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Abstract  

Introduction: Evidence accumulated in the last decade has started to reveal the enormous 

complexity in the expression, interactions and functions of the large number of different mucins 

present in the different compartments of the human lower airways.  This occurs both in normal 

subjects and in COPD patients in different clinical phases and stages of severity.  

Areas covered: We review the known physiological mechanisms that regulate mucin production in 

human lower airways of normal subjects, the changes in mucin synthesis/secretion in COPD 

patients and the clinical efficacy of drugs that modulate mucin synthesis/secretion. 

Expert opinion: It evident that the old simplistic concept that mucus hypersecretion in COPD 

patients is associated with negative clinical outcomes is valid and that the therapeutic potential of 

“mucolytic drugs” is under-appreciated due to the complexity of the associated molecular 

network(s). Likewise, our current knowledge of the effects of the drugs already available on the 

market that target mucin synthesis/secretion/structure in the lower airways is extremely limited and 

often indirect and more well-controlled clinical trials are needed in this area. 

 

Key words: COPD, MUC5AC, MUC5B, infections, exacerbations, treatment, mucoactive drugs 
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Article Highlights 

• Changes in mucin gene expression and production, mucin degradation and dehydration of 

the mucus layer alter the physiological function of mucins in the human lower airways. 

• Different pathogens, such as respiratory viruses and bacteria, may upregulate or down-

regulate mucin-secreting cell differentiation and mucin secretion.  

• The large number of different mucins in the different compartments of the human lower 

airways are characterised by an enormous complexity of expression, interactions and 

functions both in normal subjects and in patients with COPD of different clinical phases and 

stages of severity. 

• The pathogenic role of changes in mucin gene expression and production observed in the 

blood and/or lower airways of COPD patients requires more translational studies. 

• The efficacy of mucin synthesis/secretion/structure modulators in the treatment of COPD 

remains controversial.  
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1. Introduction 

Here we review the physiological mechanisms that regulate mucin production in the human lower 

airways of normal subjects, the changes that occur in the synthesis/secretion of mucins in the 

lower airways of patients with chronic obstructive pulmonary disease (COPD) and the clinical 

efficacy of drugs that modulate their synthesis/secretion. 

 

2. Composition of the secretions of the human lower airways 

The normal volume of the human lower airways (tracheobronchial, pulmonary) secretions in the 

“healthy” subjects undergoing laryngectomy or tracheostomy is estimated to be between 10-100 ml 

per day or a maximum of 0.5 ml/Kg body weight/day [1, 2]. Only the secretions of the human lower 

airways that accumulate in the trachea can be expectorated by cough as sputum (or phlegm) 

because cough receptors are absent in human bronchioles. Under physiological conditions healthy 

subjects, without laryngectomy or tracheostomy, do not expectorate and for this reason these 

secretions are often termed erroneously "mucus" or “sputum”, whilst in reality they are a complex 

aqueous solution, composed of ~95% water, with the remaining made up of proteins, lipids, 

carbohydrate, deoxyribonucleic acid (DNA) and electrolytes [3]. 

  

3. Transmembrane and secreted mucins of the human lower airways 

Mucins is a descriptive term for a family of glycoproteins with high molecular weight (100-100,000 

kDa) composed of 70-80% carbohydrates, 20% proteins, and 1-2% sulphate bound to 

oligosaccharide side chains [4]. All mucins share some common structural features, a protein 

domain of repeating sequences of amino acids rich in threonine and proline, a central carrier 

region (core) called apomucin, with multiple lateral chains of oligosaccharides (Figure 1). 
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Apomucins are peptides that comprise 10-20% of the total weight of glycoproteins and are 

organized into two regions, a centrally located tandem repeat region rich in serine, threonine, and 

proline (STP-tandem repeats) and carboxy- and amino-terminal non-repeat regions.  The latter 

may be rich in cysteine residues with low amounts of serine/threonine and relatively little O-

glycosylated serine but possessing greater levels of N-glycosylated residues [5]. Twenty-two 

human mucin genes have been identified (HUGO Gene Nomenclature Committee, 

www.genenames.org/cgi-bin/genefamilies/set/648) coding for apomucins and are named as “MUC” 

followed by a number that reflects the order in which the particular mucin gene was discovered. 

According to the standard rules of nomenclature all letters are capitalized for the human gene and 

the first letter is capitalized with all following letters lower case for mouse gene [6]. Several mucins 

have alleles with different lengths of repetitive sequences and varied numbers of tandem repeats. 

A deeper genomic analysis of the tandem repeat regions often show that there is only limited 

sequence conservation of these regions of orthologous genes between closely related species [7, 

8]. The lack of sequence conservation means that the amino acid sequence is less important as 

long as there are a sufficiently high number of threonine and serine attachment sites for N-

acetylgalactosamine (GalNAc) and number of prolines to maintain an unfolded protein, making it 

accessible for glycosylation. 

Mucins are highly glycosylated and carbohydrates are primarily composed of GalNAc, N-

acetylglucosamine (GlcNAc), fucose (Fuc), galactose (Gal) and sialic acids or NANA (N-acetyl 

neuraminic acid or NeuNAc) and small amounts of mannose and sulphate. The oligosaccharide 

chains possess 2–20 monosaccharides in both linear and branched structures [9]. A large 

proportion of the serine/threonine residues are glycosylated, resulting in a “bottle brush” 

configuration of the oligosaccharides arranged around the mucin protein core. These structures 

are directly observed by electron microscopy have molecular lengths of 50–1000nm up to 8μm 
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[10].  Based on the structure and localization, mucins can be divided into transmembrane and 

secreted mucins (Table 1). 

The major mucins produced in the airways are the secreted polymeric mucins MUC5AC and 

MUC5B and the transmembrane mucins MUC1, MUC4, MUC16 and MUC20 [11]. Other than 

these, many other mucin genes have been found in the human lower airways, including MUC2, 

MUC 6, MUC7, MUC8, MUC13, MUC19, MUC21 and MUC22 [12-15].  

 

4. Genetic pathways modulating the synthesis/secretion of MUC5B in the human lower 

airways 

The single-nucleotide polymorphism (SNP) rs35705950 in the promoter region of the human 

MUC5B gene potently regulates its expression [16-18]. The presence of the rs35705950 minor 

allele enhances transcription of MUC5B, increased mucin messenger ribonucleic acid (mRNA) 

production, especially in the distal airways where the SNP genotype correlates with MUC5B 

protein levels in the bronchioles in vivo and promoter activity in vitro [16, 19]. The rs35705950 

affects expression at baseline, with healthy subjects carrying either one or two copies of the minor 

allele expressing ~40-fold increased levels of MUC5B than major allele homozygotes [18]. The 

rs35705950 SNP is part of an active enhancer containing a FOXA2-binding site, suggesting that 

repression of MUC5B transcription by FOXA2 is lost when the gain-of-function SNP site is in an 

inactive state that potentially involves epigenetic control via methylation. Since rs35705950 

regulates MUC5B expression under homeostatic conditions, the very high levels of expression 

imparted by this SNP may be detrimental in the long term. In contrast, no genetic links are evident 

for MUC5AC expression. 
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5. Assembly, storage and secretion of the major secreted polymeric mucins MUC5AC 

and MUC5B of the human lower airways 

The assembly, storage and secretion of the major secreted polymeric mucins MUC5AC and 

MUC5B involves a succession of steps in different intracellular and extracellular compartments 

(Table 2) [3]. After nuclear transcription, secreted mucins are co-translationally imported into the 

rough endoplasmic reticulum where dimers of mucin disulphide are assembled. Mucins are then 

folded and transported from the endoplasmic reticulum to the golgi complex; in the cis golgi, 

mucins are O-glycosylated by the addition of GalNAc by GalNAc-transferase (GALNTs). Mucins 

then pass through the central golgi where further structures are formed by the addition of GlcNAc 

and/or Gal.  

Glycosylation of the mucins ends in sialylation via α2,3-syalyltransferases or fucosylation via α1,2 

enzymes [ST3 beta-galactoside alpha-2,3-sialyltransferase 3 (ST3GAL3) and galactoside 2-alpha-

L-fucosyltransferase 2 (FUT2)] and subsequently the oligomeric subunits of the mucins polymerize 

through the assembly of the N-terminals [20]. The fully synthesised mucins are then transported by 

the trans-golgi by vesicular traffic to the growing secretory granules, where they are stored for 

possible release by regulated exocytosis [20]. 

 

6. Epigenetic pathways modulating the synthesis/secretion of the major secreted 

polymeric mucins MUC5AC and MUC5B of the human lower airways 

Studies on epigenetic pathways modulating the synthesis/secretion of the mucins of the human 

lower airways remain limited. The known epigenetic pathways modulating in vitro and in vivo 

expression of MUC5AC and MUC5B, involving the DNA methylation and histone modification 

(acetylation or deacetylation) are summarised in Table 3.   
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7. Mediators regulating the synthesis/secretion of the major secreted polymeric mucins 

MUC5AC and MUC5B of the human lower airways 

There is little in vivo data are available on the regulation of activity of the mucin-secreting cells of 

the human lower airways. Theoretically, their activity can be modulated by different substances, 

acting directly on cell surface receptors or indirectly on receptors present on the external surface of 

the plasma membrane of myoepithelial cells located around the glands or on inhibitory/stimulant 

receptors located on type C fibres [20- 22].  

The inflammatory mediators that modulate the synthesis/secretion of mucins from primary 

tracheobronchial epithelium obtained from normal subjects in vitro are summarised in Table 4 [20, 

23, 24]. 

 

8. Physiological function of the epithelial lining fluid, mucociliary clearance and the 

major secreted polymeric mucins MUC5AC and MUC5B of the human lower airways 

8.1 Role of the major secreted polymeric mucins MUC5AC and MUC5B in mucociliary 

clearance 

The epithelial lining fluid of the human lower airways plays an essential protective role against 

particles and micro-organisms contained in inhaled air. It traps the microbes whilst the mucociliary 

escalator moves the fluid toward the oropharynx by the continuous beating of cilia (mucociliary 

clearance) [25]. The surface mucins generate an osmotic barrier that preserves the periciliary layer 

and co-ordinated ciliary motility, whereas secreted mucin proteins retain water and form 

viscoelastic gels. The physiological and immune functions of the major secreted polymeric mucins 
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MUC5AC and MUC5B of the human lower airways in mucociliary clearance are summarised in 

Table 5. 

 

8.2 The immune defence role of the major secreted polymeric mucins MUC5AC and MUC5B 

in human lower airways  

Polymeric mucins MUC5AC and MUC5B have crucial roles in innate and adaptive immune 

defences of the human lower airways against viruses, bacteria, fungi and helminths. Mucins 

protect against epithelial adhesion and cytotoxicity of pathogens by interacting directly with 

infectious agents using more than 200 unique glycan structures [26]. The innate immune function 

of mucins also includes direct interactions with dendritic cells and mucin-secreting cells are 

sensors of environmental threats to the epithelial surface [13]. In addition, mucins may play an 

important role in suppressing the virulence of opportunistic pathogens and in promoting their 

coexistence in a stable microbiota [11]. 

