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Abstract 

Current practice in choosing training samples for landslide susceptibility modelling (LSM) is to 

randomly subdivide inventory information into training and testing samples. Where inventory data 

differ in distribution, the selection of training samples by a random process may cause inefficient 

training of machine learning (ML)/statistical models. A systematic technique may, however, 

produce efficient training samples that well represent the entire inventory data. This is particularly 

true when inventory information is scarce. This research proposed a systemic strategy to deal with 

this problem based on the fundamental distribution of probabilities (i.e. Hellinger) and a novel 

graphical representation of information contained in inventory data (i.e. inventory information 

curve, IIC). This graphical representation illustrates the relative increase in available information 

with the growth of the training sample size. Experiments on a selected dataset over the Cameron 

Highlands, Malaysia were conducted to validate the proposed methods. The dataset contained 104 

landslide inventories and 7 landslide-conditioning factors (i.e. altitude, slope, aspect, land use, 

distance from the stream, distance from the road and distance from lineament) derived from a 

LiDAR-based digital elevation model and thematic maps acquired from government authorities. 

In addition, three ML/statistical models, namely, 𝑘 -nearest neighbour (KNN), support vector 
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machine (SVM) and decision tree (DT), were utilised to assess the proposed sampling strategy for 

LSM. The impacts of model’s hyperparameters, noise and outliers on the performance of the 

models and the shape of IICs were also investigated and discussed. To evaluate the proposed 

method further, it was compared with other standard methods such as random sampling (RS), 

stratified RS (SRS) and cross-validation (CV). The evaluations were based on the area under the 

receiving characteristic curves. The results show that IICs are useful in explaining the information 

content in the training subset and their differences from the original inventory datasets. The 

quantitative evaluation with KNN, SVM and DT shows that the proposed method outperforms the 

RS and SRS in all the models and the CV method in KNN and DT models. The proposed sampling 

strategy enables new applications in landslide modelling, such as measuring inventory data content 

and complexity and selecting effective training samples to improve the predictive capability of 

landslide susceptibility models.  

Keywords: Landslide modelling; Sampling strategy; GIS; Hellinger distance; Outlier detection 

1. Introduction 

Landslide is a destructive natural geohazard that threatens human lives and affects infrastructures 

and the economy (Schlogel et al., 2015; Korup et al., 2012; Pradhan and Sameen, 2017). Although 

landslides cannot be fully avoided, building mitigation strategies and tools to reduce their impacts 

have been a useful research and industrial objective. As a result, several researchers and industrial 

authorities have been developing methods to predict landslides before they occur for improved 

planning and risk mitigations. According to international scientific indexing, landslide 

susceptibility modelling (LSM) (also known as spatial prediction) is a common procedure for 

landslide occurrence prediction. Guzzetti et al. (2006) defined landslide susceptibility as the 

propensity of an area to generate landslides. In this method, historical landslide events are collected 

and analysed thoroughly to prepare inventory datasets. The mapping units (e.g. grid cells and slope 

units) and scales are defined at this stage (Huabin et al., 2005; Rotigliano et al., 2012). Similarly, 

geospatial information including those collected by remote sensing and field surveys is used to 

obtain conditioning factors that can be used as predictors (also known as landslide predisposing 

factors, slope instability factors and general features) (Hussin et al., 2016). Thereafter, models are 

built using these inventory datasets and conditioning factors via machine learning (ML), statistical 
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or expert-based techniques (Pradhan et al., 2017). The created models are then used to simulate 

future scenarios.  

In practice, two main factors decide the accuracy of the LSM. First, the quality and quantity of 

landslide inventory records in a dataset. This factor includes the process of selecting 

training/testing samples. Second, the selection process of the hyperparameters, geometric 

properties and other configurations of the learning algorithm affects its performance. Most existing 

works have focused on the model development process, which involves adjusting hyperparameters 

or obtaining hybrid models created by combining several weak learners (Althuwaynee et al., 2014; 

Dehnavi et al., 2015; Aghdam et al., 2016; Althuwaynee et al., 2016; Hong et al., 2018; Pradhan 

and Sameen, 2018; Fanos and Pradhan, 2019). Other researchers have investigated different 

approaches to improving the performance of LSM (Nefeslioglu et al., 2008; Yilmaz, 2010; Hussin 

et al., 2016; Hong et al., 2018). 

