IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 26, 2019, accepted May 9, 2019, date of publication June 10, 2019, date of current version August 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2922148

Evolving Coauthorship Modeling and Prediction
via Time-Aware Paired Choice Analysis

LIANG HU 12, QINGKUI CHEN', LONGBING CAO 2, SONGLEI JIAN"3,
HAIYAN ZHAO', AND JIAN CAO 4

! Department of Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Advanced Analytics Institute, University of Technology Sydney, Sydney, NSW 2008, Australia

3College of Computer, National University of Defense Technology, Changsha 410073, China

4Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Corresponding author: Qingkui Chen (chenqingkui @usst.edu.cn)
This work was supported in part by the National Natural Science Foundation of China under Grant 61572325 and Grant 61472253, in part
by the Shanghai Key Programs of Science and Technology under Grant 16DZ1203603, in part by the Shanghai Engineering Research

Center Project under Grant GCZX 14014 and Grant C14001, and in part by the National Key Research and Development Plan under
Grant 2018YFB1003800.

ABSTRACT Coauthorship prediction is challenging yet important for academic collaboration and novel
research topics discovery. The challenges lie in the dynamics of social or organizational relationships,
changing preferences of suitable collaborators, and the evolution of research interests or topics. However,
most current approaches and systems developed so far are mainly based on past coauthorships from a static
viewpoint and do not capture the above evolving characteristics in coauthoring. Accordingly, this paper
proposes a time-aware approach to capture the evolving coauthorships from online academic databases in
terms of capturing the dynamics of social relationships and research interests. In particular, in order to
understand the underlying factors influencing researchers to make choices of coauthors, we incorporate
choice modeling based on utility theory. More specifically, our model conducts a series of pairwise choices
over a poset induced by a utility function so as to learn the preference over all candidate coauthors.
To complete the model inference, a gradient-based algorithm is devised to efficiently learn the model
parameters for large-scale data. Finally, extensive experiments conducted on a real-world dataset show that
our approach consistently outperforms other state-of-the-art methods.

INDEX TERMS Discrete choice modeling, dynamic social network, temporal link analysis, utility theory.

I. INTRODUCTION

Nowadays, quite a few online academic databases have been
built to access bibliographic information. In particular, such
databases are mainly used for finding and accessing arti-
cles in academic archives. However, coauthorship is another
important information that can be further exploited from these
academic databases. For example, a researcher often desires
to find suitable collaborators for a specific task. Although we
can manually browse and select researchers with the aid of
databases, an automated retrieval system is more desirable
to speed up this time-consuming process. Moreover, if we
can predict future coauthorships among leading researchers,
we may capture newly emerging research topics in advance.
Therefore, accurately predicting the future coauthorships in
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terms of analyzing the information from online academic
databases is of practical significance.

Coauthorship prediction aims to find the most possible
coauthors whereby, given a researcher alongside his/her
profile, e.g., past publication records. Intuitively, histori-
cal coauthoring records can provide an informative refer-
ence to predict future coauthorships. Hence, some early
attempts adopt community detection approach to find close
researchers [1], where it assumes that members in the same
community have stronger links than those in other com-
munities, so researchers in the same community tend to be
first-choice coauthors. Although this approach is helpful,
it only considered the topology of a network. Moreover,
the successes of coauthor choices are heavily dependent
on having compatible collaboration topics as well. Two
researchers are unlikely to be coauthors if they are not inter-
ested in each other’s research fields. CollabSeer [2] offers
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FIGURE 1. The evolution of co-authorships over time. Such evolution is dependent on both historical social relationships and research interests.

In fact, social relationships and collaboration topics coevolve over time.

some improvements, predicting coauthorships by jointly
modeling the structural similarity over the coauthorship net-
work and the content similarity over the textual material.
Tang et al. [3] studied a cross-domain collaboration recom-
mendation approach to meet the needs of interdisciplinary
cooperation, where the authors explore some methods to find
compatible collaboration topics across two related domains
using a topic model. Then, they use random walks with
restarts (RWR) to measure the relatedness of two researchers.

However, in the real world, coauthorships are constantly
evolving. For example, it does not guarantee that two
researchers, who have previously coauthored papers, will
continue coauthoring more papers in the following years
due to some particular reasons, e.g., employment change.
Moreover, the formation of coauthorships is heavily depen-
dent on the research interests of the authors. Since the
research interests of each author shift over time, in turn,
it leads to developing new coauthorships on active research
focus. In a word, collaborative relationships and research
interests are not static but coevolve over time. Figure 1
demonstrates such phenomena by a series of yearly time
slices, where each slice depicts the snapshot of coauthorships
over a group of researchers and the distribution of research
interests w.r.t. each author. The real-world data also illus-
trates these observations, cf. Figure 4, the dataset collected
for experiments, where researcher A’s most significant coau-
thor changed from #3 (2000-2001), to #1 (2002-2003), then
to #2 (2007-2008), while his/her research interest on topic
#46 decreased gradually to zero by 2009. In conclusion,
there are two primary evolving factors driving the formation
of coauthorships: (1) Social Relationships and (2) Research
Interests. However, most current approaches, including the
aforementioned ones, studied coauthorships from a static
perspective, which are incapable of capturing the dynamic
factors of coauthoring. As a result, these methods may fail
to accurately capture the evolving coauthorships since they
fully make the prediction based on a static state.

To understand and capture the evolution of coauthorships,
we first need to model the underlying factors that result in the
decision on choosing which coauthors. Fortunately, choice
modeling [4] can be employed to analyze the user decision
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based on the given attributes. In fact, choice modeling is a
very powerful tool which has been effectively applied in many
areas, including psychology, economics, policy, labor, health,
marketing, over decades [4]. In particular, choice modeling is
often interpreted through utility theory [5], i.e. users tend to
choose the items with high utility. Accordingly, we can mea-
sure the utility of each choice on coauthors, so coauthorship
prediction is reduced to an optimization problem of choosing
coauthors with the maximum utility from the perspective of
choice modeling. As a result, predicting the future coauthors
w.r.t. a target researcher is equivalent to computing which
choices of coauthors can produce maximum utility at that
time.