 

9. The role of viruses and bacteria in modulating the synthesis/secretion of the major 

secreted polymeric mucins MUC5AC and MUC5B in the human lower airways 

9.1. Mucins and respiratory viruses 

Respiratory infection with viruses such as rhinoviruses (RVs), influenza A (IAV) and respiratory 

syncytial virus (RSV) are common causes of COPD exacerbations and have many complex 

interactions with lower airway mucins. Viruses that enhance the synthesis/secretion of mucins in 

vitro are summarised in Table 4. 
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9.1.1. Rhinoviruses 

In human tracheal surface epithelial cells and submucosal gland cells obtained from patients 3-6 

hours after death (n=83, 39 female, median age 60±5 years), rhinovirus (RV) 14 infection 

increased expression of MUC5AC and MUC5B (p<0.05), MUC2, MUC3, and MUC6 (p<0.01) 

mRNA in surface cells, compared with surface cells before infection. RV14 infection also increased 

expression of MUC5AC in surface cells after 24 hours by ~40% more than before infection.  Total 

mucin expression levels were also enhanced in the supernatants and lysates of these cells 

(p<0.05) [27].  

In submucosal gland cells, RV14 increased the mRNA expression of MUC5AC (p>0.01), MUC2, 

MUC5B and MUC7 (p>0.05) [27, 28]. MUC5AC production (both mRNA and protein) was also 

significantly increased in RV-infected human nasal epithelial cells (hNECs) compared with un-

infected hNECs [29]. Differentiated primary human tracheobronchial epithelial cells, infected with 

either RV16 (a major group rhinovirus) or RV1A (a minor group RV) also show increased 

expression of both MUC5AC RNA and protein (p>0.05) [30]. RV1A also induced mucin-secreting 

cell metaplasia and Muc5ac expression in mice, whereas RV16 did not have any effects, due to 

the differences in the expression of its receptor intercellular adhesion molecule 1 (ICAM-1) 

between human and mouse [30].  

The Src-related p44/42 mitogen-activated protein kinase pathway may also be associated with RV-

induced mucin hypersecretion in human airways [27]. Furthermore, RV infection induced Foxa3 

expression in mice in vivo and human airway epithelial cells in vitro, leading to increased mucin-

secreting cell differentiation [31]. Viral replication is needed for RV-induced mucin expression, and 

this induction is dependent on Toll-like receptor (TLR) 3, suggesting the involvement of double-

stranded RNA signaling [30]. 
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COPD patients have increased susceptibility to RV and other infections [32]. Airway basal cells 

collected from tracheobronchial segments at the time of double lung transplantation from both 

COPD patients [n=8, 3 females, median age 57 years, median pack-years (p-y) 53, median forced 

expiratory volume in 1 second (FEV1) 22%] and never smoking subjects (n=9, 4 females, median 

age 48 years) can be differentiated into mucociliary cells. Mucociliary-differentiated cells from 

COPD patients maintained for 15 days produced greater levels of MUC5AC (p=0.015) and MUC5B 

(p<0.001) mRNA expression than observed from cells from normal subjects [33]. MUC5AC and 

MUC5B gene expression (p=0.008) was further increased in RV-infected cell cultures from COPD 

patients, compared to normal subjects. Alcian blue-periodic acid Schiff (AB-PAS) staining of 

paraffin-embedded cell cultures showed increased numbers of mucin-secreting cells (p<0.001) in 

COPD patients compared to normal subjects [33]. After RV infection, COPD, but not normal cells, 

showed further increases (p=0.008) in the numbers of goblet cells compared with respective sham-

infected cell cultures [33].  

These changes were associated with increased expression of FOXA3, a transcription factor 

expressed in mucin-secreting cells at baseline (p<0.001) as well as after RV infection in COPD 

cells (p=0.008). In contrast, the basal mRNA expression of FOXA2, a transcription factor that 

negatively regulates mucin-secreting cell differentiation, and FOXJ1, which promotes ciliated cell 

differentiation, were relatively lower in COPD compared to normal cell cultures [33]. 

 

9.1.2. Influenza viruses 

Influenza A viruses (IAVs) interact with mucins and underlying ciliated cells. However, removal of 

the terminal sialic acids from mucins reduced virus binding to the mucus, confirming specific 

binding to sialylated receptors of the mucins [34]. Nevertheless, infection can occur in cells 

independently of sialic acids and involved the phosphatidylinositol 3-kinase (PI3K) pathway [35].  
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Since MUC1 is sialylated, it has the potential to bind to virions, reducing the ability to infect host 

cells and limiting infection [36].  

Human lung epithelial cells are more susceptible to infection by pathogenic IAVs than low 

pathogenic viruses [37]. The 2009 H1N1 pandemic human IAV closely associates with MUC1 [36]. 

In human bronchial epithelial cell (HBEC) culture, infection with pathogenic seasonal H1N1 IAV 

resulted in the virus only being detected in MUC5AC-positive mucin-secreting cells whilst the 

infection significantly induced the expression of MUC1 mRNA (p<0.05) [38]. In vivo Muc1−/− mice 

had heightened inflammatory responses to IAV compared to wild-type mice. Muc1−/− mice reached 

maximal viral titres earlier than wild-type mice, but also exhibited enhanced inflammatory 

responses to infection when viral titres were equivalent [36].  

In vitro, NCI-H292 cells infected with different IAV strains (seasonal and pandemic) and different 

subtypes (H3N2 and H1N1) induced MUC5AC gene expression after 16 hours [39]. Seasonal IAV 

strains were stronger inducers of MUC5AC expression compared to pandemic strains, and among 

these seasonal strains, the IAV A/Scotland/20/74 (H3N2) strain was the most efficient, with a 40-

fold increase over non-infected cells 24 hours after infection, compared with a maximal 300-fold 

increase seen with phorbol ester stimulation [39]. The induction of MUC5AC correlated positively 

with viral matrix M2 gene expression, a direct index of viral replication [39]. Infection of NCI-H292 

cells increased the phosphorylation of extracellular signal-regulated kinases (ERK), with a first 

wave of activation starting as early as 5 minutes, and the second wave at 6 hours.  The latter wave 

of activation being coincident with the first round of virus replication. Thus, the second wave of 

phosphorylated ERK was replication-dependent [39]. Furthermore, epidermal growth factor 

receptor (EGFR) was also shown to be involved in IAV-mediated MUC5AC mRNA expression and 

MUC5AC protein production [39]. 

In vitro, human alveolar adenocarcinoma cells (A549) infected with IAV H1N1, showed down-

regulation of two micro RNAs (miRNAs) (miR-17-3p and miR-221) targeting GALNT3 mRNA, that 
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belongs to the family of uridine diphosphate (UDP)-GalNac transferases and catalyzes the O-

glycosylation of mucin, leading to mucin production [38]. The induction of GALNT3 mRNA 

correlated with the release of viral genomic RNA into the culture supernatants. Both the viral 

genomic RNA and the viral titres were significantly reduced (p<0.05) in Galnt3-/- mice infected with 

IAV H1N1 [38]. 

IAV H1N1 infection of Muc5ac transgenic mice that overexpress lung Muc5ac mRNA by ~20–fold 

and Muc5ac protein ~18–fold in the bronchoalveolar lavage (BAL) have significantly reduced lung 

viral loads (p<0.001) compared with wild-type mice [40]. Conversely, C57/B16 mice infected with 

IAV H3N2 upregulate Muc5ac gene expression on days 3 and 4 after infection, which correlates 

with the peak of virus load [39]. 

 

9.1.3. Respiratory syncytial virus 

Ex vivo respiratory syncytial virus (RSV) infection of well-differentiated primary HBECs increased 

mucus secretion and increased the numbers of mucin-secreting cells compared to sham infection 

[41]. Furthermore, in vitro RSV infection of A549 human lung epithelial cells elicited an 8-fold 

increase in the expression of MUC1 mRNA in a time-dependent manner, preceded by a 10-fold 

increase in TNFα production (p<0.05) [42]. Another study showed that in vitro RSV infection of 

A549 cells induced significant increases of MUC8 gene expression compared to uninfected cells 

[43]. 

RSV induced significantly increased levels of MUC15, MUC20, MUC21 and MUC22 mRNA in 

A549 epithelial cells, compared with cells infected with human metapneumovirus, and increased 

levels of MUC4 and MUC16 (p<0.05) compared with uninfected cells [43]. Increased levels of 

MUC5AC mRNA (p<0.05) were also found in primary normal human bronchial epithelial cells 
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(NHBECs) after 15 days of RSV infection [44], and increased Muc5ac gene expression is found in 

mice after RSV infection [45].  

Recombinant RSV was able to infect p63+ basal cells both before and after the formation of a well-

differentiated epithelium. In the presence of ongoing RSV infection, the airway epithelium forms a 

monolayer and then differentiates, showing a significant reduction of ciliated cells and increased 

numbers of MUC5AC and MUC5B secretory cells [46]. 

 

9.2. Mucin regulation by bacterial products 

Many respiratory bacterial infections such as Haemophilus influenzae, Streptococcus pneumoniae 

and Pseudomonas aeruginosa are common causes of COPD exacerbations and have many 

complex interactions with the mucins of the lower airways. Bacteria that up-regulate the 

synthesis/secretion of mucins in vitro are summarised in Table 4. 

 

9.2.1. H. influenzae and S. pneumoniae 

In vitro a lysate of non-typeable H. influenzae (NTHi) applied to A549 cells increased the early 

release of interleukin (IL)-8 and later production of MUC1 protein in a dose- and time-dependent 

manner through TLR2 [47]. The increased release of IL-8 was suppressed by MUC1 

overexpression and enhanced by MUC1 knockdown. Notably, treatment with NTHi lysate-induced 

tumor necrosis factor (TNF)-α release following the up-regulation of MUC1, whereas MUC1 was 

completely inhibited by pre-treatment with soluble TNF-α receptor [47].  

