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1. Introduction 

 Financial markets offer considerable evidence suggesting traders do not have a full 

and complete understanding of the process by which prices are determined.  There also seems 

to be a lack of consensus among traders in interpreting what the current price signals about 

future payoffs.  Evidence of disagreement includes, but is not limited to, excess volatility, 

high trading volume, the considerable variety in trading strategies, and the fervor with which 

traders seek to improve their models.  This suggests that markets have yet to achieve the 

rational expectations equilibrium described by Grossman and Stiglitz (1980).  Instead, traders 

appear to process information, develop strategies, and adapt to changing market conditions. 

 To gain insight into the impact of evolution in trading strategies on financial markets, 

this paper recasts Grossman and Stiglitz (GS) as a fully specified dynamic model.  The 

absence of a rational expectations equilibrium in the presence of a revealing price ensures 

that there is always room for improvement in trading strategy.  The two dynamics, learning 

and strategy adoption, capture two aspects of trader adaptation to the observed market 

environment.  The single period terminal asset of GS offers tractability in a sufficiently rich 

environment to examine the key elements of adaptation.  The asymptotic properties of the 

market governed by these two dynamic process are developed herein. 

 The GS model places informed traders in the market with rational uninformed traders.  

The former gain access to private information through costly research.  The latter seek to 

extract the private information from the price.  Each trader makes full use of the information 

to which he or she has access.  This project retains much of the structure of the GS market as 

well as the notion that traders make full use of the available information.1  In this behavior, 

                                                             
1 This is in contrast to other models of multiple trader types with switching in which the market-based traders 
are limited in their effort to extract information from past prices rather than from contemporaneous information, 
as employed in Brock and Hommes (1998), Chiarella and He (2001), Föllmer et al. (2005), and  Gaunersdorfer 
et al. (2008), among others. 
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they are rational, but here the uninformed traders are boundedly rational in that they are 

denied knowledge of the true relationship between the observed price and the expected 

payoff.  The traders instead must, as in Bray (1982), attempt to learn the relationship through 

observation of market data.  This is the learning process that GS presume to have already 

taken place prior to their analysis. 2  Distinct from Bray (1982), concurrent with the learning 

process, the traders choose between the two information options.  Such a dynamic population 

is implicit in the GS model, but is not explicitly modeled in their static examination.3  GS 

consider the fixed point equilibrium of the population process, having presumed prior 

convergence to rational expectations in the traders’ beliefs.  The importance of examining 

both as simultaneous processes is that the two dynamic processes, learning and the population 

process, interact, affecting market behavior both during evolution and in the asymptotic 

convergence. 

 Two types of population processes are examined and compared to explore the 

different implications for how they shape the market’s asymptotic behavior.  One family 

includes the Discrete Choice Dynamics introduced by Brock and Hommes (1997, 1998) and 

the other family includes Replicator Dynamics.  Both processes have received extensive 

attention in the economics literature as tools for modeling evolving populations in a discrete 

choice setting. 

 The second key alteration to the GS model is to remove the random supply of the 

risky security, thereby removing the mechanism that ensures the existence of an equilibrium 

to the population process.  As a result, the information advantage held by the informed 

traders only exists while the learning process is ongoing.  Just how the dynamic model 

resolves the conflict between convergence in the learning process and the market’s need for 

                                                             
2 “They [traders] learn the relationship between the distribution of return and the price, and use this in deriving 
their demand for the risky assets” (p394). 
3 “We can calculate the expected utility of the informed and the expect utility of the uninformed.  If the former 
is greater than the latter (taking account of the cost of information), some individuals switch from being 
uninformed to being informed (and conversely)” (p394). 
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noise in the price offers insight into the evolution that results from traders’ adaptation to 

endogenously changing market conditions.  The resolution depends on the interaction 

between the two dynamic processes as it is shaped by the potential absence of the population 

fixed point.  The nature of this interaction determines whether market efficiency is the 

limiting case. 

 The tractability of the present model is absent in the Goldbaum (2005) and Goldbaum 

(2006) simulations, also based on models of learning and strategy adoption.  This 

examination’s simpler market, partially the result of the terminal risky asset, enables 

analytical investigation of the relevant  dynamic processes, eliminating the dependence on 

simulation based analysis. 

 The paper proceeds as follows.  Section 2 develops the model and establishes the 

conditions for existence and stability of the rational expectations equilibrium as the fixed 

point to the dynamic processes.  Section 3 considers the issue of market efficiency 

analytically and in simulation. Section 4 uses simulation to determine how the rate of 

learning is affected by the population process.  Section 5 concludes. 

2. Model and Fixed Point Equilibrium 

2.1 Market 

 Adopting a repeated GS framework, in each period a population of UI NNN +=  

informed (I) and uninformed (U) traders trade a risky asset and a risk-free bond.  The risk-

free bond, with a price of one, pays R at the end of the period.  The risky asset is purchased at 

the market determined price, pt.  At the end of the period it pays a randomly determined 

terminal value, ut. 

(1)  ttt uu ε+θ+=  (1)  

 with, ),0(~ 2
θσθ Nt , ),0(~ 2

εσε Nt , and cov( , ) 0t tθ ε = .  
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The determinates of ut are IID.  This process is known to the traders. 

 In each period, each trader maximizes a negative exponential utility function of end of 

period wealth.  Under the assumption of normality in returns, the resulting demand for the 

risky asset is 

(2)  )( tit pq  = ( ( ) )it t t itE u Rp− γφ  (2)  

with itφ  = 21/ itσ .  Here, 1/γ is the coefficient of absolute risk aversion and 

,( ) ( | )it t t i tE u E u= F  and 2
,var( | )it t i tuσ = F  are trader i’s conditional expectations and 

variance, respectively, of his or her forecast error. 

 Define NN I
tt /=λ  to be the proportion of informed traders, leaving )1( tλ−  as the 

proportion of uninformed traders.  Let k
tq  be the per capita demand for the risky security 

among group UIk ,=  traders in period t.  In a Walrasian equilibrium, the market price 

equates supply and demand for the risky asset.  The supply is fixed, avoiding the introduction 

of exogenous noise to the price.  For convenience, set fixed net supply of the risky asset to 

zero.  Market equilibrium requires a price that clears the market such that 

(3)  0 = )()1()( t
U
ttt

I
tt pqpq λ−+λ  (3)  

2.2 Information and Forecasting 

 The informed traders receive a uniform signal revealing the value of tθ .  They 

rationally forecast 

(4)  ttt uuE θ+=θ )|(  (4)  

 The uninformed traders attempt to forecast end of period payoff based on the 

information contained in the price.  They are as aware of the payoff process as are the 

informed traders.  They thus know that unconditionally, ( )tE u u=  and have an unconditional 

price expectation of ( ) /tE p u R= .  Without knowledge of the true relationship between price 
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and the underlying information, they engage in a process of least-squares learning by 

estimating4 

(5)  0 1( ( ))t t t tu u c c p E p e− = + − + . (5)  

Equation (5) is the uniformed traders’ perceived model relating the observable pt to the end of 

period ut.  It is a model of both information extraction and forecasting.  The ability of the 

uniformed to extract information and predict the payoff is based on how close the perceived 

model is to the actual relationship.  The uninformed traders update the coefficients according 

to the least-squares updating algorithm. 

 From Marcet and Sargent (1989a, 1989b), 

(6)  1
1 1 1 1 1( ( )) '/t t t t t t tQ x u u x t−
− − − − −= + − −c c c  (6)  

(7)  tQxxQQ ttttt /)( 1
'
111 −−−− −+=  (7)  

with {1, / }t tx p u R= −  and },{ 10 ttt cc=c .  Uninformed traders forecast 

(8)  0 1( | ) ( / )t t t t tE u p u c c p u R= + + − . (8)  

 As reflected in (6), least-squares learning assigns equal weight to each past 

observation, implying infinite memory.  This is consistent with the objective to explore the 

interaction between market efficiency and learning with traders taking full advantage of all 

available information.  As will become evident with the model’s development, error in the 

traders’ model creates noise in the price process.  Providing the traders full access to all of the 

historical data is a prerequisite to allowing the traders to learn the correct model.  Finite 

memory or otherwise limiting the use of past information prevents convergence in learning, 

introducing unnecessary error into the system.  A correctly specified model and least-squares 

learning applied to the unknown parameters make possible the traders’ learning of the correct 

                                                             
4 An alternative would be to have the uninformed traders more simply consider the relationship between the 
price and payoff, 0 1t t tu c c p e= + + .  The alternate results in the replacement of 2

θσ  that appear in subsequent 

analysis with 2 2( )u θ+σ .  There is no substantive difference between the two approaches. 
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model.  At this stage, it remains unclear how the paradox of the non-existence of a REE 

equilibrium is resolved by the dynamic system.  Limiting trader memory or discounting more 

distant observations can resolve the paradox by ensuring asymptotic error in the model of the 

uninformed.  This mechanism was employed by Branch and Evans (2006). 