Inspired by the above discussion, we design a time-
aware approach to capture the evolving coauthorships. First,
we define an order relation of preference over a set of candi-
date coauthors w.r.t. each year in terms of a utility function.
Based on such a preference order, we propose the time-
aware paired choice analysis (TAPCA) on coauthorships to
model temporal preferences by a series of pairwise compar-
isons. More specifically, our approach takes the time-varying
features of social relationships and collaborative topics as
inputs to model the choices of coauthors over time. In addi-
tion, to improve the generalization ability of our model,
we respectively regularize the parameters of our models with
the L1 and L2 norms. Since the total number of pairwise
comparisons may be large, standard gradient methods cannot
work well. We propose to learn the parameters by the stochas-
tic gradient method, that is, we update the parameters w.r.t.
a single choice a time. Once the parameters are estimated,
the most possible future coauthorships are ranked by the
predicted utility of choices over candidate coauthors.

The main contributions of this paper can be summarized as
follows:

o We propose a time-aware approach to capture the

dynamic nature of coauthoring in a realistic way.

« We define two aspects of time-varying features: social
factors and collaboration topics, to better understand the
choices over coauthors with these features.

o We design a choice model over ordered preference
relationships, which statistically relates the choices of
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coauthors to the time-varying features to learn the influ-
ence of each feature.

« We conduct extensive experiments on a real-world
academic dataset which shows the superiority of our
approach over the other comparison methods.

Il. RELATED WORK

To study collaborations, a classic method is to analyze the
structure of a collaboration network [6]. Newman [1] pro-
posed a community detection algorithm over a coauthorship
network, where a community accommodates people with
common research interests. The underlying assumption of
predicting coauthorships is that people tend to collaborate
with those in the same community. CollabSeer [2] defines
the various vertex and lexical similarities to measure the
tightness of two researchers, so it can rank potential coauthors
by integrating vertex and lexical similarities. Coauthorship
prediction can also be viewed from the classic link prediction
perspective. Miller er al. [7] proposed a probabilistic model
to predict links between objects according to the interaction
between their latent features. Backstrom and Leskovec [8]
integrated features of nodes and edges into a unified model
to predict the weight of unseen links using random walks.
Makarov et al. [9] use the network to power a coauthor
recommender system. The system gives recommendations
of authors that have interests similar to the target author or
whose coauthorship pattern is similar to that of the author.
However, these classical methods take a static perspective of
a network so they cannot work well on the evolving coau-
thorships as studied in this paper. Most importantly, these
methods neither consider the dynamics of social relationships
nor the compatibility of collaboration topics that essentially
decide the choice of coauthors.

Sun et al. [10], [11] study the problem of future coau-
thorship prediction in a heterogeneous bibliographic net-
work which contains multiple types of objects, such as
authors, venues, topics, and papers, as well as multiple types
of links denoting different relations among these objects.
Cross-domain Topic Learning (CTL) [3] aims to study the
collaboration pattern across domains, where each author
needs to be assigned to a domain and models are constructed
for each pair of domains in advance. As stated by its name,
CTL is a topic model which mainly focuses on finding the
patterns of collaboration topics across two domains instead of
the patterns of the formation of coauthorships, so it studies a
quite different problem from this paper. Moreover, CTL does
not explicitly model the influence of social relationships on
choosing coauthors; instead, it ranks coauthors by random
walks with restart (RWR) where the transition probability
is induced from a common topic distribution related to two
researchers. Furthermore, the above models do not consider
the dynamic nature of collaboration. Now, let us consider an
example: a researcher has recently changed his interests but
has a large number of old publications, hence the propor-
tion of old research interests may overwhelm the new ones.
In such a case, the ranking of potential coauthors is mainly
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determined according to the old interests so it will lead to a
poor prediction.

Nowadays, researchers have realized that coauthorship is
an evolving relation [12] that cannot be well captured in terms
of static modeling. ACRec [13] is an Academic RWR model
using three academic metrics as basics for recommending
collaboration. Therein, the latest collaboration time point is
one of the metrics are exploited to define the link impor-
tance. Acar et al. [14] considered the temporal link prediction
problem and modeled the evolving link data in terms of
tensor factorization. This method only represents links, i.e.
whether a link exists between two nodes, but it cannot model
the underlying factors resulting in the formation of links,
e.g. research interests for each author. TensorCase [15] is
a coupled tensor factorization method for forecasting time-
evolving networks, which is able to incorporate multiple
information sources. The model proposed in this paper is
also constructed in a time-aware manner, which can better
capture the time-varying factors that determine the formation
of collaborations, i.e. a drift in social relationships and col-
laboration topics.

IIl. PRELIMINARIES

Since coauthorships are changing over time, we need to rep-
resent the dynamic factors influencing coauthoring so as to
capture the underlying trends to predict future coauthoring in
a more adaptive way. In fact, people are connected by similar
research interests in the real world, so closer social relation-
ships may partially imply more suitable research topics for
collaboration.

A. TIME-VARYING FEATURES IN COAUTHORING

In the real world, social relationships and research focus are
the two most primary aspects that lead to the formation of
coauthorships. Since both social relationships and research
interests change with time, we need to define these dynamic
features.

1) TIGHTNESS OF SOCIAL RELATIONSHIPS

Similar to the way that people trust their friends more than
those who are unfamiliar, a researcher also tends to col-
laborate with those coauthors who have a tight relation-
ship, because collaboration with unacquainted persons means
more uncertainties, which may increase the incompatibility of
collaboration and the risk of failure.

We denote all researchers for study as U = {uy, uz, -- -,
uy}. Now, let’s consider a set of coauthorship networks {G'}
organized by time slice ¢, where each node stands for a
researcher u € U, the weight of edge wfj indicates the number
of coauthoring between u; and u; during ¢ and I'? (4;) denotes
the neighbors of u;. Then, we can define the following time-
varying social features that may lead to the collaboration
between two researchers, denoted as:

Jli=bit [t—b,t]
ij

] t
, #coclj, #cocij ,

dj <k, 1@ " <y ()

t.

i #co

sfj = {#col
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TABLE 1. Dynamic social features in collaboration.

#colfj The number of observed coauthoring be-
tween u; and u; during £.

#col[f bt The cumulative number of observed coau-
thoring between u; and u; during ¢ — b to

t, where b is a parameter.

