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Quantum coherence has received significant attention in recent years, but the structure of multipartite coherent
states is unclear. In this paper, we generalize important results in multipartite entanglement theory to their
counterparts in quantum coherence theory. First, we give a necessary and sufficient condition for when two
pure multipartite states are equivalent under local incoherent operations assisted by classical communications
(LICC), i.e., two states can be deterministically transformed to each other under LICC operations. Next, we
investigate and give the conditions in which such a transformation succeeds only stochastically. Different from
the entanglement case for two-qubit states, we find that the stochastic LICC (sLICC) equivalence classes are
infinite. Moreover, it is possible that there are some classes of states in multipartite entanglement that can
convert into each other, whereas they cannot convert into each other in multipartite coherence. In order to show
the difference among sLICC classes, we introduce two coherence monotones: accessible coherence and source
coherence, following the logistics given in [Phys. Rev. Lett. 115, 150502 (2015)]. These coherence monotones
have a straightforward operational interpretation, namely, the accessible coherence characterizes the proficiency
of a state to generate other states via quantum incoherent operations, whereas the source coherence characterizes
the set of states that can be reached via quantum incoherent operations acting on the given state of interest.
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I. INTRODUCTION

Coherence originates from the “superposition” of quantum
states and plays a central role in interference phenomena in
quantum physics and quantum information science [1–13].
Coherence is an essential ingredient for multipartite entangle-
ment in many-body systems and a necessary phenomenon of
analyzing physical phenomena in quantum optics [14], solid-
state physics [15], and nanoscale thermodynamics [16–18]
even in biological systems [19–21]. A mathematical frame-
work of quantum coherence as a physical resource has been
proposed recently [1]. There are two basic elements in coher-
ence theory: (1) free states and (2) free operations. Free states
in the coherence theory are those states which are diagonal
in a fixed basis {|i〉}, which we call incoherent states. Free
operations (incoherent operations) are some specified classes
of physically realizable operations that act invariantly on the
set of incoherent states, which is not unique due to practical
implications.

Local operations assisted by classical communications
(LOCC) is helpful for understanding the structure of entan-
gled states because entanglement cannot be created by LOCC
operators. In analogy with entanglement theory, we focus
on the protocol that each party performs local incoherent
operations assisted by classical communications (LICC) [5,6].
In LICC protocol, the local incoherent operator cannot create
global coherence so that multipartite coherence remains a
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resource. Therefore, LICC can be viewed as a natural setting
to explore the structure of a multipartite coherent states.

The first aim in this paper is to understand the struc-
ture of multipartite coherent states. For quantum information
processing, different structures of states often have different
capabilities in state transformation. Just like the resource
of entanglement, a LOCC protocol for a multipartite state
leads to natural ways of defining equivalent relations in the
set of entangled states as well as establishing hierarchies
between the resulting classes (structures). States in different
classes cannot convert into each other. For example, Greene-
Horne-Zeilinger (GHZ) states and W states belong to two
different classes via stochastic local operations and class
communications (sLOCC), which reveals the existence of two
inequivalent kinds of genuine tripartite entanglement [22].
To understand the structure of multipartite coherent states,
we also consider the classification of pure coherent states of
multipartite quantum systems under LICC even in a stochastic
setting. For multipartite coherence, an interesting observation
is as follows: If one of the three qubits in the W state is lost,
the state of the remaining two-qubit system is still coherent,
whereas the GHZ state, which is incoherent after the loss of
one qubit. This observation leads to following question: Is it
possible that there are some classes of states in multipartite
entanglement can convert into each other, whereas they cannot
convert into each other in multipartite coherence?

We address the questions above by focusing on the equiv-
alent class of pure multipartite coherent states. First, a nec-
essary and sufficient condition for pure multipartite state
transformations via LICC is presented. Second, we investi-
gate and give the conditions in which such a transformation
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succeeds only stochastically, namely, stochastic local inco-
herent operations and class communications (sLICC). As an
application, we investigate the two-qubit sLICC equivalent
classes, showing that equivalent classes of bipartite coherence
under sLICC are more complex than equivalent classes of
bipartite entanglement under sLOCC even in the two-qubit
case. This specific incoherent constraint of locality makes
us undertand the structure of multipartite coherence because
many coherence measures do not have an interpretation in the
context of the LICC paradigm [23].

The other aim in this paper is to identify new opera-
tional coherence measures for investigating possible LICC
transformations among coherent multipartite states. Inspired
by similar concepts previously investigated for entanglement
[24], we introduce two coherence monotones: accessible co-
herence and source coherence. Accessible coherence refers
to the proficiency of a state to generate other states via free
operations, and the source coherence denotes that the set of
a state of interest can be obtained via free operations. Both
coherence monotones can also be used for single-qubit and
multipartite state cases and can be applied for other free
operations, such as incoherent operations (ICs), LICC. For
single-qubit states achieved via physically incoherent opera-
tions (PIO) [12], strictly incoherent operations (SIO) [11] and
IC, we obtain explicit formulas of accessible coherence and
source coherence. We analyze pure (or mixed) states via IC
and derive explicit formulas for the source coherence. These
two coherence monotones also have a geometric interpreta-
tion. We additionally show how accessible coherence can be
computed numerically and provide examples.

This paper is organized as follows. In Sec. II, we first intro-
duce the necessary notation and lemmas we need. In Sec. III,
we will explore inequivalent classes of multipartite coherence
states. In Sec. IV, we introduce two operational coherence
monotones: accessible coherence and source coherence. In
Sec. V, we derive the formula for pure states transformation
via LICC and its SIO version and then give some examples. In
Sec. VI, we derive the formula for pure states transformation
via PIO, SIO, and IC and give some examples. We summarize
our results in Sec. VII.

II. NOTATION AND PRELIMINARIES

We first introduce the necessary notation. We consider
a Hilbert space H of finite dimension d . The incoherent
basis of H is fixed and is denoted as {|i〉}d

i=1 throughout this
paper. A unitary operation U is called an incoherent unitary
(IU) if U = ∑d

i=1 eiθi |i〉 〈π (i)| with π (i) being a permutation.
Given a quantum state ρ, its von Neumann entropy is S(ρ) =
− Tr ρ log2 ρ. For a N-partite state |ψ〉 defined in H1 ⊗
H2 ⊗ · · · ⊗ HN , its reduced density operator on a subset X ⊂
[N] := {1, 2, . . . , N} is denoted as ρ

ψ
X = TrX |ψ〉 〈ψ |, where

X = [N]\X .
A general resource theory for a quantum system has two

components: free states and free operations. In the resource
theory of coherence, a free state σ (incoherent state) can be
written as σ = ∑

i σi|i〉〈i| for a fixed basis {|i〉}. Variants of
the free operations in the resource theory of coherence have
been proposed. A completely positive and trace-preserving

FIG. 1. The hierarchy of LOCC, LICC, and LSICC.

