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Abstract: As a major cause of vehicle accidents, the prevention of drowsy driving has received
increasing public attention. Precisely identifying the drowsy state of drivers is difficult since it
is an ambiguous event that does not occur at a single point in time. In this paper, we use an
electroencephalography (EEG) image-based method to estimate the drowsiness state of drivers.
The driver’s EEG measurement is transformed into an RGB image that contains the spatial knowledge
of the EEG. Moreover, for considering the temporal behavior of the data, we generate these images
using the EEG data over a sequence of time points. The generated EEG images are passed into a
convolutional neural network (CNN) to perform the prediction task. In the experiment, the proposed
method is compared with an EEG image generated from a single data time point, and the results
indicate that the approach of combining EEG images in multiple time points is able to improve the
performance for drowsiness prediction.

Keywords: electroencephalography; deep learning; driving fatigue; feature extraction;
convolutional neural network

1. Introduction

The prevention of drowsy driving has become a major challenge in safety driving
issues. Many drivers experience driving in drowsy conditions, especially in long-term driving.
Continuous, unexciting driving reduces the vigilance of drivers and increases the risk of traffic
accidents. To address this problem, the development of brain-computer interfaces (BCIs) to investigate
the human’s cognitive state is an urgent necessity. Electroencephalography (EEG) is one of the most
direct and effective physiological measures for the estimation of brain dynamics. Recent EEG studies
have demonstrated that changes in alertness during driving are related to changes in global brain
dynamics [1,2]. It has also been shown that EEG is a robust measurement for the estimation of a driver’s
cognitive state [3–6]. In addition, EEG provides abilities of convenient measurement in real timeand is
therefore widely used in real applications [3,7–9].

Although EEG has many advantages for the analysis of brain dynamics, the use of EEG-based BCIs
in real applications remains challenging. The raw EEG signals acquired from the electrodes are often
obscured by physiological artifacts such as eye movement and muscle movement, which is undesirable
in the BCI system [10]. Therefore, removing these unwanted artifactsto capture brain activity has
become a crucial issue in EEG-based BCI applications. Many studies have shown that independent
component analysis (ICA) can effectively separate the artifacts from raw EEG data [11–14]. The mixture
signal is decomposed into many statistically independent components by ICA. A non-artifact signal is
obtained by excluding the components that are associated with artifacts. Although ICA is a powerful
tool for extracting brain activity from raw EEGsignal, it cannot support real-time applications because
the separated artifacts need to be removed manually. This drawback limits the utility of ICA for
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real-world BCI applications. An automatic processing BCI is strongly required for drowsy driving
prediction since traffic accidents always occur in a very short time. Therefore, this study does not apply
any artifact removal process to the raw EEG data during the experiment, ensuring that the proposed
method does not use manual processes for the drowsy driving prediction task.

For EEG signals without artifact removal, how to correctly extract the informative features of EEG
signals becomes a major challenge in BCI applications. A popular approach for feature extraction is
transforming the EEG signals into a frequency domain [15,16]. Fast Fourier transform (FFT) is applied
to compute the power spectra of the multi-channel time-series EEG signals into the frequency domain;
then, the average of the power spectra value for each frequency is collected to obtain a feature vector for
classification [3,17]. The main disadvantage of such an approach is that it only considers the frequency
information. EEG is measured over the scalp in a three-dimensional space. It is obvious that the spatial
information of EEG cannot be well described by a feature vector. Instead of the 1D feature vector,
there is an increasing trend to use 2D feature maps for the analysis of EEG, which have achieved good
performance in their application areas [18,19].

As the most popular machine learning technique in recent years, deep learning has achieved
significant success in a variety of research fields, such as speech [20], images [21–23] and video [24].
The ability of deep learning techniques to learn unknown features from incoming data has gained
considerable attention in EEG studies [25–27]. There is an increasing trend to use convolutional neural
networks (CNNs) to analyze EEGs due to their state-of-the-art performance in the computer vision
field. A popular approach is transforming the EEG measurement into a 2D feature map and then
passing it into a CNN model for classification [28–31].