Despite the efforts of many researchers to improve the existing LSM, the existing models often 

make unclear conclusions for the practitioners. The same model performs differently, and 

researchers arrive at inconsistent conclusions whilst analysing the same models on different 

datasets. In practice, the identification of a competitive algorithm for landslide modelling is a 

complex task mainly due to a large number of models. With all the provided information about the 

existing models, users have difficulty determining in advance whether a selected model will work 

appropriately. In landslide modelling, efforts have been made to identify algorithms that 

consistently perform well; however, sometimes less sophisticated methods perform better in some 

cases due to a different dataset or other hidden factors. It is then important to determine whether 

these less sophisticated methods can be optimised or training datasets should be transformed into 

other forms to obtain different scenarios. 

To address this issue, this study develops a systematic strategy for subdividing inventory samples 

into training and testing datasets. It is based on minimising the Hellinger distance calculated 

between the distribution of a training subset and the distribution of the entire inventory set. A new 

graphical representation of landslide inventory datasets is also proposed to improve the 

understanding of the landslide inventory nature. This process improves the learning and 

generalisation of the selected models. This study overcomes the previous shortcomings as it 
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provides tools to investigate and select effective training samples for training ML and statistical 

models for LSM development. 

This study uses three standard ML and statistical different algorithms, namely, decision tree (DT), 

support vector machine (SVM) and the k-nearest neighbour (KNN) classifier, to analyse and test 

the proposed methods. Before presenting the details of the current work, the next section discusses 

the related literature.  

2. Related literature 

Numerous algorithms have been utilised to prepare LSM. They are often categorised into expert-

based (Sezer et al., 2017; Ercanoglu et al., 2008; Althuwaynee et al., 2014; Hasekioğulları and 

Ercanoglu, 2012; Zhu et al., 2014; Pourghasemi et al., 2012; Ahmed, 2015), statistical (i.e. 

bivariate and multivariate) (Demir et al., 2015; Youssef et al. 2015; Mohammady et al., 2012; 

Pradhan et al., 2010; Cui et al., 2016; Zare et al., 2013; Erener et al., 2016; Pradhan and Lee, 2010; 

Umar et al., 2014; Youssef et al., 2015; Mousavi et al., 2015; Pradhan, 2010), ML (Yeon et al., 

2010; Pradhan, 2013; Chen et al., 2016; Park et al., 2014; Ren and Wu, 2014; Pradhan, 2013) and 

hybrid models (Althuwaynee et al., 2016; Sangchini et al., 2016). To improve these base models, 

researchers have tried various approaches. Methods such as integrating several individual models 

(Wen et al., 2016), optimising spatial resolution of conditioning factors (Schlögel et al., 2016), 

selection of suitable training samples (Nefeslioglu et al., 2008), optimising model’s 

hyperparameters (Jebur et al., 2014; Dou et al., 2015, Pradhan and Lee, 2010) and others have 

focused on the development of new models (Hoang and Tien Bui, 2016). 

To apply the above-mentioned modelling techniques, two basic datasets are needed: (1) landslide 

inventory and (2) landslide conditioning factors. The quality and characteristics of these datasets 

play a key role in training powerful models that can generalise to the spatial domain of the 

investigated areas. The following sections explain the effects of landslide inventory dataset and 

different sampling methods on the performance of LSM.  

The quality and quantity of the landslide inventory dataset play a major role in defining the 

accuracy of the LSM. In addition, the preparation procedure and pre-processing of inventory 

datasets remarkably affect the accuracy of LSM (Nefeslioglu et al., 2008, Rotigliano et al., 2011, 

Rotigliano et al., 2012, Conoscenti et al. 2016; Hong et al., 2018). The problems related to training 
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samples and their impacts on modelling performance are broadly discussed. This section reviews 

some related literature to identify the shortcomings and potential solutions that can be implemented 

to resolve the existing problems.  

Landslide inventory is usually created by analysing historical aerial photographs, satellite images, 

or field surveys using global navigation satellite systems (Mezaal et al., 2017; Pradhan et al., 2017). 