2.3 Learning Fixed Points 

 Let tp  be determined as the market clearing Walrasian price.  Based on the demand 

of the mixed population of traders, price takes the form 

(9)  0 1( , ) ( , )t t t t t tp b b= λ + λ θc c . (9)  

The presence of tc  and tλ  in the price coefficients reflects the impact of trader beliefs on 

how information is incorporated into the price.  Solve for the tc  and tλ  dependent market 

equilibrium to obtain the coefficients: 

 0,
0,

1,

(1 )
(1 )( )

U
t t t

t I U
t t t t

c ub
R R c R

−λ φ
= +
λ φ + −λ − φ

  

(10)  1,
1(1 )( )

I
t t

t I U
t t t t t

b
R R c

λ φ=
λ φ + −λ − φ

 (10)  

where5 

(11)  2 21/ 1/I
I εφ = σ = σ , (11)  

(12)  2 2 2 2 1
, 1, 1,1/ (( (1 ) )U

t U t t tc b −
ε θφ = σ = σ + − σ . (12)  

 Were the parameters of the price equation, 0b  and 1b , set exogenously, the learning 

process would converge6 towards 

(13)  0, 1, 0( / )t tc c b u R= − − , 1, 11/tc b= . (13)  

                                                             
5 Note that the presence of 1,tb  in U

tφ  means that (10) is an implicit solution.  This will be formally handled in 
the discussion that follows regarding Rational Expectations and the Bounded Rational Expectations.  A reduced 
form solution is available, but pages long. 
6 Because of stochastic nature of the considered system, by convergence here and hereafter we mean almost sure 
convergence or convergence with probability one. 
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The REE at which beliefs are consistent with the actual price determination process is, 

(14)  0*
0 =c , Rc =*1  (14)  

and 

(15)  *
0 /b u R= , Rb /1*

1 = . (15)  

This is consistent with the finding of GS.  The solution is independent of the value of λ, 

reflecting that once the learning process has converged, the market clearing price does not 

depend on λ.  Neither does the uninformed traders’ model. 

 For computational manageability and ease of discussion, allow the uninformed traders 

to know 0)( =ε tE , allowing recognition by the traders that the correct value for 0,0 =tc  so 

that 0, /tb u R= . The uninformed traders are thus only required to estimate the single 

parameter 1c .  The error in the uninformed traders’ model is thus *
1,1 cc t − .  Deviations in 1,tc  

from *
1c  are the source for deviation of ),( ,11,1 ttt cbb λ=  from *

1b . 

 As is apparent from (10), for λ = 0 and *
1, 1tc c=  the price is undefined, reflecting the 

lack of fundamental information entering the market.  For λ = 0 and *
1, 1tc c≠  the price is 

either undefined or not reflective of the underlying value. 

2.4 Performance 

 The population process is driven by performance, here measured as profits.  Define 

k
tπ  as net profits to an investor in group k after deducting the cost of information acquisition, 

kκ , 

(16)  , , ( )k k k
i t i t t tq u Rpπ = − −κ , k = I, U. (16)  

The presumption of the model is that UI κ>κ .  Without loss in generality, set 0Uκ =  and 

Iκ = κ . 
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 The 1,tc  and tλ  dependent expected profits are 

(17)  2 2
1 1,( ) (1 ( , ))I I

t t tE Rb c θπ = γ − λ σ φ −κ  (17)  

(18)  2
1, 1 1, 1 1, 1,( ) ( ) ( , )(1 ( , )) ( , )U U

t t t t t t t t tE R c b c Rb c c θπ = −γ − λ − λ φ λ σ . (18)  

Since the weighted demand of the two groups must sum to zero, uninformed trader profit can 

also be expressed as a function of the informed traders’ trading profit (pre cost), 

(19)  2 2
1 1,( ) (1 ( , ))

1
U It
t t t

t

E Rb c θ
−λπ = γ − λ σ φ
−λ

. (19)  

The informed traders’ information advantage leads to nonnegative expected trading profits 

while the uninformed traders’ profits become increasingly negative the greater the error in 

their model.  The error in extraction is twofold.  With *
1, 1tc c R≠ = , the uninformed 

misinterpret the price information.  Additionally, the error in *
1, 1tc c≠  feeds back into 

* 1
1, 1tb b R−≠ =  so that the price fails to properly reflect the private information, tθ . 

 Employment of the correct model by the uninformed traders produces zero trading 

profits so that, for 0 t< λ , 

(20)  *
1, 1( | )I U

t t tE c cπ − π = = −κ . (20)  

The analytical solution to profits is generally inaccessible to the traders where *
1, 1tc c≠  for 

two reasons, both stemming from the presence of 1 1,( , )t tb c λ  in the profit equations. 

 The first challenge for the traders is the solution’s dependence on tλ .  The value of 

*
1b  is independent of tλ  but 1,tb  does depend on tλ  when *

1,t tc c≠ .  Knowing tλ  is equivalent 

to knowing the current trading strategy of the other market participants, which is reasonably 

placed beyond the reach of the traders.  Without knowledge of tλ , the traders are unable to 

correctly deduce the price function. 

 The second challenge to the trader’s efforts to solve for expected returns is the 
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complexity of the closed for solution of 1,tb   As observed in (10), the conditional variance 

terms of the two trading groups are factors in the pricing equation solutions.  The presence 

originates with the dependence of the individual trader’s demand function on the conditional 

variance, as seen in (2).  The conditional variance of the informed traders’ error is exogenous 

and easily computed, but the uninformed traders’ conditional variance is endogenous, 

dependent on the price coefficient 1,tb , which in this case creates a extremely complex 

reduced form solution. 

 These two impediments lend credence to a boundedly rational solution.  To address 

the latter, many papers follow Brock and Hommes (1998) in assuming that the uninformed 

traders presume a fixed standard error to their conditional forecast, setting 2 2
,U t Iσ = σ  so that 

IU
t φ=φ .  While this presumption is correct only when *

1̀,t tc c= , there are two arguments in 

support of imposing this presumption generally.  With conditional variance only present in 

the price through the traders’ demand functions, if the traders are unable to derive closed 

form conditional variance and therefore use a substitute, the price then reflects the substitute.  

Under bounded rationality, if the true standard error is too complicated to be reasonably 

calculated by the traders, a simple rule such as 2 2
,U t Iσ = σ  can be presumed. 

 The bounded rationality assumption allows the elimination of the forecast standard 

errors from the equilibrium price equation (and subsequently, from profits), making an 

analytical expression of the price and profits attainable and tractable.  The resulting model 

equilibrium will be referred to as the boundedly rational expectations (BRE) solution.  This 

solutions will be compared to that generated from rational expectations (RE) solution derived 

using the true expression of 1 1,( , )t tb c λ  solved analytically with the aid of a computer.  The 

complexity of the solution does not lend itself to properly comparative statics, but these can 

be inferred numerical from the analytical solution. 
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 Let 1,( , )t tcΨ λ  be the denominator term of 1,tb  in (10), 

(21)  1, 1,( , ) (1 )( )I U
t t t t t t tc R R cψ λ = λ φ + −λ − φ  (21)  

1,( , )t tcΨ λ  is also the coefficient on tp  in the aggregate demand equation.  Aggregate 

demand is downward sloping if 1,( , )t tcΨ λ  remains positive. 

 From (9), a finite price requires 1,( , ) 0t tcΨ λ ≠  and a reasonable market and price 

solution eliminates 1,( , ) 0t tcΨ λ < .  Let 1,| tS c  represent the set of all values of tλ  that result 

in 1,( , ) 0t tcΨ λ >  given 1,tc .  For the RE solution, all feasible values of tλ  produce 

1,( , ) 0t tcΨ λ > , and thus 1, 1,| [0,1]t tS c c= ∀ , excluding 0tλ =  when 1,tc R= .  Such is not the 

case under the BRE solution..  Solve 1,( , ) 0t tcΨ λ =  under BRE, so that 0I U
t tφ = φ > , to 

obtain a critical 1, 1,( ) /t t tc R cλ = −  for Rc t >,1 .  Let 1,( ) [0,1]c
tcλ ∈  represent the lower 

bound on feasible values of tλ  producing a finite and reasonable price.  Thus, for 

Rcc t => *
1,1  

(22)  
1,

1,1,

 for BRE
( )

0           for RE.

t
c

tt

c R
cc
−⎧

⎪λ = ⎨
⎪
⎩

 (22)  

 For *
1, 1tc c> , as c

tt λ→λ  from above, 1,tb →∞ .  The greater the upward bias in the 

uninformed traders’ model, the fewer uninformed traders the market can absorb and still 

produce a finite price.  Observe that )( ,1 t
c cλ  is a monotonically increasing function with 

0→λct  for *
1,1 cc t →  from above and 1c

tλ →  for ∞→tc ,1 .  

 That 1,| tS c  includes the full range of 1,tcλ∀  is explained by the endogenous 2
,U tσ .  

Increasing price errors cause this term to grow faster than the linear expected excess return in 

the numerator of the uninformed traders’ demand.  The result is that the large price deviation 

creates sufficient uncertainty among the uninformed traders to dampen their demand.  
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Though ∞→tb ,1  as 0→λ t  for *
11 cc t > , unlike the BRE solution, 1,tb  remains bounded for 

0>λ t . 

 For *
1, 1tc c< , the uninformed traders under-respond to price innovations.  The under 

reaction by the uninformed traders does lead to pricing errors, but not the possibly unbounded 

price error produced by overreaction.  The price remains bounded.  For *
1, 1tc c= , 

*
1, 1 1/tb b R= =  ]1,0(∈λ∀ . 

 Define tdπ  as the expected performance difference, 

(23)  1,( ) ( , )I U
t t t t td E g cπ = π − π = λ . (23)  

Using (17) and (19) the expected profit differential can be solved as 

(24)  2 2
1 1,

1 ( (1 ( , )) )
(1 )

I
t t t

t

d Rb c θπ = γ − λ σ φ − κ
−λ

 (24)  

where the function 1 1,( , )t tb c λ  is specific to whether the expectations are BRE or RE.  Use 

(10) in (24) to obtain 

(25)  
22 2

1,
2 2

1,

(1 )( )
( (1 )( ) )

U
t t t

t I U
t t t t

c R
d

R R c
θ

ε

−λ − φ γσπ = −κ
λ φ + −λ − φ σ

 (25)  

which, under the BRE simplifies to 

 
2 2

1,
2 2

1,

(1 )( )
( (1 ) )

t t
t

t t

c R
d

R c
θ

ε

−λ − γσπ = − κ
+ −λ σ

.  

 Lemma 1 characterizes tdπ .  The descriptions apply to both the BRE and RE. 