For drowsy driving prediction, it is difficult to identify the drowsy state using the single time
point of EEG data because drowsiness is an ambiguous event. The driving performance may not
immediately decrease with increasing drowsiness levels, which means that drivers maintain normal
driving performance even though their vigilance level has started to decrease. To overcome these
difficulties, this study proposes a new EEG image method that combines multiple frames of EEG
images to examine the temporal activity of EEG data. Such approach not only focus on the current
EEG data, but also considers the brain activity of the previous time period. The evaluation results
show that the proposed method can improve the performance of EEG image-based BCI systems in
drowsiness prediction.

2. Experimental Setup

2.1. Virtual Reality (VR)-Based Driving Environment

In our previous studies, to observe the subject’s drowsy state during the driving task, a virtual
reality (VR)-based realistic driving environment was developed to simulate a long-term driving
situation [2,13,32–35]. As shown in Figure 1, the surrounding scenes were projected from six projectors
to constitute a surrounding vision. A night-time driving scene at a fixed velocity of 100 km/h on a
four-lane highway is set up in the VR experiment. Before the experiment was started, participants were
directed to enter the real car mounted on a motion platform and then steer the vehicle according to
the instructions. All participants were required to take a 5-min pre-test session to ensure that they
clearly understood the instruction and did not suffer from simulator sickness. The highway scene was
connected to a physiological measuring system, where the EEG and participants’ performance were
continuously and simultaneously measured and recorded.
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preceding weeks. According to self-reporting, no subject had a history of psychological disorders. 
Before the experiment, the subjects were asked to answer a questionnaire about their sleep patterns 
to ensure that they had a normal cognitive state during the driving task, and they needed to 
complete a consent form explaining the experimental protocol that was approved by the 
Institutional Review Board of the Taipei Veterans General Hospital, Taiwan. The EEG signals of the 
subjects were captured from a Quik-Cap (CompumedicalNeuroScan) with 32 Ag/AgCl electrodes, 
including 30 EEG electrodes and two reference electrodes. The EEG electrodes were placed in 

Figure 1. The virtual reality (VR)-based driving environment. (a) Vehicle used for the driving task.
(b) Projector platform. (c) The surrounding scene. (d) Front view of the VR scene.

2.2. Driving Fatigue Paradigm

The event-related lane-keeping driving task was adopted in this study for the evaluation of the
brain dynamics occurring during the driving task, as illustrated in Figure 2. The participants were
instructed to perform a 90-min driving task without breaking or resting in the VR driving environment.
The driving experiment began in the early afternoon (13:00–14:00) after lunch because people often feel
sleepy during this time [36]. During the sustained attention driving task, the VR paradigm randomly
simulated a lane-departure event that caused the car to drift away from the center of the cruising lane.
The participants were required to quickly steer the car back whenever the car started to deviate from
the original cruising lane. There was no feedback to wake the participants even if they did not respond
to the lane-departure event. The car continued to move along the curb until the participants steered it
to return to the center of the cruising lane. Figure 2 describes a complete trial in the driving paradigm
that includes the one-second baseline recording, deviation onset, response onset, and response offset.
The time interval between the random lane-departure event was set to 5–10 s.

2.3. Participants

Thirty-eight right-handed, healthy young adults aged 20–30 years participated in the driving
experiment. All subjects were required to have a driving license and sufficient sleep in the two
preceding weeks. According to self-reporting, no subject had a history of psychological disorders.
Before the experiment, the subjects were asked to answer a questionnaire about their sleep patterns to
ensure that they had a normal cognitive state during the driving task, and they needed to complete a
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consent form explaining the experimental protocol that was approved by the Institutional Review Board
of the Taipei Veterans General Hospital, Taiwan. The EEG signals of the subjects were captured from a
Quik-Cap (CompumedicalNeuroScan) with 32 Ag/AgCl electrodes, including 30 EEG electrodes and
two reference electrodes. The EEG electrodes were placed in accordance with a modified international
10–20 system. The impedance of all electrodes was kept under 5 kΩ during the experiments.
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Figure 2. The event-related lane departure paradigm [2]. A complete trial consists of three steps:
(1) deviation onset—the lane-departure event occurs, (2) response onset—the driver starts to steer the
wheel back, and (3) the response offset—the car returns to the original cruising lane. Response time
(RT) is defined as the time period between the deviation onset and the response onset. This study uses
the 1 s baseline signal before the lane-departure event for predicting drowsiness according to the value
of RT.