The number of observed common co-
authors between u; and u; during ¢

#cocl;

t—b,t .
#coc£ ; ] The cumulative number of observed com-
mon coauthors between u; and u; during

t — b to t, where b is a parameter.

1(dt, < k)

IS Boolean value to indicate if the distance

d;; between u; and u; is d;; < k during
t.

Boolean value to indicate if the distance
d;; between u; and u; is d;; < k during
t — bto t, where b is a parameter.

[t—b,t]
1d" < k)

The description of each feature is given by Table 1.
Obviously, all the defined features in Table 1 reflect the tight-
ness between two coauthors in the social network. Therein,
we model both the short term factors, e.g. #coltj and #coc’
and the long term factors, e.g. #colg_b’ and #coc; b tﬂ.
Typically, we set the time period ¢ to be one natural year in

this paper. Forexample, we set + = 2016 and b = 2, and

then we obtain #6011[12016,2018] which means the number of

collaborations between u; and u; during 2016 to 2018.

2) COMPATIBILITY OF COLLABORATION TOPICS

Another important factor that determines the formation of
collaboration is the research interests of coauthors. It is
unlikely that two researchers will engage in collaboration if
they are not interested in the research topic of each other.
Therefore, we should extract the preferred collaboration
topics of each researcher.

Here, we employ the Latent Dirichlet Allocation
(LDA) [16], which is a widely used topic model, to extract
the distribution of research topics in which each researcher
is involved. In LDA, the topic proportions vectors of a
document d is denoted as 8, where the proportion of each
topic z is given by:

Cd,z + o
ZZ/ Cd,z’ + ZO{

where Cy ; denotes the count of words assigned to the topic z
in d, Z is the total number of topics and « is a hyper-
parameter. If we denote Ny = ) Cy » as the length of the
document d and set « = 0, then we can rewrite Eq. 2 as
empirical topic proportions 6, [17]:

Cd,z
Ng

@

ed,z =

3

ed,z =
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With some minor modification, we can easily obtain
the statistics of the collaboration topic distribution of a
researcher u; during t — b to . Let Dl[.t_b’tl denote the docu-
ments published during # — b to 7, where u; is a coauthor of
each document d € D}, formally

Dl[tfb’t] = {d|u; € coauthors (d) A pubdate (d) € [t — b, t]}

“)

Then, the empirical topic proportions @} based on u;’s
involved collaboration during  —b to ¢ can be easily obtained:

9[ _ Zde,D}z—h,tJ Cd,z s
i,z Z N ( )
deD,[”b”] d

Here, the assumption is that the coauthored documents can
reflect the collaboration focus of coauthors. For example,
u; has expertise in Machine Learning (ML) and he is also
interested in Social Network (SN) but with less expertise,
so he more probably tends to coauthor papers of the topics on
both ML and SN. As a result, both 6/ __,/, and 6] _g, tend
to have higher proportions in his coauthored papers, which
reflect the focus of u;’s collaboration.

Since the topic distribution ! can reflect u;’s collaboration
focus, u; is more likely to collaborate with whomever has
some common interest. Therefore, it is possible to mea-
sure the compatibility of collaboration topics between two
researchers u; and u; in terms of 0? and 0,’.. For example,
we can compute the normalized Hadamard (element-wise)
product [17] of 6/ and 9].’ to quantify the distribution of their
collaboration interests:

000!
> (0 i © 0/>Z

Obviously, the topic 9’ has a relatively large value only
if both the topics of Qt and Qt are large. Intuitively, if we
have observed that both u; and u; j have intensive collaboration
interest on the topic z during ¢, i.e. with high proportions 9’
and 9’ then z can be regarded as a potential collaboratlon
topic between u; and u;.

B. PROBLEM FORMULATION

As presented above, social relationships and collaboration
interests are two major reasons leading to changes in coau-
thorships. As a common principle stated by the structural
balance theory (a.k.a. “the friend of my friend is my friend””),
a researcher may tend to develop new coauthorships with
his/her indirect coauthors. Likewise, the shift of interests also
influences the formation of new collaborations and vice versa.
Such coevolution of both social relationships and research
interest has a significant impact on future collaboration,
as shown in Figure 1.

According to above analysis, obviously finding suitable
coauthors in different years will have different answers, so we
need to formulate this problem in a temporally dependent
manner. From the probabilistic model view, we can model
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the probability of each output, yﬁj, at time ¢ conditional to
its historical input features. Here, yﬁj € {1, 0} is a Bernoulli
variable to indicate whether u; and u; have coauthored papers
at time ¢ given the historical features of both social relation-
ships Hsfjl and the collaboration interests {0;]J Formally,
we can obtain the following conditional probability of the

collaboration between u; and u;:
tt—1 t—N pt—1 t—M,

p (vl eS8 M) )
where the historical social features are modeled of time-slice
order N and the historical collaboration topics are modeled
of time-slice order M. B are model parameters that need to
be learned. To simplify discussion, we will assume N = M
and refer to NV as the time-slice order of the model.

Given a target user u;, we can write the joint probability of
all possible collaboration with u; from timet = 1--- T

T
Pi=p B [T Tp (55is 05: 8) @®)
1=1 j#i
where p (B|L) is the prior of the model parameters 8 and A are
hyper parameters. The specific distributions of p (8|A) will
be discussed in detail in the next section. Therefore, we can
learn B by maximizing the joint probability P;.

When the model parameters 8 were estimated, the proba-
bility of u; choosing u; for coauthoring at time T + 1 can be
predicted using the same form as Eq. 7:
h§+1 :p(yg—&—l'S;’.._’S§+1—N,0;’“_’0§+1—M; ﬂ) ©)

As a result, we can compute the probability over all
h?j-H

ij

candidates C;, { je C,'}. Then, we can rank the future

potential coauthors of u; by sorting {thrl j e Cl-].

IV. MODEL SPECIFICATION

As discussed above, the formation of collaboration between
each pair of researchers is not arbitrary; a researcher is
more likely to choose a coauthor whose collaboration can
produce more outputs, e.g. publications. In this section,
we formally study researchers’ choices of their coauthors
which are dependent on the time-varying features, i.e. social
relationships and collaboration interests.