Lemma 1  
The function 1,( , )t tg c λ  displays the following characteristics: 

L1.1 1,( , )t t td g cπ = λ  is continuous in both inputs for c
t tλ > λ  

L1.2 1,( , )  for c
t t t tg c−κ ≤ λ <∞ λ > λ  

L1.3 
*

1, 1
1, *

1, 1

0 for  and
( , )

0 for 

c
t t t

c t t
t

c c
g c

c c

⎧> > λ > λ⎪λ ⎨
< <⎪⎩
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L1.4 
*

1, 1
1, * *

1, 1 1, 1

0 for 
( , )

0 for , and (2 / 1)
t

t t c I U
t t t t

c c
g c

c c c cλ

⎧= =⎪λ ⎨
< λ > λ ≠ > − φ φ −⎪⎩

 

L1.5 
*

1, 1, 1
1, 2 2 *

1, 1

 as ( ) for 
( , )  

/  as 0 for 

c
t t t

t t
t t

c c c
g c

c cθ ε

⎧∞ λ → λ >⎪λ → ⎨
γσ σ λ → <⎪⎩

 

L1.6 *
1 1,( , ) ( ,1)t tg c g cλ = = −κ  

Proof: In the BRE case, the characteristics of 1,( , )t tg c λ  follow directly from (25).  In the RE 
case, the characteristics of 1,( , )t tg c λ  are derived numerically from (24) using the RE price 

solution of 1,tb .  Observe from (11) and (12) that U I
tφ ≤ φ . 

Proposition 1  
a) For *

1, 1tc c>  and x−κ ≤ < ∞  1,( )x
tc∃λ = λ  that solves ),( ,1 λ= tcgx .  1,( )x

tcλ  is 

monotonically increasing with 1,( ) 0x
tcλ →  for *

1,1 cc t →  from above and 1,( ) 1x
tcλ →  

for ∞→tc ,1 .  For ba > , )()( ,1,1 t
b

t
a cc λ>λ . 

b) For *
1, 1tc c< , 1,( ,1)tg c = −κ  and 2 2

1,( , ) ( / )tg c θ ελ → γσ σ −κ  for 0λ→ . 

i) For * *
1 1, 1(2 / 1)I U

tc c c− φ φ − ≤ <  and 2 2( / )x θ ε−κ ≤ < γσ σ − κ  )( ,1 t
x cλ=λ∃  that 

solves ),( ,1 λ= tcgx .  1,( )x
tcλ  is monotonically decreasing with 1,( ) 0x

tcλ →  for 
*
1,1 cc t →  from below.  For ba > , )()( ,1,1 t

b
t

a cc λ>λ . 

ii) For *
1, 1 (2 / 1)I U
tc c< − φ φ − , 1, 0( , ) | 0t tg cλ λ=λ >  so that dπ  is initially rising in λ  

and then falling. 
Proof of a): Follows from L1.1, L1.3, L1.4, L1.5 and L1.6 of Lemma 1.■ 

Proof of b): From L1.4 of Lemma 1, πd  is a monotonically decreasing function of tλ .  From 
L1.3 of Lemma 1, an increase in 1,tc  for *

1, 1tc c>  or decrease in 1,tc  for *
1, 1tc c<  increases the 

tdπ  function, thus increasing the value of x
tλ  producing td xπ = .■ 

 

 When *
1, 1tc c≠ , error is introduced into the price by the uninformed traders’ erroneous 

beliefs.  For a large tλ  the knowledge of the informed traders dominates the market to keep 

the error in the price small.  In this case, the informed traders do not, in expectation, recoup 

the cost of their information advantage and under-perform the uninformed traders.  Lowering 

tλ  magnifies the impact of the error in the uninformed traders’ model on the price.  In this 

case, the informed traders are able to out-perform the uninformed traders and may recoup the 

cost of the private information. 
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 Introduce notation )( ,1
0

tcλ  as a special case of )( ,1 t
x cλ  with 0=x .  From Proposition 

1, the nature of )( ,1
0

tcλ  depends on whether 1,tc  is less than, equal to, or greater than *
1c .  For 

*
1, 1tc c= , )( ,1

0
tcλ  does not exist since *

1( , )g c λ = −κ for 0λ >  and *
1( ,0) 0g c > .  Let 1,( )tc

+λ  

represent the portion of )( ,1
0

tcλ  for which *
1, 1tc c> .  From Proposition 1, 1,( )tc

+λ  is a 

continuous function within (0,1) with 1,( ) 0tc
+λ →  as *

1, 1tc c→ , 1,( ) 1tc
+λ →  as 1,tc →∞ , the 

first and second derivatives of 1,( )tc
+λ  are 0c

+λ > , 0cc
+λ < , and 1, 1,( ) ( )c

t tc c+λ > λ . 

 For *
1, 1tc c< , trading profits are defined by the limits at the two extremes for tλ , with 

zero trading profits when 1tλ =  and trading profits approaching 2 2/θ εγσ σ  as 0tλ → .  Let 

1,( )tc
−λ  represent the portion of )( ,1

0
tcλ  for which *

1, 1tc c< .  For 2 2/θ εκ < γσ σ , 1,( )tc
−λ  is a 

continuous function within (0,1) with 1,( ) 0tc
−λ →  as *

1, 1tc c→ , 1,( ) 1tc
−λ →  as 1,tc →−∞ , 

and first derivative, 0c
−λ < .  For small κ  0cc

−λ < .  As 2 2/θ εκ→ γσ σ  from below, 1,( )tc
−λ  

flattens and becomes convex for 1,tc  near *
1c  while remaining concave for extremely low 

values of 1,tc .  Trading profits above 2 2/θ εγσ σ  can only be achieved if *
1, 1 (2 / 1)I U
t tc c< − φ φ −  

and in this case, the maximum trading profit is achieved by an interior value of tλ .  If 

2 2/θ εκ > γσ σ , then 1,( )tc
−λ  is a cone-shaped function for which the highest value of 1,tc  able 

to produce zero 1,( , ) 0t tg c λ =  is less than *
1 (2 / 1)I U

tc− φ φ − .  To simplify notation, let 

2 / 1I U
t tΓ = φ φ −  and observe that 1 t≤ Γ .  A value of 1,tc  less than *

1 tc− Γ  implies an 

extremely large error in the market-based traders’ beliefs. 

 For future reference, define 

Condition A: 2 2/θ εκ < γσ σ . 
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Figure 1 plots the RE  )( ,1
0

tcλ  for a range of κ  given 2 2/θ εγσ σ , capturing the features 

developed in Lemma 1 and Proposition 1.  

 

 [
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Figure 1 about here] 

 While formal analysis requires examination of all possible market conditions,  a 

violation of Condition A should be viewed as an extreme market condition.  A low 2 2/θ εσ σ  

reduces the ability of the informed traders to exploit their information advantage in the 

market as knowledge of tθ  contributes little in predicting the value of tu .  When Condition A 

is violated, the relatively high information costs for relatively low predictive ability from the 

private information means that no matter the number of uninformed traders and the 

magnitude of the downward bias in the uninformed market traders within the range 

* *
1, 1 1[ , )t tc c c∈ − Γ , the informed traders cannot recoup the cost of their information. 
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 The effects of 1,tc  and tλ  on tdπ  can be observed in 

 

(b)

Figure 2(a) where tdπ  is plotted as a function of tλ  for a selection of 1,tc  values.  The 

intersection of each curve with the horizontal axis indicates the value of 0
tλ  for the particular 
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1,tc . 

  [Figure 2 about here] 

 

(b)

Figure 2(b) plots 0λ  and cλ  as functions of 1c . 



 

19 

 Each period, the traders must make a decision about whether to be informed or 

uninformed, a decision that would normally depend on tdπ  but without knowledge of λt, 

traders are not able to derive it analytically.  The traders instead forecast performance using 

an average of the past realizations of profits, 

(26)  tk
t

k
t

k
t

k
t /)( 111 −−− −+= ππππ , k

0π  given, k = I, U. (26)  

 Let U
t

I
ttd π−π=π .  The evolution of tdπ  according to (26) is the third and final 

dynamic process of the model.  Its realization is an input into the population process.  The 

value of tdπ  has no direct impact on the state of the market. 

 In developing a performance measure, it is common in financial market models to 

limit the time horizon or place greater weight on more recent observations.  As with the 

learning process, such limits would be counter to this paper’s objectives of exploring the 

behavior of the market in the absence of arbitrary limits.  In the GS model, it is unambiguous 

to the traders that the uninformed earn greater average profits in the presence of a revealing 

price.  A cumulative performance measure allows the traders of the present model to 

converge to the same conclusion.  As with the learning process, a limited memory artificially 

imposes a mechanism that can create a REE, this time by hindering the population’s ability to 

learn of the superiority of the uninformed strategy.  Limited use of past performance 

information is a source of instability in Brock and Hommes (1998) and many of the related 

examinations. 

2.5 Population Processes 

 Consider two families of population processes often employed in evolutionary 

discrete choice settings.  Consider a population in which relative performance between 

strategy options produces a shift away from the inferior strategy or strategies towards the 

superior strategy or strategies.  In such a setting, relative performance determines the 
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innovation of tλ .  Such a process is distinct from a population that directly reflects relative 

performance.  In the latter case, performance maps directly to the level of tλ . 

2.5.1 Innovation Population Dynamics 

 The Innovation Population Dynamics (IPD) process is characterized by the following: 

Features of the IPD 
a) 

− −Δλ = λ − λ = π λ1 1( , )t t t t tf d  
b) 1(0, ) 0tf −λ =  
c) ),( 1−λ txf  is monotonically increasing in x and continuous 
d) [0,1]tλ ∈ , (0,1)tλ ∈ for finite tdπ  

 Any strictly dominated strategy is driven towards negligible use as adherents defect.  

An interior fixed point to λ  exists if there exists (0,1)λ∈  that generates 0dπ = .  Such a 

population process is consistent with that considered by GS. 