NTHi upregulated the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-

dependent MUC2 mRNA transcription through the transforming growth factor (TGF)-β-Smad 

signaling pathway together with the TLR2-myeloid differentiation primary response 88 (MyD88)-
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TGF-β-activated kinase (TAK1)-NF-κB-inducing kinase (NIK)-IκB kinase (IKK) β/γ-inhibitor of 

kappa B (IκB) α pathway [48]. Pre-treatment of NTHi with a TGF-β neutralizing antibody reduced 

the up-regulation of MUC2 transcription [48]. In addition, NTHi activates the p38 mitogen-activated 

protein kinase (MAPK) α- and β-mediated upregulation of MUC5AC transcription [49], but only 

after bacterial cell disruption [49]. This up-regulation of MUC5AC is driven by P6, a 16-kDa outer 

membrane lipoprotein that is well conserved in NTHi in a human lung epithelial cell line, in primary 

HBECs and in vivo in mouse lungs. This requires the TLR2–MyD88–interleukin-1 receptor-

associated kinase 1 (IRAK1)–TNF receptor associated factor (TRAF6)–TAK1-dependent p38 

MAPK-activating protein-1 (AP1) and IKKβ-IκBα-NF-κB signalling pathways. MUC5AC mRNA 

expression is also induced in vitro by epidermal growth factor (EGF) that acts synergistically with 

NTHi, inducing the activation of p38 MAPK and ERK [50]. Combined challenged with NTHi and S. 

pneumoniae, synergistically induced MUC5AC expression in vitro via the TLR2/4-MyD88-TAK1 

signalling cascade and activation of MKK3/6-p38 and ERK-MAPK pathways, but also by the 

activation of an AP-1 mechanism [51].  

In vivo, weekly exposure to aerosolized NTHi lysate in mice did not increase gene transcription of 

the secreted or transmembrane mucins in the lower airways [52]. Combined exposure to both 

NTHi and cigarette smoke in vivo in mice induces significant increases in Muc5B (p=0.041) and 

Muc5AC (p=0.045) mRNA levels and increased numbers of periodic acid–Schiff (PAS) positive 

cells (indicative of mucin-secreting cell metaplasia) in large and small airways [53]. 

The activation of TGF-β type II receptor-Smad3/4 signaling in vitro, leads to down-regulation of p38 

MAPK activation by inducing MAPK phophatase-1, thereby acting as a negative regulator of 

MUC5AC induction [54]. Finally, activation of the PI3K-Akt pathway leads to the down-regulation of 

NTHi-induced MUC5AC transcription via negative cross-talk with the p38 MAPK pathway [49]. 
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9.2.2. P. aeruginosa 

P. aeruginosa engages the MUC1 ectodomain through its adhesin, flagellin [55, 56]. In primary 

human alveolar macrophages isolated from the BAL of healthy subjects and human monocytic cell 

line (THP-1 cells), P. aeruginosa infection significantly increased MUC1 expression compared to 

uninfected cells [57]. Macrophages recognize this bacterium through TLR4 and the stimulation of 

the THP-1 cells with P. aeruginosa increased MUC1 protein levels 5.4-fold, whereas pre-treatment 

with the viral inhibitory peptide of TLR4 significantly reduced P. aeruginosa-induced MUC1 RNA 

levels down to 1.3-fold [58]. Furthermore, P. aeruginosa infection of human NCI-H292 airway 

epithelial cells increased MUC5AC mRNA and protein [59]. 

Infection with P. aeruginosa strain K in mice increased Muc1 expression in BAL compared to sham 

infection [55]. Muc1−/− mice had reduced colonization of P. aeruginosa (p<0.05) due to increased 

clearance by heightened early inflammatory responses to the infection, compared to wild-type mice 

[60]. Furthermore, P. aeruginosa strain K infection increased Muc5ac mRNA expression by 3-fold 

compared with flagellin-deficient mutant mice [59]. 

 

10. Role of secreted mucins in the pathogenesis of stable COPD 

10.1 Mucin gene SNPs and the risk of COPD development 

Most mucin genes contain a central region with tandem repeat sequences termed minisatellites 

(MS or variable number of tandem repeats (VNTR) >10 and <100bp) due to their length whereas 

microsatellites or short tandem repeats (STR) are <10 bp. Each mucin gene has a VNTR, but there 

is little homology between the different mucins [61, 62]. Although its effect on function is still 

unclear, the number of VNTR within many mucin genes has been associated with susceptibility to 

human diseases.  
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The human MUC8 gene is located on chromosome 12q24.3 in a sub-telomeric chromosomal 

location and has 5 exons and 4 introns. It has 6 different (polymorphic) minisatellites, termed 

MUC8-MS1 to -MS6 that are meiotically stable and subject to Mendelian inheritance, each with 2 

different alleles [61]. In a case-control study performed on COPD patients (n=123, FEV1/FVC post-

bronchodilator <0.70) and control subjects (n=229, 109 female, average age 59.5 years) there was 

a significant association between the presence of a MUC8-MS5 minisatellite polymorphism, 

represented by the presence of short alleles (2/2 repeats), and the risk of COPD [63].  

The MUC5B gene common promoter variant rs35705950 is the strongest genetic risk factor for 

idiopathic pulmonary fibrosis (IPF), both in the sporadic and familial setting, and may also be 

associated with a less rapid disease course [18, 64]. MUC5B rs35705950 T-carrier status is 

selectively associated with increased protein expression of MUC5B only in IPF patients. The 

MUC5B SNP rs35705950 disrupts a CpG motif in the promoter region. 32bp downstream of the 

rs35705950 SNP is a highly conserved FOXA2 binding motif. This region is hypermethylated in 

IPF and is associated with increased expression of MUC5B in lung tissue. This hypermethylation 

may result in increased occupancy of the FOXA2 binding motif leading to increased MUC5B 

expression (Caramori G et al 2019 under revision). 

Genotyping of the MUC5B promoter polymorphism rs35705950 was performed in non-Hispanic 

whites (n=454, 253 males, average age 66 years, 152 current smokers, average 49.5 p-y, FEV1 

79% of predicted) within the COPDGene cohort with interstitial features defined by the presence of 

interstitial or emphysematous features in >10% of their lung volume. This reported frequencies of 

0.7% for MUC5B TT homozygotes (the minor allele), 20.7% for GT heterozygotes and 76.8% for 

GG homozygotes (the major allele) [65].  MUC5B expression in lung tissue of COPD patients with 

interstitial features did not vary between homozygotes and heterozygotes [18, 66]. However, 

rs35705950 was associated with a 61% lower risk of prospectively reported exacerbations, a 

longer time-to-first event of acute respiratory disease and 40% fewer events of acute respiratory 
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disease [65]. These subjects also had a lower risk of severe exacerbations that required an 

emergency room visit or hospitalisation compared to those without the polymorphism [65].  

Clearly more studies are needed in this area using larger populations of deeply phenotyped COPD 

patients. 

 

10.2 Sputum and mucins in stable COPD 

COPD patients often have sputum production [67], and many meet the criteria for the diagnosis of 

chronic bronchitis, defined as consecutive months of cough and sputum production over a period 

of 2 years. The presence of chronic bronchitis is a predictor of worse overall mortality, COPD-

related death, increased exacerbation frequency, accelerated decline in lung function and 

worsening quality of life [68-70]. COPD patients who are persistent sputum producers defined as 

patients bringing up phlegm for four or more days of the week (n=26) have increased rates of 

bacterial colonization and pneumonia compared to non-persistent sputum producers who do not 

produce phlegm except during an exacerbation (n=26). Indeed, bacteria were detected more 

frequently in persistent sputum producers (60% of total), compared to non-persistent sputum 

producer (only 1 patient, equal to the 7% of the total). The most frequent microorganisms isolated 

in persistent sputum producers were H. influenzae (n=7) and S. pneumoniae (n=3). H. influenzae 

was the most isolated bacteria in the sputum of non-persistent sputum producer patient [71].  

Induced sputum and bronchoabsorption samples were collected from patients with chronic 

bronchitis and COPD (n=68), control smokers with normal lung function (n=34) and non-smoking 

subjects (n=29) [72]. Sputum and bronchoabsorption sample composition was different between 

chronic bronchitis and COPD patients with an increased (~3 fold) amounts of solids compared with 

both control groups [72]. In patients with chronic bronchitis and COPD there were increased 

amounts of total sputum mucin compared to control smokers with normal lung function but not in 
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non-smoking subjects as determined using size exclusion chromatography coupled on-line to multi 

angle laser light scattering (SEC/MALLS) [72]. Total mucin was not measured in the 

bronchoabsorption samples [72]. Spontaneous sputum was collected in a subset of six patients 

with chronic bronchitis and COPD and sputum partial osmotic pressure correlated directly with 

sputum percentage of solids when measured with a custom-designed direct-membrane colloid 

osmometer incorporating a 10-kD membrane [72]. In vivo muco-ciliary clearance measured by the 

gamma scintigraphy correlated negatively with the percentage of solids in bronchoabsorption 

samples in a distinct subset of 43 patients with chronic bronchitis and COPD [72]. 

In another smaller study spontaneous/induced sputum was collected from stable COPD patients 

(n=15) and from a control group of smokers with normal lung function (n=17) [73]. Samples were 

separated into two phases: “gel”, for samples which were able to support their own weight when 

separated by tweezers and “sol” those were more liquid. There were no significant changes in 

sputum sample mucin concentrations between COPD patients and controls [73]. Quantisation of 

polymeric MUC5AC and MUC5B was performed using a combination of gel-filtration 

chromatography and isopycnic density-gradient centrifugation and quantitative Western blotting. 

MUC5AC and MUC5B proteins were present in all sputum samples from COPD patients and 

controls. MUC2 was present in 2 samples from COPD patients and 1 sample from controls but 

only at very low levels. MUC5AC protein concentration (relative to gel weight) was significantly 

increased in the gel phase of sputum samples from controls but not COPD patients. In COPD 

patients, sputum MUC5B was present in different glycoforms with a predominance of low-charge 

glycoforms. The MUC5B/MUC5AC ratio in the gel phase of the sputum correlated inversely with 

post-bronchodilator (BD) FEV1.  

The Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS), is an 

observational study that investigated a large cohort of COPD patients (n=2,981, current or former 

smokers with a smoking history of more than 20 p-y [74]. SPIROMICS collected induced sputum 
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from COPD patients with an FEV1 >35% of predicted (n=917) and control never-smoking subjects 

(n=69). COPD patients were divided into different disease stages: (i) GOLD stage 0, n=303; (ii) 

GOLD stage 1, n=165; (iii) GOLD stage 2 and (iv) GOLD stage 3, n=85. In addition, 113 “COPD” 

patients had a self-reported diagnosis of bronchial asthma compared to no subjects in the control 

group.   

Induced sputum total mucin determined using SEC/MALLS was significantly increased in COPD 

GOLD stage 2 patients compared to stage 0 and 1 but not control non-smokers. Sputum total 

mucin was increased in COPD GOLD stage 3 patients compared to non-smoking control subjects. 

Sputum total mucin was also increased in all smokers (current of former) compared to control non-

smokers and in smokers (current or formers) with chronic bronchitis (n=434) compared to smokers 

(current or formers) without chronic bronchitis (n=397). Induced sputum total mucin concentration 

was associated with the prospective annualized exacerbation rate during the study (zero 

exacerbations per year n=596, more than zero exacerbations per year n=262, and ≥2 

exacerbations per year n=36). Induced sputum total mucin concentration was increased in all 

patients with exacerbations compared to patients without exacerbations and correlated significantly 

with the presence of chronic bronchitis (ROC = 0.79).  