(CPTP) map � is said to be IC if its Kraus operators Kn are of
the form Kn = ∑

i c(i) | j(i)〉 〈i| with | j(i)〉 being a (possibly
many-to-one) function from the index set of the basis onto
itself and coefficients c(i) satisfying

∑
n K†

n Kn = I [1]. If
every Kn = ∑

i c(i) |i〉 〈π (i)|, where π (i) is a permutation,
then the corresponding operation is a SIO [11]. Lastly, the
free operation is called a PIO if Kn has the form Kn = UnPn,
where {Un}’s are IU operators and {Pn}’s form an orthogonal
and complete set of incoherent projectors [12]. From their
definitions, we have following inclusion: PIO ⊂ SIO ⊂ IC.

A fundamental class of operations in entanglement theory
is LOCC since it allows an operational definition of entan-
glement [25]. For two bipartite entangled states |φ〉 and |ψ〉,
what is the necessary and sufficient condition for transforming
|φ〉 to |ψ〉 using LOCC operations? Nielsen showed that this
condition of entanglement transformation is related to the
algebraic theory of majorization:

Lemma 1 ([26]). Given two bipartite pure states |φ〉 and
|ψ〉 in the system HA ⊗ HB, |φ〉 can be converted into
|ψ〉 via LOCC if and only if λ(φ) ≺ λ(ψ ), where λ(φ)
denotes the vector of eigenvalues of TrB(|φ〉〈φ|). Here,
for two d-dimensional vectors x = (x1, x2, . . . , xd ) and y =
(y1, y2, . . . , yd ), x ≺ y holds if and only if for each k in the
range of 1, 2, . . . , d,

∑k
i=1 x↓

i � ∑k
i=1 y↓

i with equality when
k = d , where x↓

i means that the elements xi are arranged in
decreasing order.

Coherence-state transformation has also been studied in the
literature, motivated by entanglement state transformation. In
the single party setting, Du et al. [7] obtained the following
necessary and sufficient condition of pure state coherence
transformation via O ∈ {SIO, IC}:

Lemma 2 ([7]). For a fixed basis {|i〉}, a pure state |φ〉
can be converted into |ψ〉 via O ∈ {SIO, IC} if and only if
λ[
(φ)] ≺ λ[
(ψ )], where 
(ρ) = ∑

i 〈i| ρ |i〉 |i〉〈i|, and for
convenience, we denote 
(|ψ〉〈ψ |) as 
(ψ ).

In the multipartite setting, the class of LICC can be defined
accordingly when the local incoherent operations are IC oper-
ators [5,6]. If the local operations are SIO operations, we call
such protocol LSICC. These protocols have been used to study
the relationship between coherence and entanglement [5,6].
It is easy to see the following inclusion: LSICC ⊂ LICC ⊂
LOCC. The hierarchy of the sets has been show in Fig. 1.
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Chitambar and Hsieh [5] studied pure state transformation
under LICC and found the following:

Lemma 3 ([5]). Suppose that two bipartite pure states |ψ〉
and |φ〉 have reduced density matrices that are diagonal in
the incoherent bases for both parties and both states. Then,
|φ〉 can be converted into |ψ〉 via LICC if and only if the
squared Schmidt coefficients of |ψ〉 majorize those of |φ〉, i.e.,
|φ〉 ≺ |ψ〉.

Shi et al. [2] and Streltsov et al. [3] studied mixed state
transformation of single-qubit systems via O ∈ {SIO, IC} and
obtained the following result.

Lemma 4 ([2,3]). The state ρ = 1
2 ( 1+rz rx+iry

rx−iry 1−rz
) can be

converted into σ = 1
2 ( 1 + sz sx + isy

sx − isy 1 − sz
) via SIO and IC if and

only if the following inequalities are satisfied:

s2
x + s2

y � r2
x + r2

y ,
1 − r2

z

r2
x + r2

y

(
s2

x + s2
y

) + s2
z � 1. (1)

Lastly, we also consider LICC protocols that succeed in co-
herence states transformation only stochastically. Analogous
to sLOCC in entanglement theory, we call these operations
stochastic LICC operations and use the notation: sLICC.

III. INEQUIVALENT CLASSES OF MULTIPARTITE
COHERENCE STATES

In this section, we will explore inequivalent classes of
multipartite coherence states. First, we will give a necessary
and sufficient condition for when two multipartite coherence
states can be interconverted with certainty under LICC. We
then study the interconversion of multipartite coherence states
which only succeeds with a strictly positive probability. This
allows us to define inequivalent classes of multipartite co-
herence states. The discussion in this section closely follows
the inequivalent classes of multipartite entanglement states in
Refs. [22,27].

We start with the following lemma showing that the num-
ber of product terms of a multipartite coherent pure state is a
sLICC monotone. Note that the number of product terms has
been shown by other authors to be IC monotone [11,28]. We
extend this idea and show that the number of product terms
is also a sLICC monotone for multipartite coherence. We say
that two pure states |ψ〉 and |φ〉 are O equivalent if they can
be transformed into each other by means of operations in the
set O.

Lemma 5 (LICC and sLICC monotone). The number of
nonzero product terms in the fixed basis does not increase
under LICC (respectively, sLICC).

Proof. Suppose there are many but finite rounds in the
LICC (respectively, the sLICC) protocol. At the kth round, Al-
ice performs an IC measurement and obtains a state |ψ (k)〉 =∑N

i=1

∑M
t=1 ψit |i〉 ⊗ |t〉 with the number of nonzero product

terms in the fixed basis of |ψ (k)〉 being NM. Alice tells
her result to Bob. Then, Bob performs an IC measurement
with outcome s at the (k + 1)th round operation, the result-
ing state is |ψ (k+1)〉 ∝ Fs |ψ (k)〉 = ∑N

i=1

∑M
t=1 ciψit | j(i)〉 ⊗

|t〉, where Fs = ∑
i ci | j(i)〉 〈i| and coefficients c(i) satisfying∑

s F †
s Fs = I [1] since | j(i)〉 being a (possibly many-to-one)

function from the index set of the basis onto itself. It is clear
that |ψ (k+1)〉 can be expressed as a sum of product terms with

no more than MN terms. Consequently, at every round of
LICC (respectively, sLICC) protocol, the number of nonzero
product terms will not increase as the LICC (respectively,
sLICC) protocol continues. �

Remark. The number of product terms in the fixed basis
is similar to Schmidt rank in the resource theory of en-
tanglement, but they do not play the same roles. Schmidt
rank, being an entanglement monotone under sLOCC, can
be used to classify the structures of entanglement, and this
classification is complete for bipartite settings. In other words,
two pure entangled states are sLOCC equivalent iff they have
the same Schmidt rank. However, the number of product terms
alone, despite being a sLICC monotone, is not sufficient to
classify all the structures of multipartite pure coherent states.
Example 3 below shows that two pure states can be sLICC
inequivalent, even though they have the same number of
product terms.