 One convenient approach consistent with the IPD is to define 

(27)  1
1

1

( )(1 ) for 0
( , )

( )  for 0
t t t

t t
t t t

r d d
f d

r d d
−

−
−

π − λ π ≥⎧
π λ = ⎨ π λ π <⎩

 (27)  

where 1)(1 <<− xr  for finite x, and )(xr  is monotonically increasing and continuous with 

0)0( =r .  This is the Branch and McGough (2005) form of the Replicator Dynamics (RD) 

process, an example of an IPD process.  The Replicator Dynamic has its roots in evolutionary 

biology where a more fit population reproduces at a greater rate, changing the population 

proportion over time.  In the adaptation to economics, including the Sethi and Franke (1995) 

application to a population facing a discrete choice, the movements in the population 

represent shifts in the population from an inferior to a superior strategy. 

2.5.2 Population Level Dynamics 

 The Level Population Dynamics (LPD) process is characterized by the following: 

Features of the LPD 
a) )( tt df π=λ  
b) 2/1)0( =f  
c) )(xf  is monotonically increasing, continuous and has finite second derivatives (class C2)   
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d) [0,1]tλ ∈ , (0,1)tλ ∈ for finite tdπ  

 In the LPD case, the function f maps directly from tdπ  to λt.  A fixed point may exist 

at any value of (0,1)λ∈ , but the only fixed point value of λ that produces 0dπ =  is at λ = 

1/2.  At any fixed point for which 1/ 2λ ≠ , λ reflects the superior performance of the 

majority group.  The Discrete Choice Dynamic (DCD) process is well established in the 

heterogeneous agent literature, having been introduced by Brock and Hommes (1997) as an 

adaptation of the randomized discrete choice model of Manski and McFadden (1981). 

 The DCD model assigns heterogeneity to the population of traders by randomizing the 

individual agent’s choice.  The process can be thought to capture either unmodeled 

idiosyncratic aspects of the individual’s utility function or as actual randomness in the 

individual agent’s decision process.7 

 The heterogeneous population explanation is based on the notion that unmodeled 

differences between traders leads to a distribution of perceived relative fitness for each 

strategy.  The measure of relative fitness employed by the modeler, tdπ  in this case, is the 

measure of relative performance at the center of the distribution of the population’s beliefs, 

but is not unique among the population and, importantly, not necessarily uniquely rational. 

 The unmodeled aspects include different or additional information that the individual 

finds important for strategy evaluation.  The strategy indicated to be superior according to the 

tdπ  measure attracts a majority of the traders, but a tail of the distribution ranks the indicated 

inferior strategy to be the more attractive option.  Heterogeneity leads traders to make a 

choice that is correct according to that individual trader’s metric, but leaves a persistent 

population of underperformers according to the modeler’s fitness measure. 

 Alternatively, with random preferences, a random idiosyncratic component is added 

                                                             
7 Both aspects are discussed in McFadden (1981) in the original context of the randomized discrete choice 
model, and in De Fontnouvelle (2000) in a dynamic heterogeneous population setting. 
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to a shared non-stochastic utility measure, creating a distribution in preferences.  The appeal 

of the random preference explanation for heterogeneity in choice is that no trader suffers 

from persistent underperformance.  In each period some traders select the inferior strategy as 

a result of the random component in preference.  The likelihood of this event is a decreasing 

function of || tdπ .  For a stable tdπ , the population proportions are stable as well, but in each 

period it is a different group of traders who randomly and temporarily employ the inferior 

strategy.  No trader remains adherent to the inferior strategy. 

 One can think of the random use of the inferior strategy as individual 

experimentation.  This is the approach explicitly modeled by Diks and Dindo (2008) who 

employ a parameter that captures the willingness of agents to experiment by employing the 

inferior strategy.  The result is a persistent population of informed trades despite the 

strategy’s inferior performance in an IPD type population process. 

 Branch and McGough (2008) offer a comparison of the DCD and RD processes.  

They demonstrate that the RD is able to produce chaotic population dynamics similar to those 

previously examined under DCD in an unstable cobweb model.  The instability is rooted in 

the short memory of the agents when considering past performance.  With short memory, the 

agents are unable to reach a consistent opinion of which of the two options offers long-run 

average superior performance, producing instability in the population proportion. 

2.6 Asymptotic Behavior and Stability 

 To summarize the system which has been developed, there is a system of beliefs 

captured by the endogenously determined parameters and a system of state variables.  Let Φt  

be a vector of the parameters, ( )1, 'Φ = πt t t tc Q d .  Each element of tΦ  is updated by the 

recursive equations (6), (7) and (26) respectively.  Let tZ  be the vector of state variables, 

( ) 't t t tZ u p= λ . 
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 Of the state variables, only tλ  is useful for predicting the next state and it is hidden to 

the traders.  In the LPD case, ( )t tf dλ = π , while for IPD 1( , )t t tf d −λ = π λ .  The traders seek 

to forecast the value of tu  with the uninformed traders basing their forecast on tp .  Let tW  be 

a vector of the random determinates of tu , ( ) '= θ εt t tW , while vector A defines known 

constant determinates of tu  and tp , ( )/ 'A u u R= .  The realization of ( ) 't t tX u p=  can be 

expressed linearly in tW  as 

 ( , )t t t tX A B W= + Φ λ   

with  

 
1

1 1
( , )

( , ) 0
⎛ ⎞

Φ λ = ⎜ ⎟Φ λ⎝ ⎠
t t

t t

B
b

.  

 The fixed point to a least-squares learning process is a point at which the perceived 

law of motion is consistent with the actual law of motion.  The recursively determined 

parameters attain a fixed point only if the dynamic state equations produce evolution in the 

state variables that are consistent with the learning agents’ beliefs. 

 To aid discussion, it is useful to introduce terminology specific to each of the dynamic 

processes.  A “learning fixed point” refers to a fixed point to the learning process captured in 

(6) and (7), holding fixed the population parameter, tλ .  At the learning fixed point, the 

uninformed traders employ the correct model for extracting information on tu  from the 

observed tp . 

 Similarly, a “population fixed point” refers to the a fixed point to the population 

process itself, *
tλ = λ , to be developed below, while the parameters of the learning process 

are fixed. 

 A “system fixed point” is the traditional system wide fixed point in which, in this 

case, both the learning fixed point and population fixed point have been achieved. 
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2.6.1 System Fixed Point 

 Proposition 2 below establishes the learning fixed point.  The nature of the population 

fixed point dependents on the population process as developed in Proposition 3. 

Proposition 2 
*

1, 1tc c R= =  is the learning fixed point. 
Proof: Given 0>λ=λ t , the fixed point expressed in (12) and (15) follows from (10) and 
(13).  *

1, 1tc c R= =  is the fixed point to the learning process.  Since *
1c  is independent of λ  

for 0λ > , *
1, 1tc c=  is the fixed point for the learning process.  From (10), for 0λ = , the price 

equation is undefined if *
1, 1tc c= .8■ 

Proposition 3 
Presume that Condition A holds. 
A. Given an IPD process 
i. For *

1, 1 1tc c c= ≠ , fp
IPD∃λ , 1( )

fp c
IPD cλ > λ , that is a fixed point to the population process. 

ii. 0→λ fpIPD  as *
1 1c c→  

iii. For *
1, 1tc c= , no fixed point exists to the population process. 

B. Given an LPD process 
i. For 1, 1tc c= , 1( )

fp
LPD c∃λ  1c∀ , that is a fixed point to the population process. 

ii. For *
1, 1tc c= , ],0()( 2

1*
1 ∈λ=λ cfp

LPD
fp
LPD  based on κ−=λπ ),( *cd  

Proof of 3A:  By Features of the IPD(a), a fixed point in the IPD process requires λ  such that 
1( ( , ), ) 0f g c λ λ = .  By IPD(b) this is obtained from 1( , ) 0g c λ = .  By Proposition 1, for a 

fixed *
11 cc ≠  there exists 0

1( )
c cλ > λ  producing 0dπ = .  0λ=λ fpIPD  is thus a fixed point to 

the population process.  (ii) follows directly from Proposition 2.  Using (20) and L1.6 of 
Lemma 1 for (iii), when *

1, 1tc c= , 1 1( , )t t tf− −λ −λ = −κ λ , and from Features IPD, 

1 1( , ) 0t tf− −−λ < −κ λ < , 1 (0,1]t−∀λ ∈ .■ 
Proof of 3B:  By the Features of the LPD(a) and Lemma 1, fp

LPDλ is a fixed point in the 
population process if fp

LPDλ  solves 1( ( , ))f g cλ = λ .  By LPD(c) and LPD(d) fp
LPDλ  is unique.  

κ−=λπ ),( *cd  so Features LPD(b), LPD(c), and 0>κ  ensure 2/10 ≤λ< fp
LPD  for *

1, 1tc c= .■ 

 According to Proposition 3, with IPD, the existence of a fixed point to the population 

process depends on the presence of error in the uninformed traders’ model.  Proposition 3A 

parallels the GS findings.  There is an equilibrium interior population proportion if the price 

is not perfectly revealing, as is the case with *
1, 1tc c≠ .  When *

1, 1tc c= , the price is 

                                                             
8 The fixed point can also be derived from the associated ordinary differential equation of the learning process, 
which requires 1, 1, 1,(1 ) 0t t tb b c− = .  1, 0tb =  is the solution for when tp  contains no information, as when 0tλ = .  
For 0tλ ≠ , 1, 0tb ≠  and 1, 1, 1t tb c =  implies 1,tc R= . 
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informationally efficient, in which case there is no equilibrium to the population process.  

The fixed points to the two processes do not coexist and thus no system fixed point exists. 

 A system fixed point does exist under LPD and it is unique.  Proposition 3B(i) follows 

from the fact that f is monotonically increasing in dπ and g is monotonically decreasing in λ 

for *
1, 1tc c≠  and *

1, 1t tc c> − Γ .  At the fixed point, the superior performance of the uninformed 

traders supports their majority position.  The uninformed strategy outperforms paying to be 

informed, but in each period, in accordance with the discrete choice model, a group of traders 

chooses to be informed. 