Choice analysis attempts to model the decision process
of an individual in a particular context. Specially, discrete
choice models [4], [18] describe, explain, and predict choices
between two or more discrete alternatives. In this section,
we design a time-aware paired choice model to analyze the
choices of coauthors based on utility theory, where we com-
pare the utility of a pair of choices between two candidate
coauthors within some time period. Therefore, the problem
of coauthorships prediction is reduced to measure the utility
of each choice based on the time-varying features.

A. PAIRED CHOICE ANALYSIS
In general, discrete choice models are usually derived from
utility theory [5]. Utility is a representation of preferences
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over a set of alternatives. Given a target researcher u, we rep-
resent the preference relation on his/her candidate coauthors,
using the notation >,. The candidate coauthor set of u is
denoted as C,, € U. For example, if u prefers to collaborate
with a coauthor i over j where i, j € Cy, then we can formally
write such preference as i >, j. Furthermore, we define the
utility function U (u, i) to quantify the utility of # choosing
a researcher i as the coauthor. Then, we have the necessary
and sufficient condition as Eq. 10 according to utility theory.
Preferences have the utility representation so long as they are
transitive, complete, and continuous [5].

i>,je Ui >U(@u,j (10)

1) ORDER OF PREFERENCE

Intuitively, more outputs (i.e. coauthored papers) mean that
the collaboration is more productive, so the preference of
collaboration can be measured by the number of coauthored
papers between two researchers. Some researchers may have
conducted collaboration, but the observed output is zero.
Obviously, such collaboration is not preferred. So far, we can
define the preference relation at time ¢ according to the
number of observed collaborations as follows:

i =1, j < #eoll, > #col;j (11)

If #col! . = #col ;j, we cannot immediately tell which coauthor
is preferred by u, so the preference order is undefined in such
a case.

Obviously, the >/, is a partial order relation over C, accord-
ing to the above definition. Figure 2 visualizes the Hasse dia-
gram of the poset C,, where the higher position of coauthors
indicates the higher number of observed coauthoring, that is,
u prefers collaborating with researchers in higher positions
than those in lower positions. Furthermore, we defined a set
of coauthors for whom u is less preferred than i (note the
preference relation is transitive), and we formally denote this
setas <!, it

<ui={jli =, j.J # i} (12)
For those coauthors at the bottom level in Figure 2, they are

the least preferred by u with zero coauthoring. Hence, we can
define these coauthors as:

0, = {jl <i,j=2]} (13)

2 coauthorings

!

1 coauthoring

0 coauthoring

FIGURE 2. The Hasse diagram of the poset Cy w.r.t. a target researcher u.
The order relation > is organized according to the number of observed
coauthoring during ¢ . For example, the demonstration illustrates u
coauthored with the top-level authors twice and the bottom-level authors
with zero time.
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And those coauthors who have at least one coauthoring
during ¢ are denoted as:

CL=Cu\ 0, (14)

2) PAIRWISE CHOICE MODELING

The method of pairwise comparison has been widely used in
the scientific study of preferences, which can be dated back
to the Law of Comparative Judgment that was conceived by
Thurstone [19]in 1927. The essential idea behind Thurstone’s
process and model are that it can be used to scale prefer-
ence over each choice object based on simple comparisons
between a pair of choice objects a time: that is, based on a
series of pairwise comparisons.

N
Bop

N N |
Sui | O Sui | O || Sui

Time-varying features w.r.t.
higher-utility coauthoring

Time-varying features w.r.t.
lower-utility coauthoring

FIGURE 3. Demonstration of the TAPCA model: it models the utilities of
user u choosing a pair of coauthors i and j at time ¢, where the utility of
coauthering between u and j, i.e. U j» is higher than that of between u

andj, i.e. Ut
Ut ; and U'

.i >t j denotes the order of pairwise comparison between

Figure 3 illustrates the model of TAPCA by comparing
the utility of choosing a pair of coauthors, the details are
presented below. Following the derivation of choice models
using the random utility model (RUM) [4], we decompose the
utility Uy, ; at time # into two parts:

Ultli - V( Lll) + 8; (15)

where the function V (xm.) is often called representative util-
ity and error term ¢! captures the factors that affect utility
but are not included in V (x!,). x!. is the input features of
the choice i by u at time ¢. In our problem, the observed
features are social features and collaborative topics, namely
s'; and 0!,.. Here, 0!, uses the definition in Eq. 6. V (x!,) has
the hnear form as f0110w5'

IBO+Z nTt —n 01,‘ n (16)

where N is the order of this time series model, By is a
bias, B is a vector of effects of social features and B is a
vector of effects of collaboration topics. That is, B models
which social features have heavy impact on the choice of
coauthors while B models a researcher’s preference to col-
laborate on which topics. We can denote atu—ir = [ T 0tT],

ui
N
x!I = [a’ ._"T] to stack all N-order input features, and
e

(67,

B =[BT, BT ). BT = to stack all correspond-
ing model parameters, and then Eq. 16 can be rewritten in a
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very concise form:

ﬂo+Z "Ta " =po+BTx, (17

According to Thurstone’s Law of Comparative Judgment
Case 5 [19], the probability of preference can be defined in
terms of the utility of choices (Eq. 10), namely

pli=i)=p (Ul = UL)) (18)

Further, we replace U’ (u,j) with Eq. 15, and then we

obtain:
p(Us > ULy)
=p(V (<) +ef >V (xi;) +e)
p(s <&l +V(x,;) - V(X;j»
T T
= CDF (el +B7x,; — B7x,) (19)
where CDF denotes some cumulative density function.
If we assume sf ~extremevalue, the logit model is obtained
by integrating out ¢! from Eq. 19 with a closed form [4].

Finally, the probability of preference over a pair of choices
is represented by a logistic function as given by Eq. 20.