Our first main result is the following, which originates from
its entanglement counterpart in Ref. [27, Corollary 1].

Theorem 6. Two multipartite pure states |ψ〉 and |φ〉 are
LICC equivalent iff they are local IU (LIU) equivalent.

Proof. It is clear that, if |ψ〉 and |φ〉 are LIU equivalent,
they are also LICC equivalent since LIU operations performed
by each party constitute a special case of LICC protocols.

Next, suppose that two N-partite states |ψ〉 and |φ〉 are
LICC equivalent, i.e., there exists a LICC protocol that con-
verts |ψ〉 to |φ〉, which consists of many rounds of local IC
operations and communications between the parties. Suppose,
without loss of generality, that Alice (A1) performs the first
local IC operation, yielding the ensemble E = {pk, |ψk〉}.
Since the reduced state of the remaining parties cannot be
changed by Alice’s operation, we have

ρ
ψ
A2···AN

=
∑

k

pk TrA1 (|ψk〉〈ψk|), (2)

where ρ
ψ
A2···AN

= TrA1 (|ψ〉 〈ψ |). Note that the average

entropy is unchanged [27]: S(ρψ
A1

) = S(ρψ
A2···AN

) =∑
k pkS[TrA1 (|ψk〉〈ψk|)]. From the strict concavity of

the von Neumann entropy [25], it must hold that
S[TrA1 (|ψk〉〈ψk|)] = S[TrA1 (|ψ〉〈ψ |)] for every k, i.e.,

|ψk〉 = U A1
k ⊗ IA2···AN |ψ〉 , (3)

where U A1
k is a unitary operation acting on Alice’s system.

Since, by assumption, Alice has to perform incoherent opera-
tions, then U A1

k must be local incoherent unitary for all k.
Alice can choose a label k with probability pk as her

“measurement result” and performs the deterministic LIU
operation U A1

k on state |ψ〉. Other parties’ operations follow
similarly so that deterministic LIU operations of the LICC
protocol are sufficient to obtain final state |φ〉. Hence, we
conclude that if |φ〉 and |ψ〉 are LICC equivalent, they are
also LIU equivalent. �

It is also possible that two multipartite pure states |ψ〉 and
|φ〉 cannot always succeed with certainty in interconverting
through operations in the class O, i.e., such a transformation
may only succeed stochastically. This allows the structure of
multipartite coherence states to be understood operationally
(similar to that of multipartite entangled states): If two
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multipartite pure states |ψ〉 and |φ〉 cannot be transformed to
each other with nonzero probability, they must each belong to
different types of multipartite coherence structures.

In the remainder of this section, we will focus on sLICC.
Next we give our main result:

Theorem 7. Two multipartite pure states |ψ〉 and |φ〉 are
equivalent under sLICC if and only if they are related by local
(invertible) SIO operators.

First, we have following lemma:
Lemma 8. If E0 is an IC measurement, then IC measure-

ments Ei can be constructed such that
∑

i Ei = I .
Proof. Let E1 = I − E0. Since E1 � 0, we have spec-

tral decomposition for E1 = ∑
i λi|ψi〉〈ψi|. Setting Mi =√

λi|i〉〈ψi|, we find that Ei = M†
i Mi is an IC positive operator-

valued measure for every i. �
Now, we give the proof of Theorem 7.
Proof. If |φ〉 = A1 ⊗ A2 ⊗ · · · ⊗ AN |ψ〉 holds with SIO

(invertible IC) operators Ak with k = 1, 2, . . . , N , then we
can find a sLICC protocol for the parties to transform
|ψ〉 into |φ〉 with a positive probability of success. Indeed,
each party k can perform an M-outcome IC measurement
{F (k)

0 , F (k)
1 , . . . , F (k)

M }, where F (k)
0 =

√
pk

〈ψk |A†
k Ak |ψk〉Ak with 0 <

pk � 1. It is easy to check that, after all parties have performed
their corresponding measurements, the transformation from
|ψ〉 to |φ〉 will succeed with probability p1 p2 · · · pN . The
analysis also holds for |φ〉 converting into |ψ〉 by observing
that |ψ〉 = A−1

1 ⊗ A−1
2 ⊗ · · · ⊗ A−1

N |φ〉.
Conversely, suppose that there is a sLICC protocol, consist-

ing of IC measurements F (k) performed by the kth party such
that |ψ〉 is transformed into |φ〉. Then, there must exist one
branch of all possible protocol outcomes, say (x1, x2, . . . , xN )
in which |φ〉 is obtained. Tracking the performed measure-
ment of each party F (k)

xk
, the corresponding IC operators Ak

are obtained as follows:
1√
pk

IA1···Ak−1Ak+1···AN ⊗ F (k)
xk

|ψ (k−1)〉

= IA1···Ak−1Ak+1···AN ⊗ Ak |ψ (k−1)〉 = |ψ (k)〉 , (4)

with pk = 〈ψ (k−1)| F (k)†
xk

F (k)
xk

|ψ (k−1)〉 , |ψ (0)〉 = |ψ〉, and
|ψ (N )〉 = |φ〉. To summarize,

|φ〉 = A1 ⊗ A2 ⊗ · · · ⊗ AN |ψ〉 . (5)

Lastly, Ak must be full rank (hence revertible) since the
number of nonzero product terms in |ψ〉 and |φ〉 must be
equal, a consequence of Lemma 5. �

To conclude this section, we use an example to demonstrate
that the N-partite coherence states are already more versatile
than entanglement when N = 2.

Example [Characterization of two-qubit coherence
states]. Consider a two-qubit system with the fixed basis
{|00〉 , |01〉 , |10〉 , |11〉}. Our classification is based on the
number of product terms R in a two-qubit pure state since
this number will not be altered by invertible SIO operators.
The following table lists all inequivalent classes of two-qubit
states. �

Now, we will give a detail analysis about this two-qubit
coherence states example.

Proof. From Lemma 5, we know that the classification is
restricted by the number of product terms under sLICC, thus

TABLE I. All inequivalent classes of two-qubit states.