 The LPD fixed point is consistent with Branch and Evans (2006) for whom the fixed 

mapping of the DCD between relative performance and the population proportion means that 

a stable finite difference in performance produces a stable population of traders in which both 

strategies are in use. 

2.6.2 Stability 

 In the LPD case, the asymptotic behavior of the system is characterized by the 

stability of the established fixed point.  In the absence of a fixed point in the IPD case, an 

attractor for the system is demonstrated to exist and is employed to describe the system’s 

behavior.  

 The termination of the risky asset at the end of each period eliminates the possibility 

of price bubbles and the associated drift in the parameters that can result from a trending 

price unhinged from its fundamental value.  Consequently, the threat of non-convergence 

arises from the possibility that the interaction of the two processes results in cycles or chaotic 

behavior within the feasible range of the endogenous parameters, rather than from unbounded 

escape from fundamentals. 

Lemma 2  
Given *

1, 1tc c=  and 0>λ t , κ−→πtd . 

Proof: By (25) tdπ = −κ  for *
1, 1tc c=  and 0tλ > .  By the LLN, td dπ → π.  (More trivially, 
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for *cc =t  all traders are equally informed.  There are no trades and no trading profits net of 
cost.)■ 

Proposition 4 
The unique fixed point of the LPD process is asymptotically locally stable. 
Proof: By substituting equation (9) for the state variable tp  and ( )t tf dλ = π  into recursive 
equations (6), (7) and (26), the random dynamical system for the LPD process can be 
represented in the form of three equations for vector of parameters ( )1, 't t t tc Q dΦ = π :  

(28)  1
1 1 1 1 1 1, 1 1 1 1, 1 1 1, 1 1 1( ( , )( ( , ) )) /−

− − − − − − − −= + θ π − − π θt t t t t t t t- t t tc c Q b c d u u c b c d t , (28)  

(29)  ( )21 1 1 1, 1 1 1( , ) ) /t t t t t tQ Q b c d Q t− − − − −= + θ π − , (29)  

(30)  
1 1 1, 1 1

1

1 1, 1 1 1

1( ( ( , ) )
1 ( )

( ( , ) ) ) / .

t t t t t t
t

I
t t t t t

d d u Rb c d
f d

u Rb c d d t

− − −
−

− − −

π = π + + θ − π θ
− π

× − π θ φ − κ− π
 (30)  

Note that under BRE, ( )
( ) ( )( )( )

1
1 1, 1 1

1 1 1, 1

( , )
1

t
t t

t t t

f d
b c d

f d R f d R c
−

− −
− − −

π
π =

π + − π −
, under RE we  

use an explicit solution for 1 1, 1 1( , )t tb c d− −π , but do not report it here, for brevity.  
 Following Evans and Honkapohja (2001), under regularity conditions verified in 
Appendix A, the stability of the above system of stochastic difference equations can be 
investigated by analyzing the stability of the associated system of ordinary differential 
equations (ODEs) given by:  

(31)  

1 2
1 1 1 1 1 1

2 2
1 1

2 2
1 1

( , )(1 ( , )
( , )

1 (1 ( , ))
1 ( )

I

c Q b c d c b c d
d Q b c d Q
d

d Rb c d d
f d

−
θ

θ

θ

⎡ ⎤
⎢ ⎥π − π σ⎡ ⎤ ⎢ ⎥⎢ ⎥ = π σ −⎢ ⎥⎢ ⎥τ ⎢ ⎥π⎢ ⎥⎣ ⎦ ⎢ ⎥− π σ φ − κ − π

− π⎢ ⎥⎣ ⎦

. (31)  

Local stability of the above system of ODEs is analyzed by computing the eigenvalues of the 
corresponding Jacobian matrix J evaluated at fixed point *

1 =c R and *dπ = −κ .  Provided 
that ( )f −κ  and '( )f −κ  are finite, the Jacobian matrix J evaluated at the fixed point is equal 
to 

 
2

3

0 0

1

1 / ( )
2 (1 ( ))

( )
0

0 0 1

f
f

R f
J θ

⎛ ⎞
⎜ ⎟σ⎜ ⎟= −
⎜ ⎟
⎜ ⎟−⎝ ⎠

− −κ
− −κ
−κ

.  

Note that the solution is identical under BRE and RE. The corresponding eigenvalues are 
( 1/ ( )f− −κ ;-1;-1), which are all negative since 0 ( ) 1f< −κ < . This condition is required for 
the local stability of the fixed point for the associated ODEs.■ 
 
 The eigenvalues of the Jacobian establish the local stability of the fixed point.  The 

stability is the natural outcome of a fixed point that is interior to the region above 0λ . 

 Global convergence can be obtained by restricting parameters tΦ  to the basin of 
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attraction (cf. D set in Marcet and Sargent (1989a,b)).  

 

(b)
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Figure 3 is useful for discussing stability tλ .9 The basin of attraction for the LPD system is 

the full parameter space excluding the region below cλ  in the BRE case (labeled region IX).  

Though the trajectories in region V and VIII point away from the fixed point, they remains 

within the basin of attraction because the increase in tλ  returns the system to a region above 

0
1,( )tcλ  which is again convergent.  The learning that improves the accuracy of 1,tc  decreases 

instances in which 0
1( )t tcλ < λ  asymptotically towards a zero probability event. 

 As a result of the unbounded support for tε , the possibility that a large negative 

realization of tdπ  could be sufficient to induce a realization of c
t tλ < λ  cannot be eliminated 

under BRE.  In the context of the least-squares learning process, the constraint 1,( )c
t t tcλ > λ  

is, through inversion, a tλ  dependent upper bound on 1c .  Without knowledge of tλ , the 

traders are not in a position to impose limits on 1,tc .  Still, it is worth observing that from 

(L1.5) the boundary 1,( )c
tcλ  is naturally reflecting since 1,( , )  as c

t t t tg c λ →∞ λ →λ  leading 

to a near certain increase in tλ  away from the boundary at 1,( )c
tcλ .  In this market, the 

population process accommodates for errors in the beliefs of the traders, generally returning 

the market to a more stable region of the parameter space. 

 The point of interest in the IPD system is 1c R=  and 0λ = .  It exists at the locus of 

the four regions defined by −λ , +λ , and cλ  as can be seen in frame (b) of 

                                                             
9 Because only two variables are present of the larger dynamic system, the two frames are not a complete phase 
space, but they do capture the dynamics at play.  The missing dimension is the path through which tλ  
influences /t t∂λ ∂ .  Directly, tλ  determines tdπ , influencing tdπ  which determines /t t∂λ ∂ . 
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(b)

Figure 3.  The inability to enclose the point within a stable region means that the point is not 

locally stable.  As will be developed, system convergence derives from the interaction of the 
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governing dynamic processes that maintains asymptotic convergence. 

 The dynamic system in the case of the IPD consists of four recursive equations for 

( )1, 'Φ = πt t t tc Q d  and tλ .  The speed of recursive updating of ( )1, 'Φ = πt t t tc Q d  

reduces over time (because of 1/t factor) and while the speed of tλ -updating does not change 

over time. That is the reason the analysis of this system conceptually differs from the 

traditional analysis of recursive algorithms used to prove the stability in the LPD case.  A 

recursive learning system with replicator dynamics was recently considered by Guse (2010). 

The system is also related to the literature on dynamical systems with slow-fast dynamics or 

systems with multiple time scales (see, e.g., Lordon,1997).  

 The IPD system is demonstrated to have a point of attraction * *( 0, )c Rλ = =  despite 

the absence of a fixed point. As will be developed, the evolution of tλ  is driven by three 

processes occurring at three different time scales.  The slow improvement in the accuracy of 

tc ,1 , as captured by a decrease in 2*
1,1 )( cc t − , allows a slow convergence of 0→λ t .  The 

interaction between the slow convergence in tdπ  and the fast evolution in tλ  causes 

oscillating deviations in tλ  from its trending convergence at a medium time-scale.  Finally, 

the random realizations of profits as determined by tθ  and tε  introduce small random noise 

in tλ  in a fast time-scale. 

 At the slowest time-scale, )( ,1
0

tcλ  captures that accuracy in tc ,1  is a prerequisite for 

0→λ t .  For tλ  to decline requires 0<πtd .  To have 0<πtd  requires 0<πtd  which is 

obtained when tλ  is above )( ,1
0

tcλ .  Since 0)( ,1
0 →λ tc  only as *

1,1 cc t → , tλ  is bounded 

away from zero for *
1,1 cc t ≠ . 
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 To understand the oscillatory process in tλ , consider the system at a starting point in 

which 0=πtd  and )( ,1
0

tt cλ>λ .  The former means that 0=λΔ t  while later means that 

0<πtd .  Though the random realizations of profit differentials can differ from their 

expectations, the accumulation of realized profit differentials based on 0<πtd  leads to 

0<πtd , starting a process of general decline in tλ .  A convergence of )( ,1
0

tt cλ→λ  leads to 

an increase in tdπ  that eventually becomes positive when tλ  passes below )( ,1
0

tcλ .  At 

)( ,1
0

tt cλ=λ , 0=πtd  but as a cumulative average with t/1  updating, tdπ  remains positive 

so that tλ  continues to decline.  Once )( ,1
0

tt cλ<λ , the accumulation of 0>πtd  realizations 

cause increase in tdπ , which slows the downward evolution in tλ .  The evolution in tλ  

reverses and increases once tdπ  becomes positive.  Again, because of the slow-fast process, 

the evolution in tλ  is faster than the evolution in tdπ .  As tλ  increases, it eventually 

becomes greater than )( ,1
0

tcλ , generating 0<πtd  but tdπ  remains positive until the 

accumulation of negative tdπ  realizations is sufficient to lower tdπ  to zero.  While 0>πtd , 

tλ  continues to rise, though it is in the )( ,1
0

tt cλ>λ  region.  Eventually the accumulation 

causes tdπ  to turn negative, reversing the direction of tλ . 