2.4. Drowsiness Measurement

The driving performance was defined based on the response time (RT), which represented the
time between the deviation onset and the response onset. As the lane-departure event occurred, it was
expected that the participant would take a long time to steer the car back to the center of the cruising
lane if he/she was in a drowsy state; then, the response time (RT) in the trial could be very long.
By contrast, when the participant was alert, he/she could respond to the lane-departure event in a short
time. Previous studies have shown that baseline EEG activity is strongly correlated with changes in
RT [34]. In this study, the 1s baseline signal (red region shown in Figure 2) was used to perform the
drowsy prediction based on the trial’s RT.

3. Approach

The general flowchart of our method is presented in Figure 3. Before data analysis, the acquired
EEG records were processed using a 1-Hz high-pass and 50-Hz low-pass infinite impulse response
filter to remove the noise and then down-sampled to 250-Hz to reduce the dimensions of the data.
The power spectral activities of EEG signals were computed using FFT. To transform the EEG signal to
a 2D image, we needed to address the following issues: (1) transforming the power spectrum of EEG
signals to image values and (2) interpolating the points of the image data to a color image. The detailed
approach is explained in the following sections.
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Figure 3. Flowchart of the proposed drowsiness prediction system.

3.1. Feature Extraction

To extract the physiological features, the 30-channel time-series EEG signal was transformed
into a frequency domain via a 256-point FFT. Based on the findings in previous studies [14,37,38],
the frequency band in the, theta (4–8 Hz), alpha (8–13 Hz), and beta (13–20 Hz) was suitable for
estimating the driver’s vigilance level. Our past studies also observed that the increasing power of
theta band and alpha band had positive correlation with RT, and beta band had high correlation to
kinesthetic stimuli which can affect the prediction performance [13,17]. The mean power of these
frequency bands of interest was combined to form a feature vector. As depicted in Figure 4, this feature
vector was considered a pixel value of the RGB image. Each channel of the colour image corresponds
to a frequency band of interest.
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Figure 4. Schematic illustration used to transform the time domain electroencephalography (EEG)
signals into a pixels in a color image.

3.2. Interpolation of the EEG Measurement to Image Pixels

As described in the previous section, we obtained 30 data points corresponding to the location of
the EEG electrodes. First, we converted the magnitude of the power spectrum of the EEG signals into
an image pixel value. Equation (1) shows the sigmoid function utilized to normalize the value of the
EEG power spectrum to [0,1]:

Pt =
1

1 + e−0.5t , (1)

where Pt is the normalized image pixel value, and t is the magnitude of the frequency response in the
dB. Next, we needed to interpolate the scattered image data points to a color image. Figure 5 illustrates
the interpolation scheme of the EEG image. The finite element method, a numerical technique that
is usually applied for the approximate solution of engineering problems that are difficult to solve
analytically, was adopted to perform the interpolation task. The Clough–Tocher scheme was used
to interpolate a 32 × 32 mesh from the 30 image data points [39]. In this study, the EEG electrodes
were placed in accordance with a modified international 10–20 system, which means that the location
corresponding to each image point is known. Three topographical maps corresponding to the three
frequency bands of interest were acquired by the Clough–Tocher scheme. The three spatial maps were
then merged to create a 32 × 32 color image. Figure 6 demonstrates several samples of the EEG image.