MUC5B and MUC5AC within induced sputum were analysed using mass spectrometry in a subset 

of COPD patients (mild-to moderate n=59 and severe n=28) and in control groups of smokers 

(current or formers) with normal lung function (n=42) and never-smoking subjects (n=19). The 

concentration of MUC5B within induced sputum was on average 10 times greater compared with 

MUC5AC across all groups. The MUC5B concentration was significantly increased (~3 fold) in 

COPD stage 3 patients only compared to non-smokers, but not compared to control smokers with 

normal lung function and mild-to-moderate COPD patients. The concentration of MUC5AC in 

induced sputum was significantly increased (~10 times) in all (mild-to-moderate and severe) COPD 

patients and control smokers with normal lung function compared to non-smoking controls, but 
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there were no significant differences between smokers with or without COPD. MUC5AC was also 

significantly increased in all current smokers compared to non-smoking control subjects. Overall, 

MUC5AC and MUC5B concentrations in induced sputum were significantly increased in COPD 

patients with chronic bronchitis compared to those without chronic bronchitis regardless of the 

presence of pulmonary emphysema. 

 

10.3 Bronchial tissues and mucins in stable COPD 

AB-PAS and MUC5AC and MUC5B immunohistochemistry was quantified in bronchial rings 

obtained from COPD patients (n=20) control smokers with normal lung function (n=20) and non-

smoking subjects (n=10) [75]. The area occupied by MUC5AC+ cells in bronchial submucosal 

glands was increased in COPD (20%, 5.5-31.7%, gland area) compared with smokers with normal 

lung function (9.5%, 2.5-17.5%) and non-smoking subjects (2%, 0.4-6.2%). The area occupied by 

MUC5AC+ cells in the bronchial surface epithelium was also increased in smokers (with/without 

COPD, 73.5%, 25-92%, epithelial area) compared with non-smoking subjects (15%, 2.7-32%) 

despite no difference in gland size (Reid index) [76] between groups. Alcian blue (AB)-PAS 

staining and MUC5B expression were also not significantly different between groups.  

Previous reports have indicated conflicting results regarding MUC5AC and MUC5B expression in 

COPD.  For example, MUC5AC expression correlated with the degree of airflow obstruction, and 

MUC5AC and MUC5B expression correlated with p-y. Furthermore, increased MUC5AC 

expression was reported in the bronchial surface epithelium from smokers (with or without COPD) 

[77]. In addition, there was a significant correlation between MUC5AC expression and p-y [75] 

highlighting the potential of tobacco smoking and its components such as acrolein and oxidants to 

induce MUC5AC synthesis in bronchial epithelial cells in an NF-κB-dependent process [14].  
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These data are in contrast with a more recent smaller study comparing moderate-to-severe COPD 

(n=15), smokers with normal lung function (n=12) and non-smokers (n=11) [78]. Six endobronchial 

mucosal biopsies per subject were obtained by bronchoscopy.  Smokers with normal lung function 

had a significantly increased mucin-secreting cell density and mucin volume density compared to 

smokers and COPD patients. All current smokers (n=19) compared with all non-smoking and 

former smoking subjects (n=19) had a significantly increased mucin-secreting cell density and 

mucin volume density. A significant correlation between p-y and mucin-secreting cell density was 

shown. However, no significant difference in mucin-secreting cell density and mucin volume 

density was observed in current smoker COPD patients compared to ex-smokers with COPD [78].  

Chronic bronchitis patients (n=21, 19 COPD patients and 2 smokers with normal lung function) had 

increased mucin-secreting cell density, but not mucin volume density compared to patients without 

chronic bronchitis (n=26). The same results were found comparing COPD patients with and without 

chronic bronchitis, with increased mucin-secreting cell density in chronic bronchitis COPD patients.  

Multivariate analysis indicated that current smoking and chronic bronchitis are significant predictors 

of mucin-secreting cell density.  

Fresh lung tissues collected from COPD patients and from smokers with normal lung function 

(number and clinical data not specified) who underwent lung resection surgery for suspected or 

confirmed lung cancer, as distal from tumour as possible were examined for mucus expression 

[73]. Sections from each lung sample were stained with haematoxylin and eosin (H&E) and AB-

PAS and immunostained for MUC5AC and MUC5B. Tissues from COPD patients and smokers 

with normal lungs showed intense staining of cells in the epithelial surface and submucosal glands, 

with increased MUC5AC in the epithelial surface cells and increased MUC5B in submucosal 

glands cells, but no specific count data was provided. Minor staining of MUC5AC was observed in 

the submucosal glands in both groups whilst MUC5B staining was present in the surface 

epithelium from COPD patients but not smokers with normal lung. 
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Primary HBECs were obtained from bronchial tissues harvested from lung transplant COPD 

patient recipients (n=16), as well as from control non-COPD subjects (n=17) [79]. Primary HBECs 

were differentiated in vitro at ALI culture with or without IL-13. In the presence of IL-13, mucin-

secreting cell differentiation, MUC5AC (mRNA and protein), SAM pointed domain-containing Ets 

transcription factor (SPDEF) and anterior gradient protein 2 homolog (AGR2) expression were all 

significantly increased in HBECs from COPD patients compared to controls, but FOXA2 

expression was significantly reduced. In the absence of IL-13, FOXA2 expression was unchanged. 

Interestingly, a proteomic study has been undertaken examining brush biopsies obtained from e-

cigarette users (vapers, n=10) compared to controls that were smokers with normal lung function 

(n=15) and non-smoking subjects (n=18) [80]. MUC5AC protein levels were increased both in 

vapers and control smokers with normal lung function compared to control non-smoking subjects, 

whereas there was a non-significant trend towards increased MUC4 protein levels only in subjects 

who vaped. 

 

10.4 Peripheral lung tissues and mucins in stable COPD 

Airflow obstruction in COPD is caused by small (peripheral) airway lesions and their intraluminal 

levels of mucus correlates with the degree of COPD severity [81]. The point of greatest airflow 

obstruction in COPD is at the level of the intraparenchymal airways where the diameter is less than 

3mm (small airways) [82].  

Lung tissue samples were obtained from COPD patients (n=101) with severe (GOLD stage 3) and 

very severe (GOLD stage 4) after lung volume reduction surgery for advanced pulmonary 

emphysema [83]. The control group were lung tissue samples obtained from milder COPD patients 

(n=101) (GOLD stages 0–2) none of whom underwent on lung volume reduction surgery. Digital 

images of the airway histology were captured. The size of small conducting airways was estimated 
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by measuring the length of the basement membrane and determining lumen area in both the 

partially collapsed state where the basement membrane was folded, and in a simulated fully 

expanded state calculated by subtracting the area of the epithelium from the area of a circle with a 

perimeter equal to the airway basement membrane length. The severity of luminal occlusion was 

expressed by determining the fraction of lumen areas occluded by inflammatory exudate 

containing mucus. The thickness of the entire airway wall as well as its epithelial, lamina propria, 

muscle, and adventitial compartments were determined by dividing their measured areas by the 

length of the airway basement membrane. The percentage of airways containing a collection of 

lymphocytes consistent with the formation of a lymphoid follicle was also defined. The COPD 

patients were divided in four quartiles according to the percentage of occlusion of the fully 

expanded lumen of their small airways and the median follow-up time was 79 months. As 

expected, the median survival time was shortest in the quartile of COPD patients with the most 

severe luminal occlusion (48 months). The median survival time was longest in patients with the 

least luminal occlusion (>92 months). Patients in the quartile with the highest luminal content had a 

3-fold greater risk of mortality compared to the quartile of patients with the lowest luminal content. 

The severity of lumen occlusion was not associated with the diagnosis of chronic bronchitis, airway 

wall thickening, the percentage of the airways containing lymphoid follicles or predicted survival 

after lung volume reduction surgery. 

In another study, lung tissue samples were obtained from COPD [n=9, 9 male, average FEV1 of 

69±5%, FEV1/ forced vital capacity (FVC) 62±2] patients that underwent lung resection for a solitary 

peripheral carcinoma, avoiding areas involved by tumour. Samples were also obtained from age- 

and pack year-matched smokers with normal lung function (n=6, 2 females, mean FEV1 of 79±2%, 

FEV1/FVC 97±4) and non-smokers (n=6, 6 male, average FEV1 of 103±5%, FEV1/FVC 81±3) [84]. 

Two sections from each subject were stained with AB-PAS. In lung tissue from COPD patients 

there was significantly increased intraluminal staining (neutral mucins). 
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MUC5B immunostaining of the luminal mucus was significantly more frequent in lung tissue from 

COPD patients (n=6 of 9), compared with smokers with normal lung function (n=1 of 6) and with 

non-smokers (n=1 of 6). MUC5AC was increased in the bronchiolar epithelium of the small airways 

from COPD patients compared with smokers with normal lung function and with non-smokers. 

These changes may contribute to the pathogenesis of small airway obstruction and increased risk 

of pneumonia of COPD patients. 

Lung samples from COPD patients (n=14) who underwent pulmonary nodule resection were 

compared with lung samples from smokers with normal lung function (n=14) and with non-smokers 

(n=14) [85]. Cigarette smoke history was not significantly different between the COPD patients and 

smokers with normal lung function. The number of smoking years was significantly higher in COPD 

patients than in smokers with normal lung function. FEV1 (% predicted) and FEV1/FVC ratio were 

significantly lower in COPD patients than in smokers with normal lung function and non-smoker 

subjects. To determine the inflammatory response and mucus secretion in the lung specimens, 

H&E was used to stain areas with inflammation, and AB-PAS was used to stain mucin 

glycoproteins. Lung tissue was then stained with mouse anti-human MUC5AC primary antibodies. 

H&E staining of lung tissues from COPD patients showed inflammatory cell infiltration and 

destruction of epithelial integrity whereas the airway epithelial cells in non-smokers had less 

inflammatory cell infiltration and were well-arranged, with complete basement membranes. The 

pathological features of the cells of lung tissue in smokers with normal lung function were in-

between those of non-smokers and COPD patients. Lung tissue from COPD patients possessed 

54% AB-PAS-positive areas compared with 21.3% in lung tissue from smokers with normal lung 

function and 5% in the lung tissue from non-smokers. The average optical density was used to 

determinate the expression of MUC5AC. In lung tissue from COPD patients MUC5AC was 

increased compared to smokers without with normal lung function. In tissue from smokers without 

with normal lung function MUC5AC was increased compared to non-smokers. 
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In another study, BAL obtained from stable COPD patients (n=42, mean FEV1 post-bronchodilator 

65% of predicted) was compared to that from smokers with normal lung function (n=12, mean 

FEV1 post-bronchodilator 106% of predicted) and from never smokers (n=5, mean FEV1 post-

bronchodilator 107% of predicted) [86]. MUC5AC and MUC5B levels were increased in BAL from 

stable COPD patients compared to that from smokers with normal lung function and non-smokers. 