R Classification

1 |00〉
2 a |00〉 + b |01〉 , a |00〉 + c |10〉 , a |00〉 + d |11〉
3 a |00〉 + b |01〉 + c |10〉 , a |00〉 + b |01〉 + d |11〉
4 Infinitely many (based on different R’s)

we list these potential equivalent classes based on the number
of product terms. The classification of the number of product
terms equal to 1 is trivial: every fixed basis |i j〉 with i, j ∈
{0, 1} can be converted to each other via local SIO operators.

When the number of product terms equals 2, we can con-
clude the following three classes: a |00〉 + b |01〉 , a |00〉 +
c |10〉, and a |00〉 + d |11〉 after considering local SIO oper-
ators allowed by each party. A similar method can be used
when the number of product terms equals 3.

When the number of product terms equals 4, let |ψ〉 =
a |00〉 + b |01〉 + c |10〉 + d |11〉. If |ψ〉 can be converted to
|φ〉 = a′ |00〉 + b′ |01〉 + c′ |10〉 + d ′ |11〉 under sLICC, then
there exist local SIO operators A and B such that |φ〉 = A ⊗
B |ψ〉. Each of the SIO operators A, B can be expressed in
two forms: (x 0

0 y) or ( 0 z
w 0 ). If A = (x 0

0 y) and B = (z 0
0 w)

or A = (0 x
y 0) and B = (0 z

w 0), we find that ad
bc = a′d ′

b′c′ after

the SIO operations. If A = (0 x
y 0) and B = (z 0

0 w) or A =
(x 0
0 y) and B = (0 z

w 0), we find that ad
bc = b′c′

a′d ′ after the SIO

operations. Denoted by R = ad
bc , we conclude that states with

the same number R or 1
R are in the same equivalent class

under such a transformation. �
We can show that it is possible that there are some classes

of states in multipartite entanglement that can convert into
each other, whereas they cannot convert into each other in
multipartite coherence even in the two-qubit case.

From the example above, we can see sLICC equivalent
class of |ψ〉 = a |00〉 + b |01〉 + c |10〉 + d |11〉 can form a
one-parameter family of states.

Corollary 9. Any state |ψ〉 = a |00〉 + b |01〉 + c |10〉 +
d |11〉 which the number of product terms equals 4 is
sLICC equivalent to a state with form |ψ ′〉 = α(|00〉 + |01〉 +
|10〉) + β |11〉, where β is any complex number with 0 <

|β| < 1, and α is the real number determined by normaliza-
tion. That is, the sLICC equivalent class of |ψ〉 = a |00〉 +
b |01〉 + c |10〉 + d |11〉 can form an one-parameter family of
states.

Proof. As discussed above, we find the following four
operators: ( α

bβ 0
0 1

d

)
⊗

(
dα
c 0
0 β

)
, (6)( α

bβ 0
0 1

c

)
⊗

(
0 cα

d
β 0

)
, (7)(

0 α
bβ

1
b 0

)
⊗

(
bα
a 0
0 β

)
, (8)(

0 α
cβ

1
a 0

)
⊗

(
0 aα

b
β 0

)
(9)
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can transform |ψ〉 = a |00〉 + b |01〉 + c |10〉 + d |11〉 to
|ψ ′〉 = α(|00〉 + |01〉 + |10〉) + β |11〉, where 0 < |β| < 1

and α =
√

1−|β|2√
3

> 0. Thus, state |ψ〉 = a |00〉 +
b |01〉 + c |10〉 + d |11〉 is sLICC equivalent to state
|ψ ′〉 = α(|00〉 + |01〉 + |10〉) + β |11〉 via those operators
above. �

Remark. In entanglement theory, the degree of en-
tanglement can be measured by concurrence CE [29].
If we write |ψ〉 = a |00〉 + b |01〉 + c |10〉 + d |11〉, then
CE (|ψ〉) = 2|ad − bc| [29]. Suppose that |ψ〉 and |φ〉 are
sLOCC equivalent, then there exist local invertible opera-
tors A and B such that |φ〉 = A ⊗ B |ψ〉 [22]. Consequently,
CE (|φ〉) = det(A) det(B)CE (|ψ〉). There are only two sLOCC
equivalent classes: CE (|ψ〉) = 0 and CE (|ψ〉) �= 0. Equiva-
lently, the classification depends on either ad = bc or ad �=
bc. The classification of sLICC is different from the classifica-
tion of sLOCC in entanglement theory. As shown in the two-
qubit case, sLICC classification depends both on the number
of product terms and on the number R = ad

bc . Because the
sLICC equivalent class of |ψ〉 = a |00〉 + b |01〉 + c |10〉 +
d |11〉 can form a one-parameter family of states, we can
further simplify R as R = β

α
= 3β√

1−|β|2 .

IV. TWO OPERATIONAL COHERENCE MONOTONES:
ACCESSIBLE COHERENCE AND SOURCE COHERENCE

In this section, we will recall the framework for quantifying
the resource of coherence theory and then introduce two
operational coherence monotones: accessible coherence and
source coherence. Our idea comes from Schwaiger et al. [24]
and Sauerwein et al. [30] in which the authors studied similar
entanglement measures: accessible entanglement and source
entanglement.

Baumgratz et al. [1] proposed a seminal framework for
quantifying coherence as a resource. For a fixed basis {|i〉}, a
functional C can be taken as a coherence measure if it satisfies
the following four conditions:

(B1) C(ρ) � 0 for all quantum states, and C(ρ) = 0 if ρ ∈
I, where I is the set of incoherence states which are diagonal
in basis {|i〉};

(B2) C(ρ) � C[�(ρ)] for all free operations �;
(B3) C(ρ) � ∑

n pnC(ρn), where pn = Tr(KnρK†
n ), ρn =

1
pn

KnρK†
n , and Kn are the Kraus operators of an incoherent

CPTP map �(ρ) = ∑
n KnρK†

n ;
(B4)

∑
i piC(ρi ) � C(ρ) for ρ = ∑

i piρi.
Similar to entanglement, the function C is a coherence

monotone if it satisfies conditions (B1) and (B2).

Accessible coherence and source coherence

For two given states ρ and σ in a Hilbert space H with
finite dimension d , we say that state ρ can reach state σ if
there exists a free operator in the set O that transforms ρ into
σ (deterministically). In this case, σ is accessible from ρ. We
denote by MO

a (ρ) the set of states that can be reached from ρ

via free operations in the set O and denote by MO
s (ρ) the set

of states that can reach ρ via free operations in O (see Fig. 2).
We define two related magnitudes: the accessible volume

V O
a (ρ) = μ[MO

a (ρ)], which quantifies the volume of states

FIG. 2. In this schematic, the source set MO
s (ρ ) and the accessi-

ble set MO
a (ρ ) of state ρ are depicted. Any state in MO

s (ρ ) can be
transformed to ρ via O, and ρ can be transformed into any state in
MO

a (ρ ) via O.

that can be reached by state ρ, and the source volume
V O

s (ρ) = μ[MO
s (ρ)], which quantifies the volume of states

that can reach ρ via free operations. Here, μ could be an
arbitrary Lebesgue measure which maps the set of density ma-
trices to non-negative real numbers such that μ[MO

a (ρ)] = 0
and μ[MO

s (ρ)] reaches the maximally source volume if ρ is
an incoherent state.