Features of the oscillations: 
1. The distribution of tdπ  is asymmetric, with a lower bound of κ−  as determined by the 

cost of information.  This lower bound is realized when *
1,1 cc t =  or 1=λ t .  The expected 

profit differential is unbounded from above as )( ,1 t
c

t cλ→λ  for *
1, 1tc c> .  As a result, the 

rate of change in tλ  tends to be slow during the downward portion of the oscillation.  
Once )( ,1

0
tt cλ<λ , relatively large magnitude positive realizations quickly reverse the 

trajectory of tλ  so that only a small number of periods are spent with 0>πtd .  Overall, 
the decline in tλ  is slow and drawn out while it increases relatively quick. 

2. The oscillation in tλ  is inevitable and unavoidable.  An uninterrupted decent in tλ  
towards zero can be eliminated from the possible evolutionary path.  Such a path requires 
improvement in the accuracy of tc ,1  sufficient to maintain a path of tλ  convergence that 
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remains between  1,( )tc
−λ  and 1,( )tc

+λ  as 0→λ t .  This path is eliminated by the 
asymptotic slow convergence in tc ,1  and the fast evolution in tλ . 

3. Each cycle of oscillation includes an instance of tλ  crossing )( ,1
0

tcλ  both from above 

and from below.  When the fast-moving tλ  crosses )( ,1
0

tcλ , tdπ  changes sign, but the 
change in sign in the slow moving tdπ  occurs only with sufficient accumulation of tdπ . 

 
 The random realizations of tθ  and tε  mean that the realized profit differential need 

not match the expectation according to tdπ .  The affect on tλ  is filtered through the t/1  

updating of tdπ , but it does mean that each time step innovation in tλ  is randomly 

determined.  The same random process also drives the value of tc ,1  so that with each time 

step, the value of )( ,1
0

tcλ  reflects the value of the randomly determined tc ,1 .  The general 

time and location at which tλ  crosses )( ,1
0

tcλ  is largely driven by underlying dynamics of 

the state variables, but is also affected by the random realizations of tθ  and tε . 
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 Proposition 7 below is established using the horizontal distances in 

 

(b)

Figure 2(b) between )( ,1 tc
−λ , *

1c , )( ,1 tc
+λ , and )( ,1 t

c cλ .  Since both )( ,1 tc
+λ  and )( ,1 t

c cλ  are 

monotonically increasing functions and under Condition A )( ,1 tc
−λ  is monotonically 
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decreasing, all can be inverted, expressing 1c  as a function of λ .  Let ϕ  represent the 

horizontal distance between )( ,1 t
c cλ  and )( ,1 tc

+λ  in proportion to the horizontal distance 

)( ,1 tc
+λ  and )( ,1 tc

−λ .  Inverting )( ,1 tc
−λ , )( ,1 tc

+λ , and )( ,1 t
c cλ  to express −

1c , +
1c , and cc1  as 

respective functions of λ  yields 

(32)  ε ε+ θ θ

εθ

− λ γσ φ − κσ λφ + − λ φ + λσ σ φ γκ − λ
=

− λ γσ − κ − λ σ φ

2 2

21 2 2

(1 )( ( (1 ) ) (1 )

(1 )( (1 ) )

U I U I

U
c R  (32)  

(33)  ε ε− θ θ

εθ

− λ γσ φ − κσ λφ + − λ φ − λσ σ φ γκ − λ
=

− λ γσ − κ − λ σ φ

2 2

21 2 2

(1 )( ( (1 ) ) (1 )

(1 )( (1 ) )

U I U I

U
c R  (33)  

(34)  )1/(1 λ−= Rcc . (34)  

In the BRE case, (32) and (33) simplify to 

 ε ε+ θ θ

εθ

− λ γσ − κσ + λσ σ γκ − λ
=

− λ γσ − κ − λ σ

2 2

2 21

(1 )( ) (1 )

(1 )( (1 ) )
c R   

 ε ε− θ θ

εθ

− λ γσ − κσ − λσ σ γκ − λ
=

− λ γσ − κ − λ σ

2 2

2 21

(1 )( ) (1 )

(1 )( (1 ) )
c R .  

From these inverted expressions can be derived,  

(35)  11 1

1 1

( ) ( ) 1( ) 1
( ) ( ) 2

c U I U
t t

t I I
t t

c c
c c

+
−

+ −

⎛ ⎞λ − λ φ φ −φϕ λ = = Θ +Θ −⎜ ⎟λ − λ φ φ⎝ ⎠
 (35)  

with 
(1 )

θ

ε

σ γ
Θ =

σ κ −λ
.  In the BRE case, (35) simplifies to 

(36)  ( )1( ) 1
2tϕ λ = Θ− .  

Under Condition A, 1 0Θ− > .  Under RE, Condition A ensures 0ϕ >  if 2U I
tφ ≤ φ  which is 

equivalent to 2 2 2
1, 1,(1 )t tc b θ ε− σ ≤ σ . 

Proposition 5  
Given Condition A, in finite time, there exist 0>ξ  such that for ξ<λ t  0>πtd . 
Proof: Follows from 0)( 2*

1,1 >− cc t  in finite time and 0))()((lim 110
=λ−λ −+

→λ
cc .■ 
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Proposition 6 
Given Condition A and 0>λ t  there exists a not inconsequential distance between )(1 t

cc λ  
and )(1 tc λ+  and between )(1 tc λ+  and )(1 tc λ− . 
Proof: For 2 2/θ εκ < γσ σ , k=λϕ

→λ
))((lim

0
 with ∞<< k0 . ■ 

Proposition 7 
Given Condition A, all three time-scale convergence properties continue as t→∞  
Proof: 0/ >λ∂ϕ∂ , indicating that ϕ  decreases with a decline in λ  but is bounded away from 
zero in the limit.  ByProposition 6, there exists a buffer region generating 0>πd  that is a of 
measureable size relative to the region generating 0<πd .  This region ensure that during 
conversion, as 0)( 2*

1,1 →− cc t  so that each incursion of )( ,1
0

tt cλ<λ  occurs closer to zero, 

∞<πtd  remains possible.  Let xc1  be the value of *
11 cc >  solving xd =π  given λ  (so that 

+
1c  is just the special case for 0=x ).  A byproduct of 0/ >λ∂ϕ∂  is that as 0→λ , for 0x > , 

+

+

−
−

11

11

cc
cc

c

x

 increases to a bounded limit.  Thus, as incursions of )( ,1
0

tt cλ<λ  occur closer to 

zero, the proportion of the horizontal distance between  )( 1c
+λ  and )( 1c

cλ  contributing to 
0 d x< π ≤  increases.  This contributes to a slower process of reversal in the direction of tλ  
and a slower rate of exit as it returns to the region above )( ,1

0
tcλ .  Thus, each oscillation as 

2*
1,1 )( cc t −  decreases is of diminished magnitude and extremes closer to zero.  Consider as 

proof the alternative in which 0)( →λϕ  as 0→λ , then as the accuracy in tc ,1  improves and 

tλ  crossed below )( ,1
0

tcλ  close to zero, there would be a decreasing buffer offering 

xd t <π<0  for all x, ∞<< x0 .  In this case, as 0)( 2*
1,1 →− cc t  the realization of 

)( ,1
0

tt cλ<λ  generates ∞→πtd  which results in a sustained increase in tλ .  0))((lim
0

=λϕ
→λ

 

generates a process by which improvement in the accuracy of tc ,1  generates oscillations with 
increasing extremes in tλ  between zero and one.  A 0))((lim

0
=λϕ

→λ
 also invites realization in 

the invalid region of )( ,1 t
c

t cλ<λ , resulting in a breakdown in the market.■ 
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 It is most natural to consider the evolution of the system with )( ,1
0

tcλ  in the 

shape of a cone, as depicted in 
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(b)

Figure 3b.  Early in the learning process when the error in 1,tc  is large, tλ  will cross )( ,1
0

tcλ  

while still relatively far from zero.  As the accuracy in 1,tc  improves, tλ  will achieve a value 

closer to zero before crossing )( ,1
0

tcλ .  It is the funnel shape of )( ,1
0

tcλ  that  creates the 

environment by which Proposition 7 is true.  The probability of crossing )( ,1 t
c cλ  declines 

with the passage of time because the system is not allowed to enter the region where the 

horizontal distance between 
1,( )tc

+λ  and )( ,1 t
c cλ  is vanishingly small until * 2

1, 1( )tE c c−  is 

itself vanishingly small. 

 This is no longer true when Condition A does not hold.  When Condition A does not 

hold, values of * *
1, 1 1[ , )t tc c c∈ − Γ  produce 0 0tdπ < ∀λ > .  Thus, for *

1, 1tc c< , the system can 

become arbitrarily close to 0tλ =  even when * 2
1, 1( )tE c c−  remains large.  The eventual and 
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inevitable switch in 1,tc  to *
1, 1tc c>  can generate an unbounded positive tdπ .  The emergence 

of diminishing oscillation in tλ  is not assured when Condition A does not hold. 

 As with the LPD case, the stability can only be considered locally.  The unbounded 

support for tε  keeps the probability of landing the system under BRE below 1,( )c
tcλ , and 

thus outside of the supported region D, non-zero.  The decrease in ϕ  with a decrease in tλ , 

the same feature that ensures convergence under Condition A, also contributes to decreasing 

likelihood of exiting the supported parameter space with the passage of time.  As noted, the 

when Condition A is not satisfied, the point at 0=λ  and Rc =1  cannot be considered an 

attractor.  By arguments similar to those employed in the proof of Proposition 7(b), as 

2 2/θ εκ → γσ σ  from below, Condition A remains satisfied, but the probability of escape from 

D is increased. 