V (Xlll)

RICARIALCY)

1
= 20
1+ g_ﬂT(xtui_x[ui 20)

p(i>, JjlB)

Further, we can conduct pairwise comparisons over all
possible preferences, >!, derived from the poset C,. As a
result, the joint likelihood over all >/, is given by:

=ITTIx(

ieCt je<ii

i =, J1B) 21

Furthermore, we jointly consider the time series of input
features and output collaborations from ¢ = 1 to T'. The final
likelihood is obtained as follows:

T

[1 »(~.18) (22)

t=N+1

p (-4 1B) =

B. PRIORS ON PARAMETERS

So far, we have presented the likelihood function, so we can
use MLE (Maximum Likelihood Estimation) to estimate the
model parameters 8 from Eq. 22. However, such estimates
of B lack regularization, which may lead to poor prediction
performance due to overfitting. Therefore, we can complete
our model as Bayesian modeling by placing some prior
p (B1©) on the model parameters 8, where @ denotes hyper-
parameters. In this paper, we consider two frequently used
priors:
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1) GAUSSIAN PRIOR

First, we place a spherical multivariate Gaussian prior on the
parameter vector 8 with zero means and a diagonal covari-
ance matrix specified by oI:

K8
P (B1©) =N (B10.°T) = hge” 2 23)
where o2 is a variance parameter, I is the identity matrix and

Ao is the normalization constant.

2) LAPLACE PRIOR

Second, we consider the Laplace prior with zero means and
variance parameter o for each S, so the prior density for the
parameter vector B is

K TK | 18]
p(B10) = [[LaP (fil0.0%) =soe ™7 24)

k=1

where K is the length of § and Ao is the normalization
constant.

C. OBJECTIVE FUNCTION
With the likelihood (Eq. 22.) and priors (Eq. 23 and Eq. 24) in
hand, we immediately obtain the posterior by Bayes theorem.

p (Bl >u) xp(>u|B)p(BIO) (25)

Therefore, we can maximize the posterior to learn 8 Obvi-
ously, maximizing Eq. 25 is equivalent to minimizing its
negative log form. Then, the loss function is obtained:

Lg () = afgﬁgn —logp (> |B) —logp (B|©®) (26)
In the above loss function, the term R (8) =
servers as the regularizer to avoid overfitting.

For the case of Gaussian prior (Eq. 23), the regularizer
Ry (B) corresponds to the L2-norm regularization:

—logp (B1©®)

K
Ry (B) = —logN(BI0.a’ D) =AlBI3=1> B (27

k=1

where A > 0 is the regularization parameter which can be
tuned by cross-validation. The L2-norm regularizer plays a
role in shrinking B to relatively small values.

For the case of Laplace prior 24, the regularizer Ry (f)
corresponds to the L1-norm regularization:

K
=1) IAl (28)

k=1

Re (B) = —log LAP(B0, o°T) = AlIB 11

The Laplace prior has thinner tails than the Gaussian, and
thus concentrates posteriors closer to its zero mean than a
Gaussian of the same variance. Therefore, the parameters
with L1-norm regularizer tend to induce sparse values, i.e.
only a few B, are non-zero and the other ones are zeroes.
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V. LEARNING AND INFERENCE

As presented in previous sections, we need to learn the
parameters B of the time-series input features in order to find
future coauthors. In this section, we design a gradient-based
algorithm to efficiently learn the parameters, and then we
show how to prediction future coauthorships.

A. PARAMETER ESTIMATION

Minimizing loss function Lg (>) (Eq. 26) can be viewed as
solving a regularized logistic regression problem. In general,
we can use a gradient-based method to find 8. The gradient
of Lg (>) can be computed as the follows.

dlogp (-« |1B)  dlogp (B|©)
B B

First, the partial derivatives of the likelihood function can
be easily derived from Eq. 20-22:

Z Z Z 810gp i> jlﬂ) (30)

1=N+1ieCt je<ii

VLg (>,) = — (29)

0 lng (>u |B)

where

dlogp (i =, j1B) _ —e~P o a1
B 1+e BT (Xui—Xuj) *ui

Moreover, we can give the partial derivatives of the regu-
larization w.r.t. L2 and L1 norms.

1) L2 Regularization (cf. Eq. 27):

dlogp (BI®) Ry () . =
s = g LA D

k=1

2) LI Regularization (cf. Eq. 28):

_dlogp(B1©) _ 3RL(B)
Ip Y

K
=1y sen(Br)  (33)
k=1

The number of possible paired choices, i >’u J» s large,
which can be estimated using Eq. 34 where | - | denotes the
cardinality.

EAREY (34)

The coauthor candidate set C,, often consists of all available
researchers, i.e. U. As a result, | >, | tends to be large. As a
result, standard gradient descent methods are not workable
for our problem. To solve this issue, we use the gradient-based
optimization algorithm to estimate the parameters. Further-
more, we adopt the bootstrap sampling strategy to randomly
draw a paired choice when running our learning algorithms.

Such a strategy has been proved very efficient in large-scale
problems [20].
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1) LEARNING ALGORITHM
Given a training example, i.e. a pair of choices, i >/ j at
time ¢, the gradient is given by:

_dlogp (i~ jlB) IR (B)

B B
In fact, we do not need to loop the stochastic gradient update
for all possible choice pairs. In this work, we take a boot-
strap sampling strategy to randomly draw a batch of training
samples B = {i >/, j}, which has been proved very efficient
and quick converging over large-scale data [20]. Accordingly,
we design the learning scheme with L1 and L2 regularization
given by Algorithm 1, where n denotes the learning rate that
is adaptively optimized in terms of Adam [21].

VLg (i >, ]) = (35)

Algorithm 1 Gradient-Based Learning Scheme for TAPCA
Require:
1: U: the author set
A: regularization parameter
no: initial learning rate
: N: time-slice order of the time series model
: B: mini-batch size
c: sampling factor
7: MaxIt: maximum number of iterations
Ensure: B the learned parameters w.r.t. u
8: B < 0,n <« no )
9 K ¢ v Lueu ICil/B
10: for it = 1to Maxlt do
11: fork =1to K do

AN AN I

> number of batches

12: for b =1to Bdo

13: sample a target researcher u from U

14: sample a coauthor i from C, \ 0,

15: sample a less preferred coauthor j from <!, i
16: add i »!, j to training batch B

17: end for .