The operational meaning is clear: If MO
a (ρ) is larger than

MO
a (ρ ′), then state ρ could potentially be more useful than

ρ ′ in quantum information-processing applications. On the
other hand, if MO

s (ρ) is too small, then not many states are
useful than state ρ for any potential application, i.e, ρ is very
useful than many other states in applying for the resource of
coherence. We can then define the accessible coherence and
the source coherence as follows:

CO
a (ρ) = V O

a (ρ)

V sup,O
a

, (10)

and

CO
s (ρ) = 1 − V O

s (ρ)

V sup,O
s

, (11)

where V sup,O
a (V sup,O

s ) denotes the maximal accessible
(source) volume according to the measure μ.

We will now show that both accessible coherence and
source coherence are coherence monotones.

Theorem 10. Both accessible coherence and source coher-
ence satisfy conditions (B1) and (B2), thus they are coherence
monotones.

Proof. It is evident that, if a state ρ is an incoherent
state, then μ[MO

a (ρ)] = 0 and μ[MO
s (ρ)] reaches the maxi-

mal source volume, i.e., CO
a (ρ) = CO

s (ρ) = 0 if ρ ∈ I. We
also have CO

a (ρ) � 0 and CO
s (ρ) � 0 for all quantum states.

Condition (B1) therefore holds.
Let σρ be the state that can be reached from ρ via free

operations O. By definition, MO
a (σρ ) ⊂ MO

a (ρ), which means
that CO

a (ρ) � CO
a (σρ ). On the other hand, let ρ be the state

that can be reached from ρσ via free operations O. Then,
MO

s (ρ) ⊂ MO
s (ρσ ), which means that CO

s (ρσ ) � CO
s (ρ). Con-

dition (B2) therefore holds. For conditions (B3) and (B4), we
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can construct examples to show they do not hold, and we
refer the interested readers to the Appendix for the detailed
calculation. �

Remark. Just as the in case in entanglement theory [24,30],
we would also be interested in the transformations between
specific classes of coherent states (e.g., the pure states trans-
formation), and the specific volumes V O

a (ρ) and V O
s (ρ) are

only supported in these classes. For example, for single-qubit
states, any state can be represented as a point on (or in)
the Bloch sphere. We can choose the superficial area on the
sphere as the specific volumes V O

a (ρ) and V O
s (ρ) for this pure

state transformation. Meanwhile, If a pure state |ψ〉 can be
transformed to ρ = ∑

i pi|ψi〉〈ψi| via free operations O, there
will be a channel �O = ∑

i pi�
O
i corresponding to O, where

�O
i (|ψ〉) = |ψi〉 for any i. It means that the more pure states

we obtain, the more generic states will be obtained. Thus, in
this sense, the proficiency of a pure state to generate other pure
states characterizes its accessible coherence.

V. SOURCE COHERENCE AND ACCESSIBLE
COHERENCE FOR A PURE STATE TRANSFORMS

VIA LSICC AND LICC

In the following, we will derive explicit formulas for source
coherence of pure state transforms via O ∈ {LSICC, LICC}.
We consider representatives of LIU classes. To obtain the
source coherence, we have as follows:

Theorem 11. The source coherence of a bipartite state
|φ〉 = ∑d

i=1

√
λi |ii〉 with sorted Schmidt vector λ(φAB) =

(λ1, λ2, . . . , λd ) is given by

CO
s (|ψ〉) = 1 −

∑
π∈d

[ ∑d
k=1 π (k)λk − d+1

2

]d−1∏d−1
k=1 π (k) − π (k + 1)

, (12)

where O ∈ {LSICC, LICC}.
Proof. In this section, μ is chosen as a measure on the set

of LIU equivalence classes. In the proof of Lemma 3 since
the IC operators Alice and Bob used are full rank. Thus, the
local IC operators are local SIO operators. Then, we have as
follows:

First, we will show the explicit formula of source co-
herence for pure states transforms via O ∈ {LSICC, LICC}.
From Lemma 2, we can see the source set of |ψ〉 is given by

MO
s (ψ ) = {|φ〉 ∈ H such that λ(φ) ≺ λ(ψ )}, (13)

because any pure states in a LIU equivalence class can be seen
as the vector λ(ψ ), we can associate the set given in Eq. (13)
the following set of sorted vectors in Rd :

MO
s (ψ ) = {λ↓ ∈ Rd such that λ↓ ≺ λ(ψ )}, (14)

where d denotes the Schmidt number of |ψ〉.
The set given in Eq. (14) is a convex polytope, and as

shown in Ref. [30], the source set Eq. (14) is a simple polytope
[31,32]. The simple polytope of the set MO

s (ψ ) is the same
as the polytope of the source set of entanglement as shown in
Ref. [30], thus the volume of MO

s (ψ ) is

V O
s (|ψ〉) = 1

d!

√
d

(d − 1)!

∑
π∈d

[∑d
k=1 π (k)λk − d+1

2

]d−1∏d−1
k=1 π (k) − π (k + 1)

,

(15)

where π denotes an element of the permutation group d of d
elements and O ∈ {LSICC, LICC}. Note that for the incoher-
ent state |ψincoh〉, the vector λ(ψincoh ) = (1, 0, 0, . . . , 0) can
be obtained from any other state via O ∈ {LSICC, LICC},
and therefore its source volume is the maximum, i.e.,
V O

s (|ψincoh〉) = supφ V O
s (|φ〉). The volume is V O

s (|ψincoh〉) =√
d

d!(d−1)! . For a maximal correlated state |ψ+〉, the correspond-

ing vector is λ(ψ+) = 1√
d

(1, 1, 1, . . . , 1). It is straightforward

to see that the volume is V O
s (|ψ+〉) = 0.

Thus, the source coherence of a pure state |φ〉 with sorted
vector λ(φ) is given by

CO
s (|ψ〉) = 1 −

∑
π∈d

[∑d
k=1 π (k)λk − d+1

2

]d−1∏d−1
k=1 π (k) − π (k + 1)

, (16)

where O ∈ {LSICC, LICC}. �
For a bipartite state |φ〉 with Schmidt decomposition |φ〉 =∑d
i=1

√
λi |φA

i 〉 |φB
i 〉, if the Schmidt bases |φA

i 〉 and |φB
i 〉 are

incoherent bases, both source entanglement and source coher-
ence (via O ∈ {LSICC, LICC}) will have identical volumes.
However, the source entanglement and source coherence
(via O ∈ {LSICC, LICC}) will have different volumes if the
Schmidt bases |φA

i 〉 and |φB
i 〉 are not incoherent bases.