3.3. Temporal EEG Image

One of the challenges in drowsy driving prediction is that some drowsy trials may have similar
patterns of the alert trials. The driving performance might not degrade immediately, even if the alertness
level of the drivers begins falling, which means that drivers can respond well to lane-departure events
before they fall asleep (but the drowsy pattern of the EEG has appeared). In that case, the generated
EEG images between the drowsy trial and its previous alert trials can be very similar. As the drivers
wake up by themselves, their vigilance level dramatically recovers, and the RT returns to the alert state;
then, the EEG pattern becomes completely different from the drowsy trials. Based on these findings,
the drowsy state should be estimated not only using the current trial but also by examining the previous
trials. This study proposes a temporal EEG image that is generated by a linear combination of a
sequence of EEG images, as shown in Equation (2):
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I′t =
N∑

t=1
ctIt

N∑
t=1

ct = 1
(2)

where I′t is the generated temporal EEG image, It is the array of the EEG image data, c is a scalar
coefficient and ci < c j when i < j. N in this study is set to five. Figure 7 illustrates the schematic
diagram of the temporal EEG image. Instead of asingle frame EEG image IN, this approach estimates
the drowsiness state using I′N, which includes the information of the brain activity from multiple
time points.
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3.4. Classification Using the CNN Model

This study applies a CNN including six convolution layers, three max-pooling layers, and a
layer to the classification of the input EEG image, as shown in Figure 8. A popular open source deep
learning framework named Caffe is employed for implementing the CNN model [40]. The parameter
setting of the overall CNN architecture is presented in Table 1. A set of filters is used to convolve
the input EEG images for feature extraction. The convolved images are then subsampled by the
max-pooling layer to derive compacted features. The convolution and pooling progress are repeated
several times through CNN layers. The lower-level features of the input data are extracted via the
early layers, and those features are collected in the later layers to hierarchically learn the higher-level
features. Finally, the acquired high-level features are concatenated and passed into the fully-connected
layer for the classification. The final prediction result is determined according to the output of the
fully-connected layer. We only use the alert and drowsy classes in this study, so the output size of the
fully-connected layer is 2 × 1.
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Figure 8. The convolutional neural network (CNN) architecture used in the experiment.

Table 1. Parameter setting of the CNN model.

Layer Name Kernel Size Stride Num of Filters

Conv1a 3 × 3 1 16
Conv1b 3 × 3 1 16
Pool1 2 × 2 1 -

Conv2a 3 × 3 1 32
Conv2b 3 × 3 1 32
Pool2 2 × 2 2 -

Conv3a 3 × 3 1 32
Conv3b 3 × 3 1 32
Pool3 2 × 2 2 -
FC1 500 - -
FC2 2 - -

4. Experiment

The EEG dataset used in this study includes 10,395 alert trials and 3080 drowsy trials collected
from 38 subjects. According to the suggestion of the previous research, if the drivers are fully aware of
the driving situation, the average time for them to respond to the lane-departure event is approximately
0.7 s [41]. According to the previous studies [42–44], drivers provide poor performance when they
don’t respond the lane-departure event in three times the mean alert RT. Therefore, this study adopts
three times the average response time as the classification boundary of the drowsy prediction task.
The EEG trials are considered as alert trials as long as their RT are less than 2.1 s. In addition, the EEG
trials with an RT larger than 2.5 s are labelled as drowsy trials, and the EEG trials with an RT between
2.1 s and 2.5 s are not used in this experiment. The evaluation of our approach is performed using
leave-one-subject-out cross-validation. We select the data from one subject for testing and the data from
the remaining subjects for training. This process is repeated for each of the 38 subjects. To evaluate
the predictive performance of the proposed method, the temporal EEG image method is compared
with the single frame EEG image method—directly using the current trial of the EEG image for
drowsiness prediction.
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Table 2 shows the comparison result of the temporal EEG image method and the single frame
EEG image method. The average accuracy is an average of the accuracy of individual categories. It is
apparent that the temporal EEG image method outperforms the single frame EEG image methods.
In both methods, a similar accuracy of the alert class is given, but our approach achieves significant
improvement in the accuracy of the drowsy class. Based on the aim of drowsiness prediction,
the prediction rate of the drowsy class is more important than the alert class. Furthermore, the results
also demonstrate that our approach has better prediction performance than the single frame EEG
image method in most subjects, which proves that the improvement of our approach has universality
in general users. Table 3 shows the evaluation result of EEGnet and hierarchical convolutional neural
network (HCNN), which are CNN-based approach for EEG analysis and achieve good performance in
their applications [45]. The results demonstrate that the proposed method yields superior prediction
performance than EEGnet and HCNN.