18: B p— nirlics(rali) > cf. Eq. 35
19: n < Adam(n)

20: end for

21: end for

22: return 8

2) COMPLEXITY ANALYSIS

According to Eq. 34, the number of all possible training
samples is Z,T:N 1 2we| >4 |, with the complexity
O(UI Yy 41 Sues ICLD) for each iteration, which can-
not be efficiently computed on large-scale datasets. When
we adopt the bootstrap sampling strategy as presented in
Algorithm 1, the complexity of each iteration is reduced to
o (c PIHETIRD Sy IC_;|>. In general, the sampling factor
¢ < [U]. In this paper, we set the contrastive pair factor
¢ = 10, that is, for each observed collaboration we only
sample 10 less preferred coauthor for pairwise comparisons.
In this way, our algorithm can be finished in constant time for
each iteration.
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B. COAUTHORSHIP PREDICTION

According to utility theory, researchers’ choices over coau-
thors are measured by utility (cf. Eq. 10). The higher utility
implies the more preferred coauthor. Therefore, we can rank
future coauthors in terms of the predictive utility. Given a
target researcher u, the expectation of the predictive utility
of choosing i as a coauthor at the future time t = T + 1
(cf. Eq. 34) can be computed by the expectation of Eq. 15 with
the estimated model parameters 8, where const = So+E (sl’ )
is a constant. In the same way, we can compute utility w.r.t.
every potential coauthor from the candidate set C,,.

E[U, 18] =E[V (x,;) + 18]
=V (x,) +E(¢)
= ﬂTXf”- + const (36)

Then, we can simply rank the future coauthors according to
their representative utility ﬁTx’m.}l. oy

VI. EXPERIMENTS

The experiments were conducted on a real-world academic
dataset. This dataset was collected using the Microsoft
Academic Search (MAS) API from its academic database.
We evaluate the prediction performance by a set of metrics
and compared our models with other state-of-the-art
approaches. We implemented our model using Keras [22]
with the backend of Tensorflow GPU version. Gensim [23] is
employed to extract topics from the corpus. The experiments
were run on a machine with 32G memory and 8G GPU.

A. DATA PREPARATION
First, we selected eighteen computer science conferences:
SIGIR, WWW, KDD, IICAI, AAAIL ICML, ICDE, CIKM,
ICDM, VLDB, CVPR, SIGMOD, NIPS, ACL, UAI, PKDD,
SDM, and PAKDD, which cover the research areas: infor-
mation retrieval, machine learning, artificial intelligence,
database and data mining. We respectively retrieved the
top 200 researchers with the maximum numbers of publica-
tions from each conference using the MAS API. Then, these
researchers were merged into a researcher set, resulting in a
total of 2,137 distinct researchers. Finally, we used the MAS
API to retrieve the articles published from 2000 to 2010 w.r.t.
each researcher and a total of 76,431 articles were collected.
We extracted the words from the abstract and title for
each article and removed stop words and words appearing
less than five times. This preprocessing yielded a vocabulary
containing 8,700 distinct words. Since this dataset focuses
on the publications of Al-related area, we select 50 latent
topics for the LDA model to retrieve the empirical topic
distribution for each researcher for each year (cf. Eq. 5).
For some multi-discipline datasets, we may choose a larger
number of latent topics, e.g., 300, to study the coauthoring
on cross-discipline topics. Moreover, we constructed a set of
coauthorship networks over those 2,137 researchers accord-
ing to their coauthorships retrieved from the articles, where
each network corresponds to a year. In addition, we also
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FIGURE 4. The statistics of the two most active researchers: (Left) the number of coauthored papers with their top 10 collaborators each year;
(Right) the distribution of 50 collaboration topics each year (the grey degree indicates the research interest intensity on one specific topic).

constructed a single coauthorship network over the training
data, ignoring the time for baseline models in a static manner.
In the following experiments, the data of years 2000-2009 are
used for training, and the remaining data of the year 2010,
i.e. the true coauthorships in 2010, are used for testing. The
candidate coauthor set C, for each author consists of all
researchers in the dataset.

Figure 4 visualizes coauthorships and collaboration topics
w.r.t. two active researchers over ten years. From this demon-
stration, we can clearly observe the evolution of coauthor-
ships and research focus over time.

B. EVALUATION METRICS
Since coauthorship prediction is a process of ranking, we use
the following three metrics, which are commonly used in
IR and search to evaluate the performance of all comparison
models. In the following experiments, we reported the aver-
age performance over all testing users.
e AUC: Area under the ROC curve measures the proba-
bility that a system ranks a positive instance higher than
a negative one. Given a target researcher u, AUC,, eval-
uates the probabilities of correctly assigning the ranks
for the true observed coauthors cl,, (positive instances)
higher than the remaining C, \ cl, (negative ones):

Diect, 2jeCael, L Tk (D) < 1k (7))
[elul - 1Cy \ Ly

where rk (i) is a function to retrieve the rank of coau-
thor i, 1 (vk (i) < rk (j)) is a indicate function which
returns 1 if the rank of coauthor i in cl,, is higher than that
of coauthor jnot in cl,;, and returns O otherwise. Note that
rk (i) returns the rank number, i.e. the smaller the value,
the higher the rank.

o Recall@k: the recall of top k predicted coauthors for a
target researcher u is defined by:

lcly @k N cly|
lcly|

AUC, =

37)

Recall, @k = (38)
where cl, @k denotes the top k predicted coauthors for
u and cl, is the true coauthors in the testing set.

e nDCG@K: Normalized Discounted Cumulative
Gain [24] is a metric sensitive to the prediction order,
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so it is used to evaluate the performance of ranking
algorithms. nDCG assigns a different relevance score to
each retrieved item. The highly relevant items appearing
lower in the predicted ranking list should be penalized.

DCG, @k
DCG, @k = — 14" 39
it IDCG, @k (39)
k
l.
DCG,@k = rely + Y (40)
P logai

The above equations give the definition of nDCG, @k
for each researcher u, where rel; is the graded relevance
of the result at position i and IDCG, @k refers to the
DCG,@k with an ideal ordering. We use binary rele-
vance values: rel; € {1, 0}.

rk (cly) <i

1
I = 41
el {O otherwise 41

where rk (cl;) is the true rank of the coauthor cl; with
the predicted rank i. Such a setting can be interpreted
that if the true rank is higher than the position i, then the
relevance is 1 and O otherwise.

C. COMPARISON METHODS
In all the following experiments, a group of state-of-the-art
methods are evaluated for comparison, including our models.
1) #COL: This simply ranks predicted coauthors accord-
ing to the total number of coauthoring.
2) JACCARD: This ranks predicted coauthors according
to Jaccard similarity as used by CollabSeer [2], where
I" (u) returns all neighbor nodes of # on a coauthorship
network.