Hussin et al. (2016) suggested different strategies for mapping landslides such as (1) mapping the 

mass or scarp centre (a single pixel), (2) mapping all the pixels that correspond to a landslide 

boundary, (3) using the pixels that correspond to the mapped scarp and (4) the ones close to the 

scarp area denoting the line of landslide crown and (5) using the pixels that correspond to the 

landslide boundary with an added buffer zone. The latter strategy is widely used throughout 

literature and is found suitable for training ML and statistical models (e.g. LR, conditional 

probability (CP) and artificial neural networks (ANN)) (Nefeslioglu et al., 2008; Yılmaz, 2010). 

Yılmaz (2010) analysed the effects of different sampling strategies on the predictive performance 

of CP and ANN. The study suggested that adding a zoning buffer to a landslide boundary improves 

the accuracy of the mentioned models. By contrast, Regmi et al. (2014) found that creating 

landslide samples from the scarp centre yields the best accuracy amongst other strategies when the 

LR model is used.  

Landslide inventory preparation also includes collecting negative samples (pixels that correspond 

to non-landslide areas). In this regard, negative samples can be selected from randomly distributed 

circular zones, which have a specific diameter (e.g. equal to the mean width of the landslide source 

area), or from the grid cells without creating buffer zones (Conoscenti et al., 2016). However, no 

obvious conclusion is found to know which method will work best prior to model building and 

testing. After the inventory data are prepared, the standard process is to divide the data into 

training, validation and testing samples for the purposes of model development, optimisation and 

evaluation, respectively. In particular, constructing a training set from the entire inventory dataset 

is a challenge and greatly influences the performance of the models.  

A set of strategies for selecting training samples with regard to LSM is used in literature. The basic 

strategy is random sampling (RS) (Pradhan and Lee, 2010; Conoscenti et al., 2016; Erener et al., 

2017; Raja et al., 2017). The inventory dataset of 𝑁 samples is randomly divided into training 

𝑁𝑡𝑟𝑎𝑖𝑛 and testing 𝑁𝑡𝑒𝑠𝑡. The training dataset is further divided into training and validation samples 
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𝑁𝑣𝑎𝑙𝑑  in some cases. The latter is used to fine-tune the learning algorithms and to select the 

optimum settings. Although preserving the randomness in selecting training samples is an 

important property of any sampling strategy, RS does not guarantee selecting best subsets to train 

a model (Dhakal et al., 2000). The distribution of the training dataset should not vary too much 

compared with the entire set. The inconsistent results are mainly due to the differences in the 

training datasets created by a random process without investigating the properties of the created 

samples. To improve this approach, a stratified RS (SRS) is utilised (Marjanović et al., 2011; 

Dhakal et al., 2000). In this method, the observations belong to landslide/non-landslide targets that 

are kept as proportional as possible. Dhakal et al. (2000) found that SRS performs better than the 

purely random process of subdividing the inventory data into training and testing samples. Other 

methods include bootstrap resampling (Goetz et al., 2011), cross-validation (CV) (Goetz et al., 

2015) and a few special strategies (e.g. region partitioning) (Hong et al., 2018). 

In addition to the sampling strategy, the percentage of training/testing samples is found to be 

critical to LMS performance (Hjort and Marmion, 2008; Heckmann et al., 2014). The size of the 

training dataset should be determined by a systematic approach rather than a completely random 

process. The small size training dataset may not capture the spatial variability of the conditioning 

factors. By contrast, the training dataset of large size will more likely violate the independent 

observation assumptions because of spatial autocorrelation (Kalantar et al., 2018; Heckmann et 

al., 2014). In addition to the number of training samples, the quality of training samples also play 

a key role in determining the performance of the modelling algorithms. Methods such as 

Divergence, Transformed divergence, Bhatarchraya distance, Jeffries-Matusita distance, Wilk's 

Lambda, Hotelling's T-squared have been used to evaluate the quality of the training samples and 

subsequently select training/testing samples for modelling (Kalayeh and Landgrebe, 1983; 

Djouadi et al., 1990; Kavzoglu and Mather, 2002).  

Overall, apart from developing models with robust architectures and optimal hyperparameters, 

training data are also keys to obtain accurate and generalisable LSM tools. Selecting training 

samples that capture the distribution of the entire set is an important property that should be 

incorporated into the process of sample selection. Conclusions drawn on the basis of randomly 

selected test samples cannot be generalised because the characteristics of the selected dataset may 

favour certain models unnoticeably. A systematic approach for analysing training samples can 
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provide insights into the data characteristics and the performance of models from certain families, 

which can save time and computing resources. It also helps simplify the selection of a model 

immediately for practitioners. 