The ratio of MUC5AC:MUC5B increased from 0.3 in non-smokers to closer to 1.5 in smokers with 

normal lung function and 0.5 in stable COPD patients.  

BAL was also collected from patients with stable severe COPD (n=45, mean FEV1 post-

bronchodilator 41±10% of predicted) [87]. Patients were divided into two groups: “colonized” 

(n=14) or “non-colonized” (n=31). The most common pathogens collected from “colonized” patients 

were H. influenzae (n=8), S. pneumoniae (n=2), Moraxella catarrhalis (n=2), Neisseria meningitidis 

(n=1) and Escherichia coli (n=1).  COPD patients with bacterial colonization had increase 

frequency of exacerbation.  

In BAL from stable COPD patients, MUC2 had the highest levels of all mucins (mean 8.1±4.4 

ng/mL). MUC5AC levels were 80.3±11.2 pg/mL and MUC5BC levels were 6.4±4.0 pg/mL). In BAL 

from stable colonised patients MUC2 levels were reduced compared to stable uncolonised patients 

(6.36±1.3 vs. 8.96±4.9 ng/ml). MUC5AC (80.3±4.3 vs. 80.36±13.0 pg/ml) and MUC5B (8.86±10.8 

vs. 4.26±3.0 ng/ml) levels were not significantly different between colonised and uncolonised 

groups. 

 

11. Role of secreted mucins in the pathogenesis of COPD exacerbations 

Unfortunately, there are only a few studies that have examined the potential contributions of 

mucins to the pathogenesis of COPD exacerbations. 
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11.1. Blood mucins in COPD exacerbations 

Serum levels of cancer antigen (CA)-125 (an epitope of MUC16) were measured in a cohort of 

COPD patients, hospitalized for COPD exacerbation and control subjects (n=40) [88]. COPD 

patients were classified into 2 groups high CA-125 (≥35 U/mL) and normal CA-125 (<35 U/mL). 

Serum CA-125 levels were significantly increased in COPD patients at stages 3 and 4, but not 

stage 2, compared to control subjects (median 33.94 U/mL vs 9.76 U/mL). In COPD patients, CA-

125 levels correlated with FEV1/FVC, disease severity, systolic pulmonary artery pressure (sPAP), 

tricuspid annular plane systolic excursion (TAPSE), tricuspid lateral annulus S velocity and with 

severity of tricuspid regurgitation and with right atrial size. Increased serum CA-125 levels 

identified the presence of associated of right ventricular failure with a sensitivity of 89.5% and 

specificity of 85.7%.  

In another study, blood from COPD patients (n=52) hospitalized during COPD exacerbation was 

collected on the admission day, prior to the administration of antibiotics or any other medication. 

There was no control group [89]. CA125 was measured by chemiluminescence and the serum 

reference range of CA-125 was <35 KU/L. GOLD stage D COPD patients had increased levels of 

CA-125 compared to GOLD stage C patients (53.8±4.6 KU/L versus 14.1±5.4 KU/L). 

 

11.2 Sputum mucins in COPD exacerbations 

Sputum from COPD patients (n=9) was collected at the onset of a COPD exacerbation, defined as 

increased dyspnoea and cough, increased sputum volume and change in sputum colour (to be 

included in the study at least 2 symptoms with an onset within 7 days was required) [90]. All 

patients were treated with oral glucocorticoids for 10 days, and inhalation therapy with long-acting 

antimuscarinic antagonist and short- and long-acting beta2-agonist. The control group was 

represented by pulmonary secretions collected by endotracheal tubes of subjects who had no lung 
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disease (no clinical data provided). All patients were followed up 5-6 weeks after the onset of 

exacerbation and at the end another sputum sample was collected. Sputum samples from COPD 

patients during exacerbation had a 5-fold increased MUC5AC and a 2-fold increased MUC5B 

levels. Five-6 weeks later, at the end of the exacerbation, sputum MUC5AC levels remained ~3-

fold higher compared to pulmonary secretions from non-COPD controls but were 2-fold lower than 

at the start of the exacerbation. At the same time, sputum MUC5B levels in COPD patients 

decreased back to levels seen in controls. COPD sputum was also incubated with different 

concentrations (0-40%) of cigarette smoke condensate for 0, 24 and 36 hours. A dose-dependent 

inhibition of mucin degradation was observed compared to vehicle exposure although MUC5AC 

and MUC5B were degraded significantly after 24-36 hours. 

Induced sputum from COPD (n=78) patients was collected during COPD exacerbation (defined by 

a background diagnosis of COPD, according to GOLD recommendations, and at least two major 

symptoms of dyspnea, increased sputum purulence or production, or one major and one minor 

symptom of nasal discharge/congestion, wheeze, sore throat or cough, for at least two consecutive 

days) [91]. Induced sputum was also collected from each patient in the remission phase, 

considered to be when symptoms were alleviated after standard medical treatment for at least 5 

days. Sputum MUC1 levels were increased in COPD patients during exacerbation compared to the 

remission phase. 

 

12. Pharmacological modulation of the mucin synthesis/secretion/structure in the lower 

airways of COPD patients 

Although the symptoms of chronic bronchitis are associated with increased morbidity and mortality 

in the COPD patients, the pathophysiological and clinical significance of mucin changes during the 

stable phase and exacerbations and the therapeutic value of drugs that act on these mucins 
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(termed mucoactive drugs or mucin synthesis/secretion/structure modulators) is controversial, 

particularly in light of recent studies (reviewed above) showing a fundamental role of many mucins 

in innate immune responses of the human lower airways.  

We review here the in vitro and in vivo (both animal and human studies) effects of commercially 

available drugs and new compounds in preclinical or early clinical development that may influence 

the amount and/or biochemical structure of mucins in the lower airways of COPD patients. We also 

review clinical studies showing the effects of these drugs/compounds in the treatment of COPD 

patients in stable phase and/or during exacerbations. We did not consider studies performed in 

stable COPD patients with these drugs/compounds if: 

a) A placebo control group was absent. 

b) Their duration was less than 12 months, because of the well-established seasonality of the 

COPD exacerbations. 

c) Did not provide sufficient clinical details (e. g., age, smoking history, pre- and post-BD 

FEV1, FVC and their ratios) to have a likely diagnosis of COPD according to current standards. 

 

12.1. Effects of the drugs available for the treatment of COPD patients on mucin 

synthesis/secretion/structure 

It is noteworthy that there is a lack of controlled clinical trials investigating the effects of 

commercially available drugs for the treatment of COPD patients on mucin 

synthesis/secretion/structure in the lower airways. 

 

12.1.1. Inhaled and/or systemic glucocorticoids 
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The effects of glucocorticoids on MUC5AC expression are still controversial. In vitro their effects 

appear cell-type dependent. Fluticasone propionate significantly reduced MUC5AC protein levels 

in H292 human lung mucoepidermoid carcinoma cells [92]. In contrast, treatment with 

dexamethasone did not significantly change steady-state MUC5AC mRNA levels in cultured 

HBECs obtained from nasal polyps [93] and even enhanced both MUC5AC protein and mRNA 

levels in cultured normal HBECs [94].  

In HBECs grown at air–liquid interface (ALI), dexamethasone did not reduce mucin-secreting cell 

differentiation when cultures are co-stimulated with IL-13 [94]. Recent transcriptomic studies [95] 

identified genes upregulated in human bronchial brushings and endobronchial biopsies following 

budesonide treatment. Many genes associated with mucin-secreting cell differentiation such as 

ErbB4, runt-related transcription factor 2 (RUNX2), as well as janus kinases (JAK)/ signal 

transducer and activator of transcription proteins (STAT) and PI3K/AKT signaling pathways, were 

upregulated in response to budesonide. In contrast, a small pilot study evaluated patients with 

persistent untreated non-allergic rhinitis (NAR, n=12, mean age 39.5±4 years, all non-smokers) 

compared with patients with persistent NAR (n=12, mean age 48±4 years, all non-smokers) under 

regular treatment with nasal fluticasone furoate for at least 20 days and compared to normal 

control subjects (n=12, mean age 32.5±3 years, all non-smokers) [96]. No patients or control 

subjects had been treated in the previous 60 days with systemic and/or nasal glucocorticoids, anti-

histamine 1 receptor drugs, anti-leukotrienes, methylxanthines, or any kind of immunosuppressive 

drugs, mucolytics/antioxidants drugs by systemic or local routes. Each subject went underwent a 

single nasal scraping performed under direct visual inspection and defined the ratio between 

ciliated and mucin-secreting cells, usually in favour of ciliated cells [97]. Immunocytochemical 

staining for MUC5AC was performed [96] Nasal scrapes obtained from patients with untreated 

NAR showed different total numbers of nasal epithelial cells compared with scrapes from both 

normal subjects and NAR patients treated with nasal fluticasone furoate (92.3±17.2 vs 413.8±2.8 
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vs 407.8±62.6, respectively). Total nasal epithelial cell numbers were similar between NAR 

patients treated with nasal fluticasone furoate and normal subjects. In nasal scrapes from 

untreated NAR patients, the mucin-secreting cell percentage was significantly increased compared 

to normal subjects and to NAR patients treated with nasal fluticasone furoate (22.6±5.0 vs 4.4±0.6 

vs 3.0±0.4%, respectively). The numbers of MUC5AC+ nasal epithelial cells over the total number 

of nasal epithelial cells was increased in scrapes from untreated NAR patients compared to control 

subjects (41.8±6.4 vs 22.3±4.8%). 

In vivo, inhaled fluticasone propionate treatment of rhinovirus infection in mice, increased 

MUC5AC and MUC5B proteins in BAL at day 7 post-infection [98, 99]. Dexamethasone up-

regulated MUC5AC expression, and reduced MUC5AC production and mucin-secreting cell 

differentiation in animal models but had no effect on MUC5AC mRNA [100, 101].  

The effect of glucocorticoid therapy on the airway histology was determined in lung tissue samples 

obtained from COPD patients (n=94) with severe (GOLD stage 3) and very severe (GOLD stage 4) 

after lung volume reduction surgery for severe pulmonary emphysema, by comparing the histology 

of COPD patients not on therapy (n=16) with lung tissue samples from COPD patients who 

received inhaled glucocorticoid therapy only (n=45), and with lung tissue samples from COPD 

patients who received oral glucocorticoid therapy with or without inhaled glucocorticoid therapy 

(n=33) up until the time of their lung volume reduction surgery [83]. The size of the small 

conducting airways and severity of the luminal occlusion were estimated. COPD patients treated 

with oral glucocorticoid with or without inhaled glucocorticoid therapy were slightly less dyspnoeic 

but had a shorter 6-minute-walk, and reduced quality of life compared with treatment with inhaled 

glucocorticoid only and with COPD patients who did not receive glucocorticoid therapy. Neither 

oral glucocorticoid therapy nor inhaled glucocorticoid therapy affected luminal content or airway 

wall thickness. There was a negative association between glucocorticoid therapy and the 

percentage of airways containing lymphoid follicles, with pair wise comparisons showing 
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differences between patients that received oral glucocorticoid with or without inhaled glucocorticoid 

therapy and those who did not receive therapy. 