Table 2. The prediction result of the single frame EEG image and temporal EEG image.

Subject
Single Frame EEG Image Temporal EEG Image

Alert (%) Drowsy (%) Total Accuracy (%) Alert (%) Drowsy (%) Total Accuracy (%)

S1 97.30 23.06 79.12 97.94 19.17 78.11
S2 88.21 20.13 52.25 82.72 29.78 53.95
S3 93.50 27.60 72.47 97.85 21.47 73.07
S4 96.76 9.30 71.85 97.79 14.19 73.33
S5 96.61 80.69 92.22 97.13 86.67 94.20
S6 96.72 84.03 93.22 98.21 96.25 97.66
S7 95.14 50.26 87.21 95.46 60.54 89.33
S8 98.30 27.69 87.31 96.42 66.15 91.60
S9 96.67 32.55 81.06 95.15 58.91 86.17
S10 96.50 12.10 80.25 96.21 8.39 79.09
S11 95.31 14.67 68.21 96.27 14.21 68.44
S12 95.60 15.80 66.30 94.50 25.71 68.90
S13 95.76 9.66 74.94 98.02 7.82 76.02
S14 92.04 17.44 80.25 96.24 16.46 83.53
S15 91.04 19.47 83.18 93.56 18.07 85.20
S16 94.10 18.25 80.62 95.06 20.00 81.62
S17 93.87 16.77 81.96 95.27 18.60 84.12
S18 92.30 16.13 85.02 92.79 16.45 85.46
S19 85.97 33.50 65.05 87.51 42.92 69.49
S20 92.40 21.44 76.24 95.15 20.17 77.94
S21 94.30 34.61 79.34 94.19 54.41 84.12
S22 92.98 21.86 76.20 94.49 21.86 77.07
S23 87.12 32.38 67.30 90.21 28.57 67.72
S24 95.68 20.28 76.46 94.83 30.35 78.27
S25 95.08 40.58 83.78 94.53 55.34 86.35
S26 92.02 37.11 85.08 91.68 48.67 86.22
S27 91.65 52.52 82.21 91.89 62.82 84.24
S28 97.60 26.50 85.55 97.29 30.25 85.73
S29 96.24 16.12 80.08 97.63 12.65 80.21
S30 94.79 12.10 74.83 95.24 13.45 75.34
S31 93.38 18.96 82.42 94.32 17.76 82.95
S32 87.57 23.57 73.37 87.92 29.76 74.78
S33 89.67 19.24 65.37 92.60 15.19 65.42
S34 89.21 25.00 84.49 90.36 22.00 85.26
S35 90.14 15.85 78.29 91.04 18.54 79.29
S36 88.33 23.57 52.43 79.65 35.63 54.75
S37 95.76 12.37 80.15 94.91 16.67 80.75
S38 69.29 40.23 53.27 52.73 53.60 53.22

Average 92.76 26.93 76.83 92.76 32.35 78.39
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Table 3. The prediction result of EEGnet and HCNN.

Subject
EEGnet [45] HCNN [28]

Alert (%) Drowsy (%) Total Accuracy (%) Alert (%) Drowsy (%) Total Accuracy (%)