Note that, for a state |ψ〉 = ∑
i

√
λi |i〉 and its “maximally

correlated” state |ψ ′〉 = ∑
i

√
λi |ii〉 , λ↓[
(ψ )] = λ↓(ψ ′).

This implies that both accessible coherence and source co-
herence are the same for those two states.

Next, we will give two examples to derive the formula
of accessible coherence and source coherence in the case of
LICC and LSICC transformations.

Example [LICC and LSICC transformations of qitrit-qutrit
pure states].

Consider the following two pure states |ψ〉 = √
a |00〉 +√

b |11〉 + √
c |22〉 and |φ〉 = √

a |00〉 + √
b |01〉 + √

c |02〉
with a � b � c � 0 and c = 1 − a − b. Observe that |ψ〉 can
be represented as a point on the x-y plane where the x axis
represents the basis |00〉 and the y axis represents the basis
vector |01〉. Similarly, |φ〉 can be represented as a point on
the x-z plane where in addition the z axis represents the basis
vector |11〉. The accessible volume and the source volume are

V O
a (|ψ〉) = V O

a (|φ〉) = 1
2 [(1 − a)2 − b2], (17)

V O
s (|ψ〉) = V O

s (|φ〉) = 1
2 [(a + b)2 − b2], (18)

where O ∈ {LSICC, LICC}. Thus, the accessible coherence
and the source coherence are

CO
a (|ψ〉) = CO

a (|φ〉) = (1 − a)2 − b2, (19)

CO
s (|ψ〉) = CO

s (|ψ〉) = 1 − (a + b)2 + b2. (20)

Figure 3 shows the accessible set and the source set are
different between |ψ〉 and |φ〉. �
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FIG. 3. The source set (blue) Ms(|ψ〉) and the accessible set
(red) Ma(|ψ〉) of state |ψ〉 are depicted. Meanwhile, the source
set (cyan) Ms(|φ〉) and the accessible set (magenta) Ma(|φ〉)
of state |φ〉 are depicted. Here, the x axis represents the ba-
sis vectors |00〉, the y axis represents the basis vectors |01〉,
and the z axis represents the basis vectors |11〉. In the figure,
|ψ〉 = √

0.5 |00〉 + √
0.3 |11〉 + √

0.2 |22〉 and |φ〉 = √
0.5 |00〉 +√

0.3 |01〉 + √
0.2 |02〉. The source sets (accessible sets) are indeed

different between these two states.

Example [LICC and LSICC transformations of two-qubit
pure states].

Let |ψ〉 = √
a |01〉 + √

b |10〉, where a + b = 1. We con-
sider state |ψ ′〉 = √

a |00〉 + √
b |11〉 with Schmidt coeffi-

cients a and b. It is then straightforward to find that the
accessible volume and source volume are

V O
a (|ψ〉) =

√
2
(
x − 1

2

)
, (21)

V O
s (|ψ〉) =

√
2(1 − x), (22)

where x � y, x, y ∈ {a, b}, and O ∈ {LICC, LSICC}. Figure 4
shows this state transformation, thus the accessible coherence
and source coherence are

CO
a (|ψ〉) = CO

s (|ψ〉) = 2(1 − x). (23)

�

VI. SOURCE COHERENCE AND ACCESSIBLE
COHERENCE FOR PURE STATE TRANSFORMS

VIA PIO, SIO, AND IC

First, we will discuss source coherence for pure state
transformation via O ∈ {SIO, IC}. The method of this proof
is similar to the proof of Theorem 11. Note that μ is chosen as
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FIG. 4. The source set (blue) Ms(|ψ〉) and the accessible set (red)
Ma(|ψ〉) of state |ψ〉 are depicted. Any state in Ms(|ψ〉) can be
transformed to |ψ〉 via LSICC and LICC, and |ψ〉 can be transformed
into any state in Ma(|ψ〉) via LSICC and LICC. In the figure,
|ψ〉 = √

0.6 |01〉 + √
0.4 |10〉.

a measure on the set of IU equivalence classes. From Lemma
2, the source set of |ψ〉 is given by

MO
s (ψ ) = {|φ〉 ∈ H such that λ[
(φ)] ≺ λ[
(ψ )]}. (24)

Because any pure states in an IU equivalence class can be
seen as the vector λ[
(ψ )], we can associate the set given
in Eq. (24) as the following sets of sorted vectors in Rd :

MO
s (ψ ) = {λ↓ ∈ Rd such that λ↓ ≺ λ[
(ψ )]}, (25)

where d denotes the rank of 
(ψ ); these sets are hence
supported on states of the same dimensions as 
(ψ ).

Then, the set given in Eqs. (25) is also a simple polytope
[30]. Thus, the volume of MO

s (ψ ) is

V O
s (|ψ〉) = 1

d!

√
d

(d − 1)!

∑
π∈d

[ ∑d
k=1 π (k)λk − d+1

2

]d−1∏d−1
k=1 π (k) − π (k + 1)

,

(26)

where π denotes an element of the permutation group d of
d elements and O ∈ {SIO, IC}. Note that for incoherent state
|ψincoh〉, the vector λ[
(ψincoh )] = (1, 0, 0, . . . , 0) can be
obtained from any other states via O ∈ {SIO, IC}, and there-
fore its source volume is the maximum, i.e., V O

s (|ψincoh〉) =
supφ V O

s (|φ〉). The volume is V O
s (|ψincoh〉) =

√
d

d!(d−1)! . For a
maximally coherent state |ψ+〉, the corresponding vector
λ[
(ψ+)] = 1√

d
(1, 1, 1, . . . , 1). It is straightforward to see

that the volume is V O
s (|ψ+〉) = 0.

Thus, we have following result for a pure state with sorted
vector λ[
(φ)] ∈ Cd :

Theorem 12. The source coherence of a pure state |φ〉 with
sorted vector λ[
(φ)] is given by

CO
s (|ψ〉) = 1 −

∑
π∈d

[∑d
k=1 π (k)λk − d+1

2

]d−1∏d−1
k=1 π (k) − π (k + 1)

, (27)

where O ∈ {SIO, IC}.
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Next, we will explicitly calculate the accessible coherence
and the source coherence for low-dimensional states.