 

12.1.2. Inhaled anti-muscarinics 

Differentiation of mucin-secreting human airway epithelial cells grown at ALI by IL-13 can be 

prevented and reversed by anti-muscarinic (tiotropium) treatment, suggesting a direct role for non-

neuronal acetylcholine [102, 103]. Studies of animal models confirm this contention and show 

reduced mucin-secreting cell differentiation after anticholinergic treatment in COPD models [103]. 

In patients with chronic bronchitis and/or stable COPD it is debateable whether ipratropium, 

oxitropium and tiotropium significantly improve mucociliary clearance [104, 105]. Hemicholinium-3, 

a potent and selective choline uptake blocker, has been demonstrated to reduce MUC5AC 

production in H292 human pulmonary mucoepidermoid carcinoma cells stimulated with cigarette 

smoke [92]. 

 

12.1.3. Inhaled beta2-agonists 

Inhaled short-acting beta2 agonists promote mucus clearance by increasing airway luminal 

diameter; ciliary beat frequency by enhancing intracellular cAMP levels and mucus hydration by 

stimulating airway Cl− secretion via activation of cystic fibrosis transmembrane conductance 

regulator (CFTR) [106]. Together, this results in decreased mucus viscosity and allows easier 

transport by airway cilia. Inhaled long-acting beta2-agonists also stimulated mucociliary clearance 

[107, 108] which may reflect the in vitro ability of salmeterol to stimulate ciliary beat frequency 

[109]. In addition, formoterol significantly improves mucociliary clearance compared to placebo. 
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Finally, in animal models, short-term administration of beta2-agonists is associated with 

upregulation of mucociliary clearance [110, 111]. 

 

12.1.4. Phosphodiesterase-4 inhibitors 

EGF increases MUC5AC gene expression and protein production in A549 cells [112]. Roflumilast 

is a phosphodiesterase-4 inhibitor that did not change basal MUC5AC expression but dose-

dependently prevented EGF-enhanced MUC5AC mRNA and protein production. In human lung 

tissue from COPD patients (n=6) who underwent surgery for lung carcinoma, roflumilast prevented 

EGF-induced MUC5AC mRNA and protein expression. 

Well-differentiated HBECs infected with RSV and maintained until day 15 post-infection exhibit 

increased numbers of mucin-secreting cells and MUC5AC expression and a suppression of their 

antioxidant capacity [44]. All these RSV-induced changes were prevented by treatment with 

roflumilast. 

TAS-203 is an oral PDE4 inhibitor [113] that prevents EGF-induced intracellular and extracellular 

MUC5AC expression in NCI-H292 cells [114]. TAS-203, but not roflumilast, prevented cigarette 

smoking-enhanced BAL Muc5ac expression in an animal model of COPD [114]. 

 

12.1.5. Macrolides 

Macrolides are antibiotics that interfere with bacterial protein synthesis but may also have complex 

anti-inflammatory effects including modulation of mucin synthesis [115]. Macrolides induce the 

release of small amounts of mucin from isolated airway submucosal glands via partial agonism of 

muscarinic receptors, but conversely suppress stimulated mucin release by interfering with 

intracellular calcium handling [116]. Clarithromycin treatment of IL-13-stimulated HBECs drastically 
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reduced the levels of SPDEF, mucin-secreting cell specific calcium-activated chloride channel 

regulator 1 (CLCA1), ERK1/2 phosphorylation and overall mucin-secreting cell number [117].  

MUC5AC secretion from the human NCI-H292 cell line was decreased with both chloramphenicol 

and erythromycin [118]. MUC5AC mRNA expression was also reduced, most likely via inhibition of 

IL-13 signalling pathways [119]. 

 

13. Mucins synthesis/secretion/structure modulators already on the market for the 

treatment of COPD patients 

Despite many drugs/compounds being developed to modulate mucin synthesis/secretion/structure 

the mechanisms of action for most of these drugs are still not fully characterized and these 

drugs/compounds may also have a plethora of additional pharmacological effects including actions 

on inflammatory and oxidant pathways.  Thus, the beneficial clinical effects produced by these 

drugs/compounds may not reflect their direct action on mucins. 

The old classification of these drugs/compounds into “mucolytics”, “mucoregulators” “expectorants” 

has little value [120]. Mucolytics are defined according to (i) the presence of a free sulfhydryl group 

capable of dissociating the disulphide bonds within mucins that contribute to increased mucus 

viscosity and the formation of a gel or (ii) proteolytic enzymes such as DNAses, that dissolve the 

mucin gel through other mechanisms and thus, collectively potentially reducing the viscosity of the 

mucus itself.  In contrast, mucoregulators do not contain free sulfhydryl groups but may modulate 

mucin synthesis/secretion and expectorants increase the production of mucus to such an extent 

that it can be expectorated by coughing and/or are irritating and cause coughing which in turn 

helps to eliminate mucins [120]. 
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13.1. Ambroxol 

Ambroxol is a metabolite of the bromexine [121]. In IL-13-stimulated differentiated HBECs treated 

in vitro with ambroxol, there was a significant reduction in MUC5AC expression but no effect on 

antioxidant capacity [122]. In addition, pre-treatment of human lung epithelial cells with ambroxol 

inhibited cigarette smoke-induced MUC5AC expression [123]. 

In an animal model of lipopolysaccharide (LPS)-induced mucus hypersecretion, an inhaled solution 

of ambroxol inhibited BAL Muc5ac expression, enhanced the function of mucociliary clearance and 

promoted sputum excretion. Ambroxol also significantly reduced the number of LPS-induced 

inflammatory cells [124]. In an acute cigarette smoke-exposure model (10 cigarettes per day for 4 

days), pre-exposure to aerosolised inhaled ambroxol reduced lung Muc5ac mRNA levels and 

improved mucociliary clearance [123]. 

There is a complete absence of long-term, good quality controlled clinical trials of ambroxol in the 

prevention of COPD exacerbations. 

 

13.2. Carbocysteine  

Carbocysteine (S-carboximetilcysteine) is a mucin synthesis/secretion/structure modulator 

compound derived from cysteine with a blocked thiol group that is unable to break disulfide bonds 

[125]. Carbocysteine does not reduce the viscosity of canine tracheal mucus [126] or of human 

nasal mucus secretions [127]. However, in a murine model of COPD exposed subacutely to 

cigarette smoke, carbocysteine inhibits hypersecretion of tracheal mucus [128].  

 

13.2.1. Controlled clinical trials of carbocysteine in COPD exacerbations 



Acc
ep

ted
 M

an
us

cri
pt

 

 

 

A 1-year randomised, double-blind, placebo-controlled trial from 22 centres in China of COPD 

patients during exacerbation (n=709) has been reported.  Exacerbations were defined as at least 

2-day persistence of at least two major symptoms (worsening dyspnoea and an increase in sputum 

purulence, volume, or both) or of any single major symptom plus more than one minor symptom 

(upper airway infection, unexplained fever, and increased wheezing). There was a reduced 

number of exacerbations (325 versus 439) in patients randomly assigned to receive carbocysteine 

1500 mg (n=353) compared to placebo (n=354) daily for a year with an exacerbation risk ratio of 

0.75 (p=0·004) [129]. Analysis of the time-course showed that the effect on exacerbations was 

evident at 6 months (risk ratio 0·70, p=0.108 at 3 months; risk ratio 0.79, p=0.002 at 6 months; risk 

ratio 0.73, p=0.002 at 9 months) [129]. 

 

13.3. Erdosteine       

Erdosteine (N-carboximetinylthioacetyl-acetyl-homocysteinatiolacotone) is a synthetic derivative of 

the natural amino acid methionine [130].  This drug contains two sulfhydryl groups; once the bonds 

are broken, the release of these two groups allows the disulphide to bind to the mucins [130]. The 

potential reduction of sulfhydryl groups also has antioxidant properties [131].  

 

13.3.1. Controlled clinical trials of erdosteine during COPD exacerbations 

The RESTORE (Reducing Exacerbations and Symptoms by Treatment with ORal Erdosteine in 

COPD) study was a phase III multinational, randomised, double-blind, placebo-controlled parallel 

group study that randomised COPD patients to erdosteine (n=228) or placebo (n=239) added to 

usual maintenance therapy for 12 months after a 2-week run-in period [132]. The study reported no 

statistically significant difference between treatment groups in mean number of exacerbations after 
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12 months (2.39 versus 2.30 exacerbations for erdosteine and placebo respectively). However, 

erdosteine treatment was associated with a 24.6% decrease in the duration of all exacerbations 

(9.5±7.2 days with erdosteine versus 12.6±9.7 days with placebo; p=0.023) [132].  Exacerbations 

in this study were defined as a symptomatic worsening beyond normal day-to-day variations 

requiring a change in regular medication and/or healthcare resources utilisation: mild (increased 

use of bronchodilators), moderate (treatment with antibiotics and/or systemic corticosteroids and 

additional medical assistance) and severe (visit to an emergency department/hospitalisation).  

Two double-blind randomised controlled trials also assessed erdosteine in combination with 

antibacterial therapy in patients with COPD exacerbations.  The first study was double-blind, 

parallel group study that evaluated 237 COPD patients treated with erdosteine or placebo in 

association with amoxicillin for a minimal of 7 days, maximum of 10 days [133].  Exacerbations 

were defined by the presence of functional signs of chronic bronchitis in the exacerbation phase 

according to ATS standard (1987).  Concomitant treatments with mucoactives, anti-inflammatories 

including glucocorticoids, oral beta2-agonists, diuretics, anticholinergics, anti-histamines and 

calcium blockers were avoided during the trial, but inhaled beta2-agonist were allowed as required 

except for the last 12 hours before each clinical visit [133]. 

The global clinical assessment (GCA) was chosen as the primary end point as a general indication 

of activity with objective/subjective evaluation of the clinical picture. GCA is a cumulative index 

composed of 6 items; 2 related to sputum parameters (appearance and viscosity), and 4 to 

functional signs of chronic bronchitis (difficulty to expectorate, catarrh at auscultation, cough, 

dyspnoea intensity). COPD patients treated with erdosteine had a more rapid reduction in GCA 

score [a reduction of 3.88 (from 12.25 to 8.37) vs. 2.83 (from 12.70 to 9.87) compared with placebo 

over days 0–4; and 3.45 (from 8.37 to 4.92) vs. 2.49 (9.87 to 7.38) with placebo over days 5–10 

(p<0.01 for first and last days)] [133].  Secondary endpoints of efficacy including sputum volume 



Acc
ep

ted
 M

an
us

cri
pt

 

 

 

and spirometry parameters were not statistically different between treatments and no differences in 

safety measures were discerned [133]. 