S1 94.39 13.33 73.99 99.07 11.11 76.92
S2 84.92 24.53 52.1 90.48 17.33 50.72
S3 93.84 16.4 68.7 95.51 21.33 71.43
S4 92.79 14.19 69.8 94.23 13.95 70.75
S5 90.81 18.89 70.66 99.45 86.11 95.72
S6 88.65 20.28 69.49 98.37 93.55 96.89
S7 91.26 23.24 79.29 94.82 32.43 83.88
S8 93.21 17.69 81.17 97.08 15.38 84.05
S9 92.46 16.73 73.69 98.2 12.73 77.03
S10 89.77 20.16 76.19 92.97 16.13 77.98
S11 91.8 12.12 64.8 92.54 12.72 65.5
S12 91.75 14.91 63.16 93.12 12.5 63.12
S13 96.4 9.08 75.1 94.31 11.76 74.18
S14 90.62 15.12 78.6 96.77 14.63 83.69
S15 91.18 16.67 82.93 89.96 21.05 82.33
S16 93.46 13.81 79.21 89.44 27.84 78.41
S17 91.69 15.91 80.66 84.43 17.2 74.65
S18 92.65 17.26 81.56 88.52 11.29 81.14
S19 91.41 14.75 60.44 94.92 17.5 63.63
S20 91.52 15.25 74.01 92.42 16.95 75.1
S21 94.09 19.31 75.16 97.34 20.59 77.92
S22 86.52 19.15 70.37 89.3 18.64 72.36
S23 85.65 19.63 61.56 96.35 7.94 64.09
S24 90.76 15.25 71.37 92.16 16.31 72.68
S25 87.33 20.58 73.38 97.69 22.33 81.95
S26 87.91 17.23 78.93 90.18 36.14 83.31
S27 89.78 15.95 71.84 96.08 28.24 79.59
S28 92.19 16.5 79.14 95.83 20 82.76
S29 92.37 13.27 76.15 95.79 12.24 78.66
S30 91.32 14.03 72.52 92.7 15.13 73.82
S31 91.95 16.27 80.71 92.19 17.91 81.15
S32 91.32 21.9 75.65 90.28 16.67 73.66
S33 100 0 64.89 90.41 11.39 62.67
S34 58.14 35 56.42 86.29 20 81.34
S35 83.3 29.76 74.62 88.68 17.07 77.08
S36 100 0 43.43 88.37 22.32 51.001
S37 83.62 17.22 71.61 92.02 22.22 79.4
S38 80 20.12 46.12 87.88 13.95 46.05

Average 90.02184 16.88132 71.03737 93.05658 21.64684 74.91082

5. Discussion and Conclusions

It is challenging to classify EEG data without an artifact removal process because drivers’ brain
activity can change over time due to many factors, such as their mental state and body movement,
which result in the temporal fluctuations of the EEG signals. However, there still contains important
information associated with the drowsiness level of drivers, and thus, the temporal analysis of the EEG
signals becomes a crucial issue. This study proposes a temporal EEG image algorithm that combines a
sequence of EEG images to form a new EEG image that contains brain dynamics from multiple time
points. Our experimental results show that the proposed method achieves good performance in the
drowsiness prediction.

Support vector machines (SVMs) are also employed for comparison with our approach because
they are popular classifiers for EEG analysis. In our experiment, the computational cost is expensive
and a bad prediction result is obtained if we use the EEG image as the input of SVM. Thus, the power
spectrum of EEG is selected as the input of the SVM. Similar to the experiment described in the previous
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sections, the input data do not apply any artifact removal process. The experimental results indicate
that SVM provides a biased prediction result towards the alert class. That is, it always predicts an alert
regardless of the input and results in a perfect detection of alert trials but no detection of drowsy trials.
We found that SVM only provides meaningful prediction results in a balanced training dataset that has
a similar number of alert trials and drowsy trials. In real-world applications, BCI systems usually have
to perform drowsiness prediction under imbalanced-datasets, which means that SVM cannot provide
reasonable reliability in real-world BCI applications.

To find a suitable CNN model for the drowsiness prediction task, this study introduces two CNN
architectures for further evaluation: (1) AlexNet—a very popular CNN architecture that is larger
than the CNN architecture used in this study [18], (2) 3D CNN—by performing 3D convolutions,
which is capable of learning features from both spatial and temporal dimensions. For AlexNet, the EEG
measurement is transformed into 227 × 227 to fit the input size of AlexNet. For 3D CNN, different from
our approach using a linear combination of a sequence of EEG images, these EEG images are directly
fed into the 3D CNN model since they are 3D input data. Our results show that both AlexNet and 3D
CNN cannot achieve better performance than the proposed CNN architecture in the present study.
That is, high-complexity CNN is not required for the drowsiness prediction task.

The detection of drowsy trials remains a challenge because different subjects have different
drowsy EEG patterns. A further investigation of brain dynamics is the key to improving the prediction
performance of the BCI system.
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