechnol Equip. 
2017;32:10–29.

	 46.	 Matte-Tailliez O, Toffano-Nioche C, Ferey N, Kepes F, Gherbi R. Immersive 
visualization for genome exploration and analysis. Paper presented at: 2006 2nd 
International Conference on Information & Communication Technologies; 
April 24-28, 2006; Damascus, Syria.

	 47.	 Scatter diagram. http://asq.org/learn-about-quality/cause-analysis-tools/over-
view/scatter.html.

	 48.	 Scatter plots. http://software.broadinstitute.org/software/igv/ScatterPlots.
	 49.	 UCSC Xena: box plots & scatter plots. http://xena.ucsc.edu/bar-graph-scatter 

-plot/.
	 50.	 What is a 3D scatter plot? https://docs.tibco.com/pub/spotfire/6.5.1/doc/

html/3d_scat/3d_scat_what_is_a_3d_scatter_plot.htm.
	 51.	 Nguyen QV, Nelmes G, Huang ML, Simoff S, Catchpoole D. Interactive visu-

alization for patient-to-patient comparison. Genomics Inform. 2014;12:21–34.
	 52.	 Biological interpretation of gene expression data. https://www.ebi.ac.uk/train-

ing/online/course/functional-genomics-ii-common-technologies-and-data-
analysis-methods/biological-0.

	 53.	 Shen L, Shao NY, Liu XC, Nestler E. ngs.plot: Quick mining and visualization 
of next-generation sequencing data by integrating genomic databases. BMC 
Genomics. 2014;15:284.

	 54.	 Perez-Llamas C, Lopez-Bigas N. Gitools: analysis and visualisation of genomic 
data using interactive heat-maps. PLoS ONE. 2011;6:e19541.

	 55.	 Vaske CJ, Benz SC, Sanborn JZ, et al. Inference of patient-specific pathway 
activities from multi-dimensional cancer genomics data using PARADIGM. 
Bioinformatics. 2010;26:i237–i245.

	 56.	 Pollard KS. Cluster Analysis of Genomic Data. College Park, MD: Center for Bio-
informatics and Computational Biology; 2003.

	 57.	 Goldman M, Craft B, Swatloski T, et al. The UCSC Cancer Genomics Browser: 
update 2015. Nucleic Acids Res. 2015;43:D812–D817.

	 58.	 Network visualization Workshop2.1 user’s guide. http://support.sas.com/docu-
mentation/cdl/en/grnvwug/62918/HTML/default/viewer.htm#p0q343kxjyj36j
n1e2z6lulkda3j.htm.

	 59.	 Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for 
integrated models of biomolecular interaction networks. Genome Res. 
2003;13:2498–2504.

	 60.	 Zhang F, Xu Y, Cao H, et al. Mapsnp: an R package to plot a genomic map for 
single nucleotide polymorphisms. PLoS ONE. 2015;10:e0123609.

	 61.	 An J, Lai J, Wood DL, et al. RNASeqBrowser: a genome browser for simultane-
ous visualization of raw strand specific RNAseq reads and UCSC genome 
browser custom tracks. BMC Genomics. 2015;16:145.

	 62.	 Fiume M, Williams V, Brook A, Brudno M. Savant: genome browser for high-
throughput sequencing data. Bioinformatics. 2010;26:1938–1944.

	 63.	 Running DeepVariant on Google Cloud Platform. https://cloud.google.com/
genomics/deepvariant.

	 64.	 GDC Dave Tools. https://gdc.cancer.gov/analyze-data/gdc-dave-tools.

	 65.	 How VR will revolutionize big data visualizations. https://www.forbes.com/
sites/bernardmarr/2016/05/04/how-vr-will-revolutionize-big-data-visualizatio
ns/#2f50d104e151.

	 66.	 Gray GE. Navigating 3D Scatter Plots in Immersive Virtual Reality. Seattle, WA: 
University of Washington; 2016.

	 67.	 Gu ZG, Eils R, Schlesner M. Complex heatmaps reveal patterns and correla-
tions in multidimensional genomic data. Bioinformatics. 2016;32:2847–2849.

	 68.	 Why data visualization is so important in biology. https://www.fiosgenomics.
com/data-visualization-and-data-analysis/.

	 69.	 Levin C. Your top 3 heatmap generation tools. Omic Tools Blog; 2017.
	 70.	 Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer 

(IGV): high-performance genomics data visualization and exploration. Brief 
Bioinform. 2013;14:178–192.

	 71.	 Robinson JT, Thorvaldsdottir H, Winckler W, et al. Integrative genomics 
viewer. Nat Biotechnol. 2011;29:24–26.

	 72.	 Liu MS, Liu Y, Deng L, et al. Transcriptional profiles of different states of cancer 
stem cells in triple-negative breast cancer. Molec Cancer. 2018;17:65.

	 73.	 Cline MS, Craft B, Swatloski T, et al. Exploring TCGA pan-cancer data at the 
UCSC cancer genomics browser. Sci Rep. 2013;3:2652.

	 74.	 Frey BJ, Dueck D. Clustering by passing messages between data points. Science. 
2007;315:972–976.

	 75.	 Nilsson NJ. The Quest for Artificial Intelligence: A History of Ideas and Achievements. 
Burlington, MA: Morgan Kaufmann; 2009.