For a single-qubit state, we calculate the coherence mono-
tones by choosing different free operations, i.e., PIO, SIO, and
IC.

Example [Single-qubit state transformation via SIO and
IC].

If the set measure μ denotes the volume of these transform
ranges above, for O ∈ {SIO, IC}, we find that CO

a (ρ) and
CO

s (ρ) in the qubit case is as follows:

V O
a (ρ) = 2

√
r2

x + r2
y

1 − r2
z

arcsin
√

1 − r2
z + 2|rz|

√
r2

x + r2
y , (28)

and

V O
s (ρ) =

⎧⎨
⎩2 arcsin

√
1 − r2

x − r2
y − 2

√
1 − r2

x − r2
y

√
1 − r2

z − 2

√
r2

x +r2
y

1−r2
z

arcsin |rz| + 2|rz|
√

r2
x + r2

y , r2
x + r2

y + r2
z �= 1,

2 arcsin |rz| − 2|rz|
√

1 − r2
z , r2

x + r2
y + r2

z = 1.

(29)

Note that
√

r2
x + r2

y is the l1-norm coherence of ρ. The supremum of V O
a (ρ) is in the case z0 = 0, thus V sup,O

a (ρ) = π .

Combining V sup
a with Va, we have

CO
a (ρ) = 2

π

(√
r2

x + r2
y

1 − r2
z

arcsin
√

1 − r2
z + |rz|

√
r2

x + r2
y

)
. (30)

If ρ is pure state, we have

CO
a (ρ) = 2

π

(
arcsin

√
1 − r2

z + |rz|
√

1 − r2
z

)
. (31)

We also have V sup
s = π , and note that 1 − arcsin |rz| = arcsin

√
1 − r2

z , thus,

CO
s (ρ) =

⎧⎨
⎩1 − 2

π

(
arcsin

√
1 − r2

x − r2
y −

√
1 − r2

x − r2
y

√
1 − r2

z −
√

r2
x +r2

y

1−r2
z

arcsin |rz| + |rz|
√

r2
x + r2

y

)
, r2

x + r2
y + r2

z �= 1,

2
π

(
arcsin

√
1 − r2

z + |rz|
√

1 − r2
z

)
, r2

x + r2
y + r2

z = 1.

(32)

For SIO and IC, accessible coherence and source coherence
are consistent in the pure state case (see Fig. 5). �

Example [Single-qubit state transformation via PIO].

FIG. 5. As shown in the figure, the source set (blue color) Ms(ρ )
and the accessible set (red color) Ma(ρ ) of state ρ are depicted. Any
state in Ms(ρ ) can be transformed to ρ via IC and SIO, and ρ can be
transformed into any state in Ma(ρ ) via IC and SIO. In the figure, the
single-qubit ρ has the Bloch vector ( 1

2 , 0,
√

2
2 ).

As shown in Ref. [2], a single-qubit ρ = 1
2 ( 1 + rz rx + iry

rx − iry 1 − rz
)

converted into σ = 1
2 ( 1 + sz sx + isy

sx − isy 1 − sz
) via PIO should satisfy

the following equalities:

s2
x + s2

y � r2
x + r2

y , (33)

s2
x + s2

y

r2
x + r2

y

� (sz − 1)2

(1 − rz )2
, (34)

and

s2
x + s2

y

r2
x + r2

y

� (sz + 1)2

(1 − rz )2
. (35)

Since μ is chosen as a measure on the IU equivalence class,
we can consider the transform range on the x-z plane, which

is a convex hexagon with six vertices: (±z,±
√

r2
x + r2

y ) and

(±1, 0) (more precisely, the IU equivalence classes of states

are considered on the first quadrant, but we consider the x-z

plane here since the symmetry does not affect the ratio V O(ρ )

V sup ).

The volume of accessible set V PIO
a (ρ) is the square of these

six vertices,

V PIO
a (ρ) = 2|rz|

√
r2

x + r2
y + 2

√
r2

x + r2
y . (36)
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FIG. 6. As shown in the figure, the source set (blue color) Ms(ρ )
and the accessible set (red color) Ma(ρ ) of state ρ are depicted.
Any state in Ms(ρ ) can be transformed to ρ via PIO, and ρ can
be transformed into any state in Ma(ρ ) via PIO. In the figure, the
single-qubit ρ has the Bloch vector ( 1

2 , 0, 3
4 ).

Since 2|rz|
√

r2
x + r2

y + 2
√

r2
x + r2

y � r2
x + r2

y + r2
z +

2
√

r2
x + r2

y , the maximal accessible volume can be reached

with r2
x + r2

y = r2
z = 1

2 and V sup,PIO
a (ρ) = 1 + √

2. Thus, we
have as follows:

CPIO
a (ρ) =

2|rz|
√

r2
x + r2

y + 2
√

r2
x + r2

y

1 + √
2

. (37)

On the other hand, a single-qubit ρ = 1
2 ( 1 + rz rx + iry

rx − iry 1 − rz
)

can be transformed from σ = 1
2 ( 1 + sz sx + isy

sx − isy 1 − sz
) via PIO and

should satisfy the following equalities:

s2
x + s2

y � r2
x + r2

y , (38)

s2
x + s2

y

r2
x + r2

y

� (sz − 1)2

(1 − rz )2
, (39)

s2
x + s2

y

r2
x + r2

y

� (sz + 1)2

(1 − rz )2
, (40)

and

s2
x + s2

y + s2
z � 1. (41)

The volume of source set V PIO
a (ρ) is as follows:

V PIO
s (ρ) =

⎧⎪⎪⎨
⎪⎪⎩

2Q1 + 2
[

sin 2 arcsin t − sin 2 arcsin
√

r2
x + r2

y

] − S1,
√

r2
x + r2

y + r2
z � 1,

2Q2 − 2
√

r2
x + r2

y

√
1 − (

r2
x + r2

y

) − S2,
√

r2
x + r2

y + r2
z � 1, r2

x + r2
y �= 0,

π, r2
x + r2

y = 0,

(42)

where Q1 = arcsin t − arcsin
√

r2
x + r2

y , Q2 = π
2 − arcsin

√
r2

x + r2
y , t = 2

√
r2

x +r2
y (1−|rz |)

(r2
x +r2

y )+(1−|rz |)2 , S1 = 2(|rz| + (r2
x +r2

y )−(|rz |−1)2

(r2
x +r2

y )+(|rz |−1)2 )

(
2
√

r2
x +r2

y (1−|rz |)
(r2

x +r2
y )+(1−|rz |)2 −

√
r2

x + r2
y ), and S2 = 2 |rz |

1−|rz |
√

r2
x + r2

y .