3. Methodology  

3.1 Case study and data used 

3.1.1 Study area 

Cameron Highlands is located in the north-central part of Peninsular Malaysia and is 

geographically located between latitudes 101°24'00''E and 101°25'10''E and longitudes 4°30'00''N 

and 4°30'55''N (Figure 1). The area is a tropical rainforest region and is approximately 200 km 

from Kuala Lumpur. This area was selected due to its frequent landslide occurrences (Khan, 2010), 

which have caused considerable damage to environments and properties, and the availability of its 

landslide inventory data. The lithology of the area mainly consists of Quaternary and Devonian 

granite and schist. The granite in Cameron Highlands is classified as megacrysts biotite granite 

(Pradhan and Lee, 2010). The area mostly has hilly landforms (land slope ranges from 0° to 78°) 

where the lowest and highest altitudes are 1,153 m and 1,765 m, respectively.  

3.1.2 Landslide inventory data 

The selected site occupies a surface area of approximately 25 km2. The landslide inventory data of 

this area were collected from the Department of Geological Survey. The data were prepared using 

multisource remote sensing images such as archived 1:10,000–1:50,000 aerial photographs, SPOT 

5 panchromatic satellite images and high-resolution orthophotos acquired by airborne laser 

scanning systems. Old landslides were validated by visual interpretation of aerial photographs, 

whereas fresh landslides were validated by field surveys. A total of 104 landslide locations were 

mapped in the study area, as shown in Figure 1. Most of the landslides are shallow rotational and 

a few translational in type. 

Landslide susceptibility modelling with machine learning and statistical methods also requires 

negative samples. In this research, the non-landslide points were selected as follows. We used 

landslide inventories as a guide to select these non-landslide points. The selection process was 

performed randomly, but any selected had to satisfy the following conditions. First, any non-
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landslide sample should be at least 500 meters away from landslides. Second, the distance between 

any two non-landslide samples must be greater than 100 meters. As a result, 208 sample points 

were prepared for further analysis including landslide (labelled 1) and non-landslide points 

(labelled 0).  

Figure 1. Location of the study area (part of Cameron Highlands, Malaysia) and the landslide 

inventory map. 

3.1.3 Landslide conditioning factors 

LiDAR point clouds were used to construct a very high-resolution (0.5 m) digital elevation model 

(DEM) of the area (Table 1). Seven conditioning factors were prepared from the derived DEM and 

thematic maps acquired from government agencies (Figure 2). From DEM, several 

geomorphological factors such as altitude, slope and aspect were obtained. The land cover map 

was prepared from SPOT 5 satellite images (10 m spatial resolution) using the maximum 

likelihood classification method. Then, 10 classes of land cover types were identified, including 

water bodies, transportation, agriculture, residential and bare land. The overall accuracy of the 

classified map was 87.20% and the Kappa index was 0.863, verified with field surveys. Lastly, 

distances to road, river, and lineament were calculated based on the Euclidean distance method 

using the thematic layers. These conditioning factors and the landslide inventories were 

geometrically calibrated and organised in a geodatabase file in GIS. 

Table 1. Information on LiDAR data collection mission. 

Figure 2. Landslide conditioning factors. 

3.2 Data pre-processing 

The landslide inventory data were pre-processed before using them in modelling experiments 

(Figure 3). Firstly, landslide records with missing values due to outside data coverage were 

removed. Three observations were removed. Secondly, the outliers (i.e. infrequent observations) 

were detected by Grubbs outlier detection tests (Grubbs, 1969). Lastly, the values of landslide 

conditioning factors were normalised using the min–max method with the following expression: 

𝑋′ =
max(𝑋) − 𝑋

max(𝑋) − min(𝑋)
                                                                        (1) 
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where 𝑋′ is the normalised value; 𝑋  is the original value; and 𝑚𝑎𝑥(𝑋)  and 𝑚𝑖𝑛(𝑋)  are the 

maximum and minimum values in the original data, respectively.  

Figure 3. Flowchart of the research methodology used to provide the landslide susceptibility 

map. 