The second trial involved COPD patients with an exacerbation (n=200) and body temperature 

above 38°C. Patients received ciprofloxacin, plus either erdosteine or placebo, for 7 days [134]. By 

days 3 and 8, the global assessment score had fallen more in those treated with erdosteine (by 

2.45 vs. 1.91 with placebo, p=0.001 by day 3; and by 3.03 vs. 2.33 with placebo, p=0.01 by day 8) 

[134]. 

 

13.4. N-acetylcysteine 

N-acetylcysteine (NAC) hydrolyzes the disulfide bonds of mucus proteins. In vitro and animal 

models indicate that NAC also has antioxidant and antiinflammatory properties. The effectiveness 

of NAC treatment of COPD patients in stable phase and during COPD exacerbation is still 

controversial [135]. Orally administered NAC does not penetrate into the lower airways or bronchial 

lavage fluid [136] and inhaled NAC (pH 2.2) can cause bronchoconstriction and airway 

inflammation [137]. 

 

13.4.1. Controlled clinical trials of N-acetylcysteine in stable COPD  

BRONCHUS (Bronchitis Randomized On NAC Cost-Utility Study) was a large phase III, double-

blind, randomised placebo-controlled parallel-group trial that randomised COPD patients (GOLD 

stage 2 and 3) to oral NAC added to usual maintenance therapy (n=256) versus placebo added to 

usual maintenance therapy (n=267) for 3 years [138]. The decline in FEV1 and reduction in 

diffusion capacity were not significantly different between the NAC group and the placebo group 

[138]. Furthermore, yearly exacerbation (defined as an increase in dyspnoea, cough, or both 
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associated with a change in quality and quantity of sputum, which led the patient to seek medical 

attention and which lasted for at least 3 days) rates were also not statistically significant between 

the two groups [138]. However, in COPD patients who were not taking inhaled glucocorticoids 

(n=155), the risk of exacerbation was lower in patients treated with NAC compared with patients 

treated with placebo (p=0.040). This was significant for moderate or severe exacerbations 

compared with placebo group (p=0.032) [138].  

In a 3-year placebo controlled randomised controlled phase IV trial, 286 patients with stable COPD 

(14% mild, 47% moderate, 17% severe) or former smokers with chronic bronchitis with normal lung 

function (n=22%), were randomised to oral NAC added to usual maintenance therapy (n=96) or to 

inhaled fluticasone propionate added to usual maintenance therapy (n=94) or to placebo added to 

usual maintenance therapy (n=96) [139]. Patients in the NAC group showed 1.35 times increased 

exacerbation rates compare with the placebo group although this did not reach significance 

(p=0.054). Exacerbations were defined as an episode with one or more subsequent unscheduled 

contacts with either a general practitioner or a chest physician due to worsening of respiratory 

symptoms; the exacerbation was labelled as ‘mild’ if no course of prednisolone and/or antibiotics 

was prescribed, exacerbations were labelled as ‘moderate’ if were treated with prednisolone and/or 

antibiotics, exacerbations leading to an emergency room visit or hospitalization were defined 

‘severe’.  

In a more recent study, the High-Dose N-Acetylcysteine (HIACE), 1-year, double-blind, 

randomised, placebo-controlled trial, 120 stable COPD patients (n=120) were randomized to NAC 

added to usual maintenance therapy (n=58) or placebo added to usual maintenance therapy 

(n=62) for 1 year [140].  There were no statistically significant differences in forced expiratory flow 

(FEF) 25%-75% between study groups at baseline but after 1 year follow-up, there was a 

significant increase in FEF 25%-75% in the NAC group (from 0.72±0.07 L/s to 0.80±0.07 L/s) 

compared with FEF 25%-75% in the placebo group (from 0.679±0.07 L/s to 0.677±0.07 L/s) 
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(p=0.037). Despite this, there were no significant differences in other spirometric parameters 

[FEV1, FVC and inspiratory capacity (IC)] between the two groups. In contrast, reactance as 

measured by forced oscillometry improved significantly in the NAC group compared with the 

placebo group (p=0.04). In addition, the frequency resonance (the frequency at which reactance 

equals zero) was significantly reduced in the NAC group compared with placebo group (p=0.02) 

[140]. 

The mean frequency of COPD exacerbations as defined by two of the following three symptoms 

increase in shortness of breath, volume, or purulence of sputum in the NAC group was significantly 

reduced compared to the placebo group (reduction rate 0.75) during the year (NAC 0.96/y vs 

placebo 1.71/y; p=0.019) [140].  However, the proportion of exacerbation-free patients in the NAC 

group at the end of the study vs placebo (53.8% vs 37.5%) did not reach statistical significance 

(p=0.088) [140]. 

 

13.4.2. Controlled clinical trials of N-acetylcysteine in COPD exacerbations 

A randomised, double-blind placebo-controlled trial evaluated a total of 50 patients admitted to the 

hospital for acute COPD exacerbation. Patients were randomised within 24 hours of admission to 

oral NAC (n=25) or placebo (n=25) added to concurrent treatment with prednisone, nebulised 

salbutamol four times daily and, where appropriate, antibiotics. Treatment was continued for 7 

days or until discharge whichever occurred first. Patients with heart failure or pneumonia were 

excluded from the study [141]. No statistically significant differences were shown in a seven-point 

Likert scale for measuring breathlessness or in lung function.  The median length of hospital stay 

was 6 days in the NAC group and 5.5 days in the placebo group.  
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13.5. Recombinant human DNase 

Sputum contains products of inflammation including DNA and filamentous actin (F-actin) polymers. 

DNA and F-actin copolymerize to form a rigid network entangled with the mucin gel [142]. 

Leukocyte-derived DNA increases mucus viscosity in pulmonary secretions. Extracellular DNA can 

be cleaved by deoxyribonuclease I (Dnase), a naturally occurring enzyme. Dornase alfa is the 

recombinant form of human Dnase. Dornase alfa was first investigated in patients with cystic 

fibrosis [143]. 

 

13.5.1. Controlled clinical trials of dornase alfa in COPD exacerbations 

Unfortunately, clinical trials using dornase alfa have never been published as full articles but 

information can be collected from various abstracts and reviews [144, 145]. The use of dornase 

alfa was investigated in the COMET (The Chronic obstructive pulmonary disease Mortality 

Endpoint Trial) study, a large phase III study, in COPD patients (n=3731) during hospital treatment 

for an exacerbation [144]. COPD patients were randomly assigned to a 14-days treatment with 

dornase alfa or placebo twice daily added to usual maintenance therapy [144]. 90-day all-cause 

mortality was 10.3% for the dornase alfa-treated COPD exacerbation group and 9.5% for the 

placebo-treated COPD exacerbation group (p=0.43) [144]. In addition, general 90-day adverse 

events were comparable between the two groups [144].  

 

14. Novel compounds in development for the treatment of COPD patients acting on 

mucin synthesis/secretion/structure 
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Many aspects of the mucin assembly, storage and secretion have been therapeutically targeted to 

reduce mucin synthesis and secretion. A number of inhibitors of these targets are in the process of 

being developed for clinical use and they are summarised in Table 6 [146].  

 

15. Conclusion 

In conclusion, the evidence accumulated in the last decade has begun to reveal the enormous 

complexity of the expression, interactions and functions of the large number of different mucins in 

the different compartments of the human lower airways, both in normal subjects and in patients 

with different clinical phases and stages of COPD severity.  It is evident that the simplistic view that 

mucus hypersecretion in patients with COPD is associated with negative clinical outcomes and 

that we need to treat COPD with “mucolytic drugs” is a gross underestimation of the complexity of 

this molecular network. We definitely need more human translational research studies in this area.  

Likewise, our current knowledge of the effects of the drugs already available on the market for the 

treatment of COPD patients on mucin synthesis/secretion/structure in human lower airways is 

extremely limited and often indirect and again we need more controlled clinical trials in this area 

focusing on these effects.  The data within this review may help to provide a rationale for the future 

development of novel compounds that modulate mucin synthesis/secretion/structure in the human 

lower airways of these patients. 

 

16. Expert opinion  

Mucins are the main component of sputum and they determine its specific viscoelastic and 

rheological properties. Many patients with COPD have chronic bronchitis with increased sputum 

production and the presence of chronic bronchitis is a predictor of COPD-related death, increased 
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risk of pneumonia and of an accelerated decline in lung function.  Indeed, the severity of COPD is 

related with the amount of mucus in the human lower airways. In addition, the activity of the lower 

airway mucin-secreting cells and mucin production is modulated by both inflammatory mediators 

and infectious agents both of which also alter mucociliary clearance and the immune defences of 

the human lower airways.  However, infection does not just simply up-regulate the expression of 

mucins as many respiratory virus infections and bacterial products can both up- or down-regulate 

mucin-secreting cells differentiation and mucins secretion as the effect may differ depending upon 

clinical status.  This has implications for clinical studies using mucolytics. 

The role of mucins in the pathogenesis of stable COPD differs from that in the pathogenesis of 

COPD exacerbations.  Increased mucin presence in the sputum of COPD patients may be caused 

by a complex interaction between (i) increased numbers of mucin-secreting cells and (ii) changes 

in the amounts of mucins synthesized and/or secreted by each of these cells.  Furthermore, COPD 

patients may have more subtle changes in the biochemical structure of the mucins and/or of their 

interactions with other components of the epithelial lining fluid, including microbiota. 

Unfortunately, only a few well-designed studies have examined the potential contribution of mucins 

in the pathogenesis of stable COPD and in the pathogenesis of COPD exacerbations.  This 

reflects the knowledge base of mucin involvement in COPD and the efficacy of current mucin-

targeted drugs. The therapeutic value of mucoactive drugs and mucin synthesis/secretion/structure 

modulators is still controversial, particularly on the light of recent studies showing the fundamental 

role of many mucins in the innate immune responses of the human lower airways. In addition, 

many studies appear to be conducted without examining the effect on mucin production within the 

airway. Of note, there is an absence of controlled clinical trials investigating the effects of currently 

available COPD therapeutic agents including inhaled and/or systemic glucocorticoids, inhaled 

antimuscarinics, inhaled beta2-agonists, phosphodiesterase-4 inhibitors and macrolides on mucin 

synthesis/secretion/structure.  
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Mucins are either secreted or in a transmembrane form. The major secreted polymeric mucins of 

the human lower airways are MUC5AC and MUC5B. However, the genetic and epigenetic 

pathways modulating their synthesis and secretion within human lower airways are not yet clarified 

despite the wealth of knowledge concerning the succession of steps involved in MUC5AC and 

MUC5B assembly, storage and secretion across different intracellular and extracellular 

compartments.  A greater understanding of the mechanisms of mucin production in primary human 

airway epithelial cells and how this varies with disease status and response to infectious agents is 

necessary in order to provide more rational approaches to mucus targeting.   