	 76.	 Libbrecht MW, Noble WS. Machine learning applications in genetics and 
genomics. Nat Rev Genet. 2015;16:321–332.

	 77.	 Google has released an AI tool that makes sense of your genome. https://www.
technologyreview.com/s/609647/google-has-released-an-ai-tool-that-makes 
-sense-of-your-genome/.

	 78.	 Keim DA. Visual exploration of large data sets. Comm ACM. 2001;44:38–44.
	 79.	 Simpson RM, LaViola JJ, Laidlaw DH, Forsberg AS, van Dam A. Immersive 

VR for scientific visualization: a progress report. IEEE Comp Graph Appl. 
2000;20:26–52.

	 80.	 Shan Q , Doyle TE, Samavi R, Al-Rei M. Augmented reality based brain tumor 
3D visualization. Procedia Comp Sci. 2017;113:400–407.

	 81.	 Chang Y, Peng Xu W, Wang L. Research on 3D visualization of underground 
antique tomb based on augmented reality. Appl Mech Mater. 2013; 
336–338:1434-1438.

	 82.	 Why AI with augmented and virtual reality will be the next big thing. https://
tdwi.org/articles/2017/04/04/ai-with-augmented-and-virtual-reality-next-big-
thing.aspx.

	 83.	 Verma P. When virtual reality meets big data; 2017.
	 84.	 Stolk B, Abdoelrahman F, Koning A, et al. Mining the human genome using 

virtual reality. Paper presented at: EGPGV’02 Proceedings of the Fourth Euro-
graphics Workshop on Parallel Graphics and Visualization; September 9-10, 
2002; Blaubeuren, Germany.

	 85.	 Microsoft HoloLens. https://www.microsoft.com/en-au/hololens.
	 86.	 Pavlopoulos GA, Malliarakis D, Papanikolaou N, Theodosiou T, Enright AJ, 

Iliopoulos I. Visualizing genome and systems biology: technologies, tools, 
implementation techniques and trends, past, present and future. Gigascience. 
2015;4:38.

	 87.	 Lex A, Streit M, Kruijff E, Schmalstieg D. Caleydo: Design and evaluation of a 
visual analysis framework for gene expression data in its biological context. Paper 
presented at: 2010 IEEE Pacific Visualization Symposium (PacificVis); March 
2-5, 2010; Taipei, Taiwan.

	 88.	 Genome Analysis Toolkit. https://software.broadinstitute.org/gatk/.
	 89.	 Yates T, Okoniewski MJ, Miller CJ. X:Map: annotation and visualization of 

genome structure for Affymetrix exon array analysis. Nucleic Acids Res. 
2008;36:D780–D786.

	 90.	 Jian Yanga JW, Yaob ZJ, Jinc Q , Shenb Y, Chena R. GenomeComp: a visualiza-
tion tool for microbial genome comparison. J Microbiol Methods. 
2003;54:423–426.

	 91.	 Chelaru F, Smith L, Goldstein N, Bravo HC. Epiviz: interactive visual analytics 
for functional genomics data. Nat Methods. 2014;11:938–940.

	 92.	 Genome Savant. http://www.genomesavant.com.
	 93.	 Lex A, Streit M, Schulz HJ, et al. StratomeX: visual analysis of large-scale het-

erogeneous genomics data for cancer subtype characterization. Comput Graph 
Forum. 2012;31:1175–1184.

	 94.	 Integrative visualization of stratified heterogeneous data for disease subtype 
analysis. http://caleydo.org/tools/stratomex/.

	 95.	 Cancer Genome Atlas Network. Comprehensive molecular characterization of 
human colon and rectal cancer. Nature. 2012;487:330–337.

	 96.	 TCGA Genome Data Analysis Center (GDAC) for systems analysis of the can-
cer regulome. http://www.cancerregulome.org.

	 97.	 Lai Z, Markovets A, Ahdesmaki M, et al. VarDict: a novel and versatile variant 
caller for next-generation sequencing in cancer research. Nucleic Acids Res. 2016; 
44:e108.



Qu et al	 19

	 98.	 GenomeComp: a whole genome comparison and visualization tool. http://www.
mgc.ac.cn/GenomeComp/.

	 99.	 Samwell. Deep Learning in GATK4. Cambridge, MA: Broad Institute; 2017.
	100.	 Google is giving away AI that can build your genome sequence. https://www.wired 

.com/story/google-is-giving-away-ai-that-can-build-your-genome-sequence/.
	101.	 Toot-to-tool communication. http://www.gitools.org/docs/UserGuide_Tool-

Communication.html.
	102.	 Introducing DAVE: online analysis tools for the genomic data commons. https://

www.cancer.gov/news-events/cancer-currents-blog/2017/gdc-dave-tools.
	103.	 Cancer genomic research. https://www.cancer.gov/research/areas/genomics.

	104.	 Stevens EA, Rodriguez CP. Genomic medicine and targeted therapy for solid 
tumors. J Surg Oncol. 2015;111:38–42.

	105.	 Precision medicine market size to exceed $87 billion by 2023: Global Market 
Insights Inc. https://www.prnewswire.com/news-releases/precision-medicine 
-market-size-to-exceed-87-bil l ion-by-2023-global-market-insights-inc 
-599454691.html.

	106.	 Machine learning in genomics – current efforts and future applications. https://
www.techemergence.com/machine-learning-in-genomics-applications/.

	107.	 Tang J, Liu R, Zhang YL, et al. Application of machine-learning models to pre-
dict tacrolimus stable dose in renal transplant recipients. Sci Rep. 2017;7:42192.