3.3 Inventory information curve  

Inventory information curve (IIC) is a graphical representation of the information contained in an 

inventory dataset (𝐷). ICC is a plot of Hellinger distance calculated between the distribution of a 

training subset randomly drawn with incremental sizes (from a lower bound of 0.1 to an upper 

bound of 0.95) (𝑃) and the distribution of the entire inventory set (𝑃𝐷) versus training subset size 

(Equation 2). For a given inventory data set 𝐷 that contains landslide and non-landslide samples, 

firstly, 𝐾 ≤ 𝐷 random subsets are drawn from 𝐷 with landslide and non-landslide samples, with 

only landslide samples (𝐷𝑙) and with only non-landslide samples (𝐷𝑛). Secondly, for all the 𝐾 

subsets, the Hellinger distance is calculated between the subset and the entire set. Thirdly, the area 

under IIC (AUIIC) is calculated for the landslide curve, non-landslide curve, and their combined 

curve. Lastly, a line plot is produced showing the Hellinger distance curves plotted against the size 

of the training subset.  

𝐻2(𝑃, 𝑃𝐷) =
1

2
∫(√𝑝(𝑥) − √𝑝𝐷(𝑥))

2
𝑑𝑥                                      (2) 

3.4 Training sample selection 

For a given inventory dataset (𝐷 = {(𝑥𝑖⃗⃗  ⃗, 𝑦𝑖)|𝑖 = 1:𝑁}), to select a training subset (𝐷𝑡𝑟𝑎𝑖𝑛 ∈ 𝐷), a 

randomly 𝑛 <  𝐷𝑡𝑟𝑎𝑖𝑛  samples were selected, where 𝑛 is the initial sample size. Thereafter, a 

variable named ‘hellinger_distances’ was instantiated to store the Hellinger distances calculated 

between a progressive subset from the original dataset and 𝑋. To reduce the effect of feature 

interdependencies, 𝑋  is transformed by the min–max (Equation 1) method firstly and then 

independent component analysis method. The iterative process starts with the initial subset of size 

𝑛 and calculate the Hellinger distance between 𝑋𝑛 and 𝑋. This process continues for 𝑁 samples. 

Next, Hellinger distances were calculated for the instances of the initial subset. Accordingly, a 

lookup table with the indices of the original samples and their associated Hellinger distance is 

obtained. Thereafter, the observations in the lookup table are sorted on the basis of the ascending 
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value of the Hellinger distance. Lastly, the first 𝑁𝑠 samples were selected to create the training 

subset, whereas the remaining samples are returned as testing samples. The exact procedure is 

presented in Algorithm 1.  

Algorithm 1 

Procedure for selecting training samples.  

1. 𝐷-original dataset, 𝑁 is the size of 𝐷, 𝑁𝑠 is the training subset size, 𝑛 is the initial sample size. 

2. Set hellinger_distances = {} 

3. Extract 𝑋 and 𝑦 from 𝐷 according to the features names and target column.  

4. Scale 𝑋 with the min-max method and transform it with ICA to obtain 𝑋𝑠  

5. For 𝑖 : = 𝑛  to 𝑁 do 

            Set current_subset = 𝑋[: 𝑖] 
            Calculate current_hellinger_distance using Equation 2, takes (current_subset, 𝑋) as inputs 

            Append a new value (current_hellinger_distance) to hellinger_distances with key str (𝑖)  
6. For 𝑖 ∶=  0 to 𝑛 +  1 do 

            Set current_subset =  𝑋[𝑖: ] 
            Calculate current_hellinger_distance using Equation 2, takes (current_subset, 𝑋) as inputs 

            Append a new value (current_hellinger_distance) to hellinger_distances with key str (𝑖) 
7. Sort hellinger_distances ascending 

8. Calculate indices of 𝑁𝑠 training samples  

9. Calculate the rest of indices, being testing indices 

10. Create and Return 𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛 , 𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡 using training and testing indices and 𝑋, 𝑦 

 

3.5 Supervised classification 

3.5.1 Decision tree 

DT is a member of supervised tree-based models and classifies a given training set into 

homogenous subgroups by using constructed rules or decisions (Friedl and Brodley, 1997; 

Quinlan, 2014). The main goal of DT during the learning process is to achieve the