Several mucin synthesis/secretion/structure modulators are used to treat COPD patients, but their 

mechanisms of action are still not fully characterized, and these drugs/compounds often have a 

plethora of additional anti-inflammatory and antioxidant effects. For these reasons some beneficial 

clinical effects produced by these drugs/compounds are not only due to their action on the mucins. 

Overall, the view that mucus hypersecretion in COPD is associated with negative clinical outcomes 

and that COPD needs to be treated with “mucolytic drugs” is a gross oversimplification of the 

complexity of this molecular network. Likewise, our knowledge of drug effects on mucin 

synthesis/secretion/structure in the human airways is extremely limited and often indirect. We 

definitively need more human translational research studies in this area and better, preferably non-

invasive, means of characterising differential mucus production in these patients to provide proof-

of-mechanism analysis to correlate with improved clinical measures of small airways disease such 

as forced oscillometry. 
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Abbreviations 

AB    alcian blue  

AGR2   anterior gradient protein 2 homolog  

ALI    air–liquid interface 

AP-1   activating protein 1 

BAL    bronchoalveolar lavage  

Bcl-2   B-cell lymphoma 2 

BD   bronchodilator 

CA-125  cancer antigen-125 

CFTR   cystic fibrosis transmembrane conductance regulator 

CLCA1  calcium-activated chloride channel-1 

COPD   chronic obstructive pulmonary disease  

DNMTs  DNA methyltransferases 

DNA    deoxyribonucleic acid 

Dnase   deoxyribonuclease 

EGF   epidermal growth factor 

EGFR   epidermal growth factor receptor 

EGFR-TK  EGFR tyrosine kinase 

ERK    extracellular signal-regulated kinases 

FEF    forced expiratory flow  

FEV1   forced expiratory volume in the 1st second 

Fuc   fucose 

FUT2   galactoside 2-alpha-L-fucosyltransferase 2 

FVC   forced vital capacity 

Gal   galactose 

GalNac  N-acetylgalactosamine 

GALNTs  GalNAc-transferase 
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GCA    global clinical assessment 

GlcNac  N-acetylglucosamine 

H2O2   hydrogen peroxide 

HBEC    human bronchial epithelial cell 

HDACs  histone deacetylase 

HIF   hypoxia-inducible factors 

hNECs   human nasal epithelial cells 

HSP   heat shock protein 

H&E    haematoxylin and eosin 

IAV    influenza A virus 

IC   inspiratory capacity  

ICAM-1  intercellular adhesion molecule 1 

IκB    inhibitor of kappa B 

IKK    IκB kinase 

IL   interleukin 

IPF    idiopathic pulmonary fibrosis  

IRAK1   interleukin-1 receptor-associated kinase 1 

JAK    janus kinases  

LPS    lipopolysaccharide  

MAPK   mitogen-activated protein kinase-13 

MARCKS  myristoylated alanine-rich C kinase substrate 

mRNA   messenger ribonucleic acid 

miRNA   micro RNAs 

MS or VNTR  minisatellites 

MS   minisatellites 

MUC    mucin  

Munc-18  mammalian uncoordinated-18 
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MyD88   myeloid differentiation primary response 88 

NANA   N-acetyl neuraminic acid 

NAC    N-acetylcysteine 

NAR    non-allergic rhinitis 

NeuNAc  N-acetyl neuraminic acid 

NIK   NF-κB-inducing kinase  

NF-κB   nuclear factor kappa-light-chain-enhancer of activated B cells 

NSF   soluble N-ethylmaleimide-sensitive factor 

NTHi    non-typeable H. Influenzae 

PAF   platelet-activating factor 

PAS   Periodic acid–Schiff 

PI3K    phosphatidylinositol 3-kinase 

p-y   pack-years 

ROS   reactive oxygen species 

RSV    respiratory syncytial virus  

RUNX2  runt-related transcription factor 2 

RV   rhinoviruse 

Ser   serine 

SIGLEC  sialic acid-binding immunoglobulin-type lectins 

SNP   single-nucleotide polymorphism 

sPAP    systolic pulmonary artery pressure  

SPDEF  sterile a-motif–pointed domain-containing Ets-like factor, 

ST3GAL3  ST3 beta-galactoside alpha-2,3-sialyltransferase 3 

STAT    signal transducer and activator of transcription proteins 

STP   serine, threonine, and proline 

STR   short tandem repeats 
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TAK    TGF-β-activated kinase 

TAPSE   tricuspid annular plane systolic excursion  

TGF-β    transforming growth factor-β 

Thr   threonine  

TLR    toll-like receptor  

TNFα   tumor necrosis factor α 

THP-1 cells  human monocytic cell line  

TRAF6   TNF receptor associated factor 

UDP    uridine diphosphate  

VIP   vasoactive intestinal peptide. 

VNTR   variable number of tandem repeats or microsatellites 
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Table 1.  Mucins expressed in the lower airways of normal subjects 

 

Mucin   Chromosomal localization* 

Transmembrane mucins  

MUC1 Mucin 1 1q22 

MUC4 Mucin 4 3q29 

MUC13 Mucin 13  3q21.2 

MUC16 Mucin 16  19p13.2 

MUC21 Mucin 21  6p21.33 

MUC22 Mucin 22  6p21.33 

Secreted mucins  

Gel-forming:   

MUC2 Mucin 2, polymeric 11p15.5 

MUC5AC Mucin 5AC, polymeric 11p15.5 

MUC5B Mucin 5B, polymeric 11p15.5 

MUC6 Mucin 6, polymeric 11p15.5 

MUC19 Mucin 19, polymeric 12q12 

Soluble:  

MUC7 Mucin 7, monomeric 4q13.3 

MUC8 Mucin 8, monomeric 12q24.33 

MUC20 Mucin 20  3q29 

 

*Obtained with the data from OMIM (www.omim.org) and the references quoted in the text. 
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Table 2. Steps in the synthesis, assembly, storage and secretion of the major secreted 
polymeric mucins MUC5AC and MUC5B of the human lower airways 

 

Step 
number 

Process Cellular and extracellular compartments 

1 Mucin synthesis Endoplasmic reticulum 

2 Mucin polymerisation Endoplasmic reticulum 

3 Mucin N- glycosylation Endoplasmic reticulum 

4 Mucin C-mannosylation Endoplasmic reticulum 

5 Mucin O-glycosylation cis- and medial-Golgi 

6 Granule condensation trans-Golgi 

7 Granule packaging trans-Golgi 

8 Mucin granules secretion 
and exocytosis 

Apical areas of the cell 

9 Exocytosis Plasma membrane 

10 Mucin modifications post-
exocytosis 

Extracellular space 

 

Obtained with the data from [3] 
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Table 3. Epigenetic pathways modulating the synthesis/secretion of the major secreted 
polymeric mucins MUC5AC and MUC5B of the human lower airways 

 

Epigenetic 
pathways 

Enzyme Transcription 
factors involved 

Effect on MUC5AC 
and/or MUC5B 

DNA methylation DNMTs ↓SPDEF ↓ 

Histone 
deacetylation 

HDACs ↓NF-κB  

↓ AP-1 

↓ 

 

*AP-1: activator protein 1, DNMTs: DNA methyltransferases, HDACs: histone deacetylase, NF- B: 
nuclear factor kappa-light-chain-enhancer of activated B cells, SPDEF: sterile a-motif–pointed 
domain-containing Ets-like factor,  

Obtained with the data from [74,139,140]. 
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Table 4. Inflammatory mediators and infectious agents up-regulating the 
synthesis/secretion of mucins from primary tracheobronchial epithelium obtained from 
normal subjects in vitro 

 

Inflammatory mediators Infectious agents 

Acetylcholine Influenza viruses 

Bradykinin and EGF Respiratory syncytial virus 

Cytokines (IL-1β, IL-6, IL-13, IL-17, IL-36γ, TNFα) Rhinovirus 

Endothelins Haemophilus influenzae 

Neuropeptides (tachykinins and VIP) Pseudomonas aeruginosa 

Neutrophil defensins Streptococcus pneumoniae 

Proteases (trypsin, neutrophil elastase)  

ROS  

 

Only the major inflammatory mediators and infectious agents considered relevant to the 
pathogenesis of COPD are included. 

 *EGF: epidermal growth factor, IL: interleukin, ROS: reactive oxygen species, TNFα: tumour 
necrosis factor α, VIP: vasoactive intestinal peptide. 

 Obtained with data from: [20, 23, 24]  
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Table 5. Physiological functions of mucins of human lower airways 

 

Mucins in mucociliary clearance Mucins in immune defences of the human lower 
airways 

Protection of lower airway epithelium 
from particles and micro-organisms 

↓Neutrophilic inflammation 

Organizing the framework of the 
mucus gel in the lower airways 

↓Macrophage function 

Creation of an osmotic barrier  ↓Eosinophil function (Siglec-8)  

Prevention of mucus dehydration ↓Neutrophil function (Siglec-9) 

 ↓Pro-inflammatory cytokines 

Suppression of virulence of opportunistic pathogens 

 Promotion of stable microbiota 

 Direct interaction with pathogens (surface glycans) 

 
Protection of surface epithelium from biofilm 
formation by pathogens 

  

* Siglec: sialic acid-binding immunoglobulin-type lectins 

Obtained with the data from [18].  
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Table 6. Novel potential compounds for the treatment of COPD patients acting on mucin 
synthesis/secretion/structure 

 

Compounds Natural products Process involved 

Bcl-2 antagonists 

CLCA1inhibitors 

EGFR-TK inhibitorsHIF-1 
inhibitors 

MAPK13 inhibitors 

Monoclonal antibodies against the 
EGFR 

Naturally derived alkaloids 
(berberine) 

Naturally derived flavonoid 
(curcumin, gingerol, kaempferol, 
ginseng, luteolin) 

Naturally derived glycosides 

Naturally derived steroids 

Mucin synthesis 

HSP-70 inhibitors 

Munc-18 inhibitors 

MARCKS blockade 

NSF attachment protein receptors 
cleavage 

 Mucin granules 
secretion and 
exocytosis 

Antagomirs 

Bcl-2 antagonist 

Ellagic acid Mucin-secreting 
cells hyperplasia  

 

* Bcl-2: B-cell lymphoma 2; CLCA1: calcium-activated chloride channel-1; EGFR-TK: EGFR 
tyrosine kinase; HIF: hypoxia-inducible factors; HSP: heat shock protein;  MAPK13: mitogen-
activated protein kinase-13; MARCKS: myristoylated alanine-rich C kinase substrate; Munc-18: 
mammalian uncoordinated-18; NSF: soluble N-ethylmaleimide-sensitive factor 

Obtained with data from [138,141].  
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Figure 1. Schematic of the mucin (MUC) protein backbone and its O-glycans. The MUC protein 
backbone typically consists of an NH2-terminal domain, one or more central domain(s) with a high 
number of tandem repeat (TR) domains, and a COOH-terminal domain with many O-glycans that 
exhibit size heterogeneity attached to threonine or serine residues in the TR domains. 

 