 

3. Market Efficiency 

3.1 Analysis 

 This section examines the implications for market asymptotic efficiency under the 

IPD and LPD regimes.  The market is efficient when the price fully reflects all the available 

information, in this case the private signal tθ .  Let EM
tp , indicate the efficient market price.  

The efficient market price is the rational expectations equilibrium price, 

 1EM
t tp R−= θ .  

Note that with *
1 1/b R=  producing * EM

t tp p= market efficiency is achieved if *
1, 1tc c=  or if 

1tλ = .  Efficiency is thus embedded in the model.  It is natural to think of the pricing error, 

| |EM
t tp p− , as a measure of market efficiency, but this distance is dependent on not just the 

parameters of the price equation, but also the realization of tθ .  For this reason, a convenient 
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and more relevant measure is the variance of this distance, 2
, = var ( )σ − EM
p t t t tp p , 

(37)  2 * 2 2
, 1, 1( )p t tb b θσ = − σ , (36)  

which can also be expressed as 2 2 2 2
, 1,(1 )p t tR Rb−

θσ = − σ , revealing tdπ  in  (24) to be a tλ  

dependent multiple of var ( ).EM
t t tp p−  

 Recall from Proposition 2 that 0
tλ  reflects the accuracy of the uniformed traders’ 

model, converging towards zero as the model becomes increasingly accurate.  The closer 0
tλ  

is to zero the greater the market’s ability to absorb uninformed traders without causing 

substantial mispricing.  The accuracy of the market price thus depends on tλ  relative to 0
tλ .  

The innovations to tλ , in turn, are driven by profits as determined by price accuracy. 

Proposition 8 
Under IPD and Condition A, the error in the market price converges asymptotically to a fixed 
positive value. 
Proof: Using (37) in (24) and solving for 2

,p tσ  yields 

(38)  2 2 2
, ( )(1 ) /p t t td Rεσ = π + κ −λ σ γ. (37)  

From Proposition 7(a), tdπ  oscillates around zero so that 2
,p tσ  oscillates around 

2 2(1 ) /t Rεκ − λ σ γ  which, with the convergence of 0λ →t , becomes simply 2 2/ Rεκσ γ .  Since 
the oscillations in tdπ  diminish with the system’s convergence, so too does the oscillation in 
2
,p tσ .■ 

Proposition 9 
The LPD process ensures 2

, 0σ →p t . 
Proof: Because of existence of asymptotically stable fixed point under LPD (Proposition 4), 
tλ  converges to 0fp

LPDλ > ,  and 1,tb  converges to *
1b  so that 2

, 0p tσ → .■   

 As the model improves under LPD, the environment for convergence in learning 

approaches the fixed λ environment of Bray (1982). 

3.2 Simulations 

 Simulations illustrate the asymptotic behavior of the model and give character to 

market behavior under LPD and IPD.  Under LPD, the asymptotic behavior of the market is 
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unaffected by whether traders are presumed to behave according to BRE or RE.  Under RE, 

there is nothing to prevent convergence to the fixed point.  The BRE solution with IU
t φ=φ  

means that there exist combinations of 1,tc  and tλ  producing 1,( , ) 0t tcΨ λ ≤ , and thus the 

absence of a reasonable market clearing price.  For BRE under the LPD, the probability of 

realizing 1,( , ) 0t tcΨ λ ≤  converges to zero as the system stabilized around the fixed point.  If 

the simulation survives the early stages of learning and population evolution, then 

convergence is very likely. 

 The simulations under the IPD reveal the three components of the noisy oscillatory 

convergence of tλ  towards zero.  The pricing error cycles with the oscillations in tλ , but 

does not improve with the improvements in the model accuracy. 

 

Figure 4 through 



 

41 

Figure 6 demonstrate the different behavior produced the LPD and IPD.  Each figure contains 

six frames plotting sample times-series of select endogenous parameters produced by 

simulations of the model.  The left column displays, from top to bottom, the state-dependent 

expected profit differential, tdπ , the cumulative performance measure, tdπ , and a plot of tλ  

(black) 0
tλ  (light grey), and c

tλ  (dark grey).  The right column displays, from top to bottom, 

1,tb , 1,tc , and the deviations from market efficiency, EM
t tp p− .  Included in the plot of 1,tc  are 

the classic regression model 90% confidence bands computed from the parameter’s 

asymptotic variance, 
1

2 2 2 /c R t−
θσ = σ . 
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Figure 4 plots a typical DCD based simulation.  Each trader elects to be informed with 

probability ,Pr ( )t i tx I= .  For a large population of traders, the Law of Large Numbers 

applies.  From the original discrete choice model of Manski and McFadden, 

(39)  
)exp()exp(

)exp(
)(Pr U

t
I
t

I
t

ittt Ix
πρ+πρ

πρ
==→λ  = 2/)1)2/)((tanh( +πρ td . (38)  

Consider a population sufficiently large such that the relationship can be treated as an 

identity, )(Pr , Ix titt ==λ .  For tdπ  near zero, there is little perceived difference and the 

populations are of nearly equal in proportion.  The greater the difference, the smaller the 

proportion of traders who use the inferior strategy in that period.  The parameter 0ρ ≥  sets 

the population’s “intensity of choice”, defining how sensitive the population is to the 

difference in performance between the options. 

 The figure shows the convergence in learning where 02.1*
1 == Rc  and convergence 



 

43 

in the population to the fixed point of fp
LCDλ  = 0.2689.  The learning process progresses 

towards an increasingly accurate model, producing a convergence towards market efficiency 

in the price.  In the latter part of the sample, price efficiency tracks the accuracy of 1,tc , which 

remains well within the 90% confidence bands.  The error introduced by the uninformed 

traders diminishes as the traders’ model improves. 

 

 [

Figure 4 about here] 

 The examination of the Replicator Dynamic employs the function 

(40)  ( ) tanh( / 2)t tr d dπ = δ π . (39)  

for use in (27).  The parameter δ ≥ 0 sets the strength of the populations’ response to disparity 

in the perceived performance of the two options. 
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 The RD simulation plotted in 

Figure 5 and 
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Figure 6 employs the same payoff stream for the random security as employed in the DCD 

simulation plotted in 
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Figure 4.  As seen in 
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Figure 6, a pattern of oscillations in tλ  overlays its convergence towards zero.  The values of 

tdπ , 
tdπ , and EM

tp p−  all cycle in accordance with the oscillations in tλ .  Notice the 

asymmetry in 
tdπ  with 

td−κ ≤ π < ∞ which influences the oscillations in tλ .  The 0
tλ  series 

is noisy as a result of the random element of 
1,tc , but as the frequency and depth with which 

0
t tλ < λ  is realized increases, so rises the frequency and magnitude of the realizations of 

π − π >( ) 0I U
t t

.  Over time, the positive realized profits contribute to the slow rise in 
tdπ  until 

0tdπ >  is realized and reverses the direction of tλ .  Notice that each subsequent oscillation 

in tλ  starts at a lower peak and ends at a lower trough, while the peaks and troughs in the 

deviations of 
tdπ , 

tdπ , and EM
tp p−  remain constant across cycles. 

 

 [
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Figure 5 about here] 

 

 [
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Figure 6 about here] 

4. Rate of Learning 

 Comparing the evolution in 1,tc  in 
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Figure 4 and 
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Figure 5 suggests that the rate of learning is different under the RD population process than 

under the DCD population process.  The relative values of tλ  and 0
tλ  impact the rate of 

learning, producing the different simulation outcomes. 

 Underlying 
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Figure 7 are 100 iterations of 100,000 periods each.  Three versions of the model are applied 

to each of these series.  All three models start with λ0 = 0.8.  The base model has a fixed λt = 

λ = 0.8 so that the learning process is the only dynamic process in the simulation.  The second 

set of simulations is based on the DCD model.  The final set of simulations is based on the 

RD model.  The average of the distance || *
1,1 cc t −  taken over the 100 simulations for each 

model is plotted against time.  In the log-log scale the solid straight line is a plot of t/1 .  

The three jagged lines are the output from the three models. 

 The convergence of the base model runs parallel to the plot of t/1 , indicating the 

same rate of convergence.  The convergence of the learning process of both the DCD and RD 

models diverge from the base model.  The most pronounced example of this occurs at the end 

of the RD simulations.  Learning is accelerated by periods of large pricing errors, which 

occur when tλ  approaches or drops below 0
tλ .  In comparison, the increased rate of learning 

in the DCD model simulations are short lived.  Learning is accelerated early in the 
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simulations when the price exhibits increase volatility relative to the fixed λ  simulations, a 

time when tλ  is near 0
1,( )tcλ .  Once tλ  stabilizes at the fixed point, fp

LPDλ  while 0
1,( ) 0tcλ →  

with the improvements in 1,tc , learning slows to a rate of 1/t.  Very early in the simulation, 

learning in the DCD setting is hampered by the large innovations in tλ  from period to period 

that substantially alter the relationship between price and payoff.  The rate of learning 

recovers once tλ  settles with the accumulation of data. 

 Proposition 7 was established based on the rate of the learning presumed to be 

unaffected by the market environment.  Here, it is discovered that the rate at which the traders 

learn 1,tc  increases when the pricing errors are large.  This has the potential to decrease the 

oscillations in tλ , allowing the system to emerge from below 0
tλ  through improvement in 1,tc  

rather than an increase in tλ . 

5. Conclusion 

 The asymptotic convergence properties of a financial market with learning and 

adaptation have been derived analytically.  The analysis reveals that, having explicitly 

modeled the dynamic processes and accounted for their interaction; market efficiency is 

possible, the lack of a fixed point need not be seen as a paradox, and a non-revealing price 

can be modeled as endemic to the market rather than the product of an ad hoc imposition of 

noise.  The process of population dynamics matters to the solution.  The Innovation 

Population Dynamic (IPD) generates convergence in learning and in the population towards 

an attractor, but the dual convergence is demonstrated to generate persistent pricing errors.  