IT @) N T (1) |

42
C)Ur ()] 2

VSJaccard (ui, uj) =
3) RWR: This ranks coauthors by running random walk
with restart on the coauthorship network [13].
TM: This ranks coauthors by running RWR where the
transition probability is proportional to the similarity of
topic distributions between two researchers. A similar
comparison method is used in CTL [3] for matching the
topic proportions of two authors in different domains.

4)
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FIGURE 5. The AUC and Recall performance of all comparison models and the convergence test.

Here, we directly match the topic distributions without
the setting of domains.

TFLP: This uses a temporal link prediction method
[14], [15] to predict future coauthors by tensor fac-
torization. Each slice of the tensor corresponds to a
coauthorship network of a year, i.e. the entry (i,j,f) is
1 if the researchers i and j coauthored papers in the year
t, otherwise this entry is 0.

TAPCA-LI: L1 regularized TAPCA model. This ranks
coauthors in terms of utility (cf. Eq. 36). In the follow-
ing experiments, we set the time-slice order N = 3 for
the model and hyper parameter b = 2 for the long-term
social features (cf. Table 1) if we do not explicitly spec-
ify other settings. For the learning algorithm, we set
the initial learning rate ny = 0.001, the regularization
parameter & = 0.0001 and the batch size B = 200.
TAPCA-L2: L2 regularized TAPCA model. In the
experiments, the setting of hyperparameters is the same
as TAPCA-LI.

TAPCA-S: For ablation test, we only use the time-
varying social feature (cf. Eq. 1) without involving
collaboration topics.

5)

6)

7

8)

D. EVALUATION RESULTS
1) TARGETING FUTURE COAUTHORS
In general, we can measure the quality of prediction by testing
whether the target researcher is more likely to conduct coau-
thoring with the predictive ones according to the observed
coauthorships in real cases. Therefore, it can be viewed as a
link prediction problem which is mostly evaluated with AUC.
We evaluated the prediction result for each researcher and
report the average AUC over all researchers. The results of
comparison approaches are illustrated in Figure 5(a). From
the results, we can see that the TM model significantly under-
performs other models. This is because collaboration is often
based on some common interests, but the inverse is not true.
For example, a researcher may have common interests with a
distinguished scholar. Obviously, it cannot be concluded that
the distinguished scholar will collaborate with the researcher.
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Therefore, it is not practical to predict coauthorships only
in term of matching their research interests. In comparison,
other models achieve much better performance than TM.
Here the major difference is that all methods, except for the
TM model, include the feature of social relationships. Hence,
we can conclude that the formation of collaboration is heavily
dependent on social relationships.

Moreover, TAPCA-S achieves better performance than
#COL, JACCARD and RWR models, which illustrates that
TAPCA-S can more effectively capture the shift of social
factors over time to better predict the trends in the near
future. Furthermore, although both TAPCA-S and TFLP
consider the temporal shift, TAPCA-S outperforms TFLP by
a significant margin. This is because TFLP shallowly models
the change of coauthorships over years; instead, TAPCA-S
more effectively both short-term social impact and long-term
social impact (cf. Eq. 1). In comparison, TAPCA-L1 and
TAPCA-L2 achieve better performance than TAPCA-S.
This is because TAPCA-L1 and TAPCA-L2 additionally
model the collaboration research topics which are one of
the driven forces leading to coauthorings. In particular,
TAPCA-L1 outperforms TAPCA-L2 due to the sparse rep-
resentation. Intuitively, only a few factors are decisive when
a researcher chooses their coauthors, which is closer to
the choice of coauthors in a real situation. For example,
a researcher i may choose j as a coauthor only because j
is the friend of most of i’s friends (i.e. heavily determined
by the feature #coc;j, cf. Table 1). Moreover, a researcher
often focuses on very few topics for collaboration instead
of all topics, that is, not all the collaboration topics need to
be involved. Therefore, the prediction results using sparse
representation induced by L1 regularization achieve the best
performance on this dataset.

For a real-world searching system, the size of an effec-
tive retrieval set is small, normally less than 20, because
users are often only patient in browsing the results on
the first page. Hence we use Recall@K to measure the
number of successfully predicted cases within the top K
ranked coauthors. Figure 5(b) depicts the average results of
Recall@5~ 100 over all researchers. We find that the plots
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of TAPCA models are higher than those of other models by
a margin. In particular, we find the margin is relatively large
for K < 20 so TAPCA models return a much better result
set that contains more effective coauthors than all the other
approaches. Similar to the evaluation using AUC, the per-
formance of the TM model is very poor because it does not
make sense of predicting coauthorships by simply matching
topics between researchers. TAPCA-L1 again achieves the
best performance.

We further investigate the convergence of our learning
algorithms. Figure 5(c) depicts the probing AUC evaluated
after each iteration, and we find that our learning algo-
rithms converge very quickly and reach a stable result within
10 generations. Such fast convergence proves the scalability
of our algorithms. Since our algorithms can be run in parallel
w.r.t. each target user, it is practical to integrate them into a
real-world system.

2) RANKING PREFERENCE OVER COAUTHORS

Cooperating with a suitable coauthor often can bring produc-
tive results, e.g. a collection of coauthored publications. All
researchers hence prefer to find their own suitable coauthors.
To evaluate the prediction of ranking on preferred coauthors,
we construct the true preference ranking w.r.t. each researcher
by sorting the number of coauthored papers with each of
coauthors over the testing set.

We evaluated such a ranking problem over all compari-
son models by the metrics nDCG@5 and nDCG@10. The
average result over all researchers is reported in Table 2.
The simplest method #COL achieves considerably good
performance among all comparison models. Through some
further consideration, we find the rationality behind this.
The large number of coauthoring between a researcher and
his/her coauthor implies their collaboration is very produc-
tive. Hence, researchers always prefer to constantly coauthor
papers with such suitable coauthors. This can be partially
viewed as a “‘rich get richer” phenomenon, so #COL is simple
but effective.

TABLE 2. nDCG of comparison models (* for p < 0.05).