Obviously, when r2
x + r2

y = 0, V PIO
s (ρ) = V sup,PIO

s = π . Thus, we have as follows:

CPIO
s (ρ) =

⎧⎪⎪⎨
⎪⎪⎩

2
π

Q1 + 2
π

[
sin (2 arcsin t ) − sin

(
2 arcsin

√
r2

x + r2
y

)] − 1
π

S1,
√

r2
x + r2

y + r2
z � 1,

2
π

[
π
2 − arcsin

√
r2

x + r2
y

] − 2
π

√
r2

x + r2
y

√
1 − (

r2
x + r2

y

) − 1
π

S2,
√

r2
x + r2

y + r2
z � 1, r2

x + r2
y �= 0,

1, r2
x + r2

y = 0,

(43)

where Q1 = arcsin t − arcsin
√

r2
x + r2

y (see Fig. 6). �
Example [Two-qubit pure state transformation via SIO and IC].
Consider a two-qubit pure state |ψ〉 = √

x0 |00〉 + √
x1 |01〉 + √

x2 |10〉 with x0 + x1 + x2 = 1. As shown in Fig. 7 since every
qutrit pure state can be represented as a point on the x-y plane, the accessible volume and source volume are

V O
a (|ψ〉) = 1

2 [(1 − x)2 − y2], (44)

V O
s (|ψ〉) = 1

2 [(x + y)2 − y2], (45)

where x � y � z, x, y, z ∈ {x0, x1, x2}, and O ∈ {SIO, IC}.
The accessible coherence and source coherence are

CO
a (|ψ〉) = (1 − x)2 − y2, (46)

CO
s (|ψ〉) = 1 − (x + y)2 + y2. (47)

�
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FIG. 7. As shown in the figure, the source set (blue) Ms(|ψ〉) and
the accessible set (red) Ma(|ψ〉) of state ρ are depicted. Any state in
Ms(|ψ〉) can be transformed to |ψ〉 via SIO and IC, and |ψ〉 can be
transformed into any state in Ma(|ψ〉) via SIO and IC. In the figure,
|ψ〉 = √

0.5 |00〉 + √
0.3 |01〉 + √

0.2 |10〉.

VII. CONCLUSION

In this paper, we have generalized important results in mul-
tipartite entanglement theory to their counterparts in quantum
coherence theory. First, we gave a necessary and sufficient
condition for when two pure multipartite states are equivalent
under LICC, i.e., two states can be deterministically trans-
formed to each other under LICC operations. Next, we inves-
tigated and gave the conditions in which such a transformation
succeeds only stochastically. Different from the entanglement
case for two-qubit states, we find that the sLICC equivalence
classes are infinite. Thus, it is possible that there are some
classes of states in multipartite entanglement that can convert
into each other, whereas they cannot convert into each other
in multipartite coherence. These results above may help us
understand the structure of multipartite coherence states and
help us to know how to use coherence as a resource in the
multipartite coherence systems.

The other contribution of our paper is as follows: In order
to show the difference among sLICC classes, we introduced
accessible coherence and source coherence as two coherence
monotones. These coherence monotones have straightforward
operational interpretations and can be applied in many scenar-
ios (such as PIO, IC, LICC, and LSICC). We also analyzed
pure (or mixed) states via IC and derived explicit formulas
for the source coherence. We also showed how the accessible
coherence can be computed numerically and gave examples.
Moreover, we would like to connect these monotones with
applications. An interesting option is to study the role of these
monotones as figures of merit for known quantum information
protocols. This could then lead to the identification of the most
relevant multipartite states and maybe allow us to devise new
applications of multipartite coherence. Finally, we hope these
operational monotones will assist with understanding general
quantum resource theories.
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APPENDIX: CO
a (ρ) AND CO

s (ρ) ARE COHERENCE
MONOTONES THAT DO NOT SATISFY CONDITIONS

(B3) AND (B4)

In this Appendix, we will first discuss the accessible co-
herence CO

a (ρ). For condition (B1), we can see that, if ρ ∈ I,
then CO

a (ρ) = 0. For condition (B2), it is easy to see that
MO

a [�(ρ)] ⊂ MO
a (ρ) for any incoherent operations �, thus

CO
a (ρ) � CO

a [�(ρ)].
Now, we will show that CO

a (ρ) does not satisfy con-
dition (B4). A single-qubit state ρ can be represented as
ρ = 1

2 (1 + z te−iθ

teiθ 1 − z), where −1 � z � 1, 0 � t � 1, and 0 �
θ � π . Since accessible coherence CO

a (ρ) satisfies condition
(B2), without loss of generality, we can always consider the
state as ρ = 1

2 (1 + z t
t 1 − z), where t2 + z2 � 1. We can see

ρ = λ1 |λ1〉 〈λ1| + λ2 |λ2〉 〈λ2|, where λ1 = 1+√
t2+z2

2 , λ2 =
1−√

t2+z2

2 , and

|λ1〉 = t

2

z + √
t2 + z2

t2 + z2 + z
√

t2 + z2
|0〉

+ t

2

t

t2 + z2 + z
√

t2 + z2
|1〉 ,

|λ2〉 = t

2

z − √
t2 + z2

t2 + z2 − z
√

t2 + z2
|0〉

+ t

2

t

t2 + z2 − z
√

t2 + z2
|1〉 .

Let t = z = 0.1, then we can find CO
a (ρ) − λ1CO

a (|λ1〉) −
λ2CO

a (|λ2〉) = 0.0994. Thus, CO
a is not convex.

For condition (B3), consider a general amplitude
damping channel [25] with E0 = √

p(1 0
0

√
1 − γ

), E1 =
√

p(0
√

γ

0 0 ), E2 = √
1 − p(

√
1 − γ 0

0 1), and E3 =
√

1 − p( 0 0√
γ 0). Let p = 0.99 and γ = t = z = 0.5, then

we can find CO
a (ρ) − ∑

n CO
a (ρn) = −0.1912, thus condition

(B3) does not hold.
We will now show that CO

s (ρ) does not satisfy
condition (B4). Let t = z = 0.1, then we can find
CO

s (ρ) − λ1CO
s (|λ1〉) − λ2CO

s (|λ2〉) = 0.6930. Thus, CO
s

is not convex. For condition (B3), consider a general
amplitude damping channel [25] with E0 = √

p(1 0
0

√
1 − γ

),

042306-10
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E1 = √
p(0

√
γ

0 0 ), E2 = √
1 − p(

√
1 − γ 0

0 1), and E3 =
√

1 − p( 0 0√
γ 0). Let p = 0.99 and γ = 0.8, t = z = 0.4,

then we find that CO
s (ρ) − ∑

n CO
s (ρn) = −0.2123, thus

condition (B3) does not hold.
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