The Level Population Dynamic (LPD) also produces convergence towards a fixed point that 

allows for the emergence of an efficient price. 

 Market efficiency arises from the Level Population Dynamic process because it 
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produces a persistent population of informed traders, despite their underperformance relative 

to the uninformed traders.  The population process is different from that envisioned by 

Grossman and Stiglitz but, in the case of the Discrete Choice Dynamics, the process has been 

employed extensively in the dynamic choice literature based on a strong empirical and 

theoretical foundation.  The Discrete Choice model offers a couple of intuitive explanations 

of how such a group of trader can remain present, but other models capable of generating a 

persistent population of informed traders may exist as well, offering their own explanations. 

 The original paradox observed by Grossman and Stiglitz is a product of the 

discontinuity in expected profits that arises in the absence of informed traders.  This results in 

the absence of a Rational Expectations Equilibrium.  Given that the uninformed traders have 

the correct model for extracting the private signal from the price, no barrier exists to prevent 

the entire population of traders from attempting to adopt the uninformed strategy, achieving 

the point of discontinuity.  The Grossman and Stiglitz resolve the paradox by creating an 

equilibrium away from the point of discontinuity by injecting noise into the price. 

 Like Grossman and Stiglitz, the Innovation Population Dynamics generates an 

environment in which, asymptotically, the entire population converges towards full adoption 

of the uninformed strategy.  Contrary to Grossman and Stiglitz, in the presence of the 

learning process the discontinuity at the point of attraction ceases to be a problem in need of a 

solution.  Importantly, the rate at which the traders adopt the uninformed strategy is tied to 

the rate at which the traders improve their understanding of the market.  In the presence of 

error, excessive reliance on the uninformed strategy produces a pricing error that maintains a 

population of informed traders.  As the uninformed model improves, the proportion of 

informed traders declines, but the informed strategy cannot be completely abandoned while 

error exists in the uninformed traders’ model, even as the error declines to zero. 

 The system exists and operates out of equilibrium.  It is not necessary to create an 
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equilibrium for the population process through assumption.  Error is introduced into the price 

by the uninformed traders’ use of an imperfect model.  The population process tunes the 

market to maintain a persistent error in the price despite the diminishing error in the model.  

The process is a financial market version of the Malthusian Trap.  Increasing adoption of the 

increasingly accurate model for extracting information from the price produces a persistent 

pricing error.  The pricing error creates the space necessary for a population of informed 

traders to maintain a profitable presence in a competitive market. 

 These two versions of the model are, of course, simple abstractions of more complex 

behavior.  The learning and adoption process can be seen as capturing the efforts by traders to 

learn from and adapt to the evolving market of which they have an imperfect understanding. 
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Figure 1: Contour plot of dπ .  Each contour is 1,( )x
tcλ  for a given d xπ = .  (The same 

figure can also be used to depict trading profits as a fraction of 2 2/θ εγσ σ  by considering 
0κ = .) 
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(a) 

 

(b)

Figure 2: (a) Plot of dπ  as a function of λ  given four different values for the model error, 
*

1 1c c− .  0
1( , )d g cπ = λ =0 at the intersection with the x axis. (b) Plot of 0λ  and cλ  as 

functions of 1c . 
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(a) 

 

(b)

Figure 3:  
(a) Phase space around the LPD fixed point 
(b) Phase space around the IPD point of attraction 
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Figure 4: Population governed by Discrete Choice Dynamics (of the LPD family).  T = 
600,000 periods.  Column 1: Row 1: Time t expected profits, tdπ ; Row 2: cumulative 
performance measure, tdπ ; Row 3: λt (black) and 0

tλ  (grey).  Column 2: Row 1: 1,tb ; Row 2: 

1,tc  with 90% confidence bands; Row 3: EM
t tp p− .  R = 1.02, κ = 0.002. 
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Figure 5: Population governed by Replicator Dynamics (of the IPD family).  T = 600,000 
periods.  Column 1: Row 1: Time t expected profits, tdπ ; Row 2: cumulative performance 
measure, tdπ ; Row 3: λt (black) and 0

tλ  (grey).  Column 2: Row 1: 1,tb ; Row 2: 1,tc  with 

90% confidence bands; Row 3: EM
t tp p− .  R = 1.02, κ = 0.002, 0.1ρ = . 
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Figure 6: Population governed by Replicator Dynamics (of the IPD family).  t = 200,000-
600,000.  Column 1: Row 1: Time t expected profits, tdπ ; Row 2: cumulative performance 
measure, tdπ ; Row 3: λt (black) and 0

tλ  (grey).  Column 2: Row 1: 1,tb ; Row 2: 1,tc  with 

90% confidence bands; Row 3: EM
t tp p− .  R = 1.02, κ = 0.002, 0.1ρ = . 
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Figure 7: The average || *
1,1 cc t −  across 100 simulations plotted against time.  Light grey  = 

constant λt, dark grey = DCD (a LPD example), grey = RD (a IPD example).  (In color, these 
are green, blue, and red, respectively). 
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Appendix 

Evans and Honkapoja (2001, p. 124-125) state assumptions (A.1)-(A.3) and (B.1)-(B.2) 
under which the stability analysis for the system of the random difference equations can be 
investigated via the associated system of ODEs. Here we verify that assumptions are satisfied 
for our setting.  
 
Rewrite equations (28)-(30) more compactly is terms of vector of parameters 

( )1, 'Φ = πt t t tc Q d , vector of  state variables ( ) 't t tX u p= ,  vector of 

constants ( )/ 'A u u R= , vector of the random determinates of tu , ( ) '= θ εt t tW , functions 

( , )ΦH X  and ( , )ρ Φ X , describing how the vector of parameters ( )1, 'Φ = πt t t tc Q d   is 

updated  and a sequence of gains tγ , that is, 
 

 2
1 1 1 1 1( , ) ( , )− − − − −Φ =Φ + γ Φ + γ ρ Φt t t t t t t tH X X ,  

 ( )t t tX A B W= + Φ , where  

 
1

1 1
( )

( ) 0
⎛ ⎞

Φ = ⎜ ⎟Φ⎝ ⎠
t

t

B
b

.  

Function ( , )Φt tH X deduced from the system equations (28)-(30) is 
 

 ( )

1
1 1 1 1 1

2
1 1

1 1 1 1

( , )( ( , ) )

( , ) ( , )
1 ( ( , ) )( ( , ) )

1 ( )
I

Q b c d u u c b c d

H X b c d Q

Rb c d u Rb c d d
f d

−
⎛ ⎞
⎜ ⎟θ π − − π θ
⎜ ⎟

Φ = θ π −⎜ ⎟
⎜ ⎟
⎜ ⎟θ− π θ − π θ φ − κ − π⎜ ⎟− π⎝ ⎠

  

 
and ( , )ρ Φ X  is given by 

 

( )( ) 12
1 1 1 1 1 1 1( , ) ( , )( ( , ) )

( , ) 0
0

b c d Q b c d u u c b c d

X

−⎛ ⎞θ π − θ π − − π θ⎜ ⎟
⎜ ⎟ρ Φ = ⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

.  

(A.1)  Positive, nonstochastic, nonincreasing gain sequence tγ  satisfies 

 
1
t

t

γ
∞

=

= ∞∑  and 2

1
t

t

γ
∞

=

< ∞∑   

For OLS learning used here decreasing sequence of gains is 1/t tγ = , which satisfies above 
conditions. 
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Define open set 3D ⊂ °  around equilibrium point *Φ . 
(A.2) For any compact S D⊂  there exist 1 2 1 2, , ,C C q q  such that for any S Q∈  

 
1

2

1

2

( , ) (1 | | )
( , ) (1 | | ).

q

q

H X C X
X C X

Φ ≤ +
ρ Φ ≤ +

  

This assumption imposes polynomial bounds on functions ( , )ΦH X  and ( , )ρ Φ X . Near the 
equilibrium *Φ , 1c  is close to R, 1 1( , )πb c d  is close to 1/R and, hence, 1 1 1( , )c b c dπ  and 

1 1( , )Rb c dπ  are close to 1. Finite 1 1( , )πb c d  is ensured by the feature of the LPD, where it is 
assumed that function ( )πf d  is bounded between (0,1) for finite πd . The required 0Q ≠  
(nonsingular variance-covariance matrix in terms of OLS) is satisfied given that θ  is a 
random variable (with nonzero variance). Moreover, random variables θ  and u  are assumed 
to be Normally distributed and have finite second moments. Hence assumption A.2 is 
satisfied. 
 
(A.3)  For any compact S D⊂  and anyX Q∈ , function ( , )ΦH X  is twice continuously 
differentiable with bounded partial second derivatives on S . 
 
In the feature of the LPD it was assumed that function ( )πf d  is of class C2 . Under this 
assumption partial second derivatives of ( , )ΦH X  exist and by similar arguments used in 
(A.2) they are finite. 
 
(B.1)  Vector of the random determinates of tu , ( ) '= θ εt t tW  is iid with finite absolute 
moments. tW  is assumed to be Normally distributed, hence B.1 is satisfied. 
 
(B.2) For any compact set S D⊂ : 
sup ( )
S
B M

Φ∈
Φ ≤  and ( )B Φ  satisfy Lipschitz conditions on S. 

 
The condition holds since 1 1( , )πb c d  remains finite and has finite partial derivatives in the 
neighborhood of equilibrium point *Φ   (by the same arguments as in A.2). 
 

Define ( ) lim ( , ( ))
tt

h EH X
→∞

Φ = Φ Φ . The associated ODE is then defined as ( )
d

h
dτ
Φ = Φ  and 

under (A.1)-(A.3) and (B.1), (B.2) ( )h Φ  is locally Lipschitz. 