Model | nDCG@5 | nDCG@10
#COL | 02062 | 0.2437
JACCARD | 0.1914 | 02227
RWR | 02025 | 0.2283
™ | 00711 | 0.0835
TFLP | 02131 | 0239
TAPCA-S | 0.2487* | 0.2799*
TAPCA-L2 | 0.2638* | 0.2912*
TAPCA-LI | 0.2712* | 0.3015"
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However, such static methods have some limitations as
time passes. For example, a researcher’s best coauthor retired
but this coauthor will always have a high rank in subsequent
years, because of the large number of historical coauthoring.
In comparison, our model considers not only the short term
social factors, #colf ~and #cocﬁ., but also the long-term factors,

#coll!j’_b’tl and #cocg;_h’tl (cf. Table 1). Obviously, these
social features are not static, and they vary with time ¢. In the
above case, the values of these social features automatically
decrease as time goes by, so our time-aware model does not
suffer from such an issue. In addition, our model captures a
shift in collaboration topics as well as social factors, so the
compatibility between two coauthors can be automatically
accessed over time. With these advantages, our model obvi-
ously can better predict future trends than other comparison
methods. Therefore, it is no wonder our TAPCA methods
outperform other models by a large margin. We conduct the
significance testing on the TAPCA models and the best base-
line method, and the results show the statistical significance
of TAPCA.

3) SPECIAL CASES STUDY

Our approach relies on historical (consecutive) collaboration
dates to make predictions. In the real-world applications,
however, such data is sometimes fragmented and incomplete,
e.g., (1) some researchers may not publish papers every year;
(2) a Ph.D. student has a short publication record with papers
only in recent years. How can our model deal with these
challenges? Fortunately, we can adjust the hyper-parameters
to deal with these two cases, namely changing the time-slice
order N for the temporal model (cf. Eq. 22) and the timespan
parameter b for long-term features (cf. Table 1 and Eq. 5)
across multiple years.

For the first case, the solution is straightforward. For
example, a researcher has published papers in the years
{2001, 2003, 2005, 2007, 2009} instead of every consecu-
tive year. According to Table 1 and Eq. 5, the timespan
parameter b controls the statistical granularity of coauthoring.
Consequently, we can set b > 2 to involve the papers
published across more than two years.

The second case reflects the fact that some senior
researchers may have long historical data whereas some new
authors may only have limited data in recent years. This can
also be handled by setting the hyper-parameters, i.e., the time-
slice order parameter N and the timespan parameter b. For
example, we can set N = 5 and b = 3 for senior researchers
with more than ten-year data while N = 2 and b = 1 for a
new author with five-year data. In the extreme case, we can
train our model over two-year data, namely, we fit the output
data of the second year by regressing on the input feature of
the first year (cf. Eq. 22).

In the following experiment, we use the most recent
five-year data for training, i.e. 2005~ 2009, so as to simulate
new authors who only have short-term historical data. For
TAPCA models, we fixed the time slice order N = 2 to
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test the impact of different timespans b = {1, 2, 3}. That is,
we respectively set the time granularity to be one year, two
years and three years to evaluate the performance.

From the results depicted in Table 3, we find the per-
formance is relatively close among all comparison models.
This reflects that the research focus and the coauthorships do
not dramatically change in the short term. TAPCA models
overall outperform baseline models because they consider
more comprehensive features. The significance testing also
shows that the TAPCA models significantly outperform the
other baselines. In particular, we find that the TAPCA models
with the setting b = 2, i.e., two-year timespan, achieve
better performance than the models with the setting b = 1
and b = 3, which illustrates that the time-varying features
of two-year granularity (cf. Table 1 and Eq. 5) best capture
the statistics of the coauthoring information according to
this dataset. The best setting of b is dependent on specific
datasets, it may need to set a smaller b to capture shorter term
coauthering information whereas a larger b to capturelonger
term coauthoring. To determine the best b, we need to tune it
on a validation set.

TABLE 3. AUC and nDCG@10 in terms of different timespans {1,2,3}
(* for p < 0.05).

Model | AUC | nDCG@10
#COL | 0.8276 0.2213
JACCARD | 0.8027 0.2130
RWR | 0.8223 0.2162
TFLP | 0.8279 0.2234

|
|
|
|
TAPCA-L2 (b:])\ 0.8519* \ 0.2711*
|
|
|
|
|

TAPCA-L2 (b=2) | 0.8602* | 0.2803"
TAPCA-L2 (b=3) | 0.8587* 0.2782*
TAPCA-LI (b=1) | 0.8576* | 0.2775*
TAPCA-LI (b=2) | 0.8639* | 0.2838"
TAPCA-LI (b=3) | 0.8617* 0.2829*

VII. CONCLUSION AND DISCUSSION

In this paper, we addressed the problem of coauthorship
modeling and prediction in a dynamic fashion, which can
reflect the nature of evolving coauthorships. Accordingly,
we take both time-varying social relationships and collabo-
ration interest into account, and we designed a time-series
model to capture the dynamic choices of coauthors over time.
In particular, our model is constructed with the idea of time-
aware paired choice analysis (TAPCA) to model preferences
by pairwise comparisons under the theories of utility and
choice modeling. Furthermore, we employ Bayesian model-
ing to regularize our probabilistic model with various priors
so as to improve the generalization. Finally, the experiments
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evaluated on the real-world academic dataset demonstrate
that our approach can more accurately predict future coau-
thorships than other state-of-the-art methods.

Although we focus on the coauthorship modeling and pre-
diction in this paper, the TAPCA framework is also applica-
ble to analyzing other social networks, especially the online
social networking sites, e.g. Twitter, Facebook, and LinkedIn.
For example, the repost prediction on Twitter is very similar
to coauthorships prediction from the TAPCA view, where
users’ interested topics change every day and users’ active
followers are also not static. Therefore, we can easily set up
the time-varying features of social relationships and interest-
ing topics (here, the features can be a little different from the
features for modeling coauthorships). As a result, we can rec-
ommend personalized tweets for users. Take another exam-
ple, we, in fact, actively or passively develop some new social
relationships in our daily life, and our preferred jobs may also
change with time. If we apply our TAPCA on the LinkedIn
data to model such time-varying features, then we may help
users to capture the potential job opportunity.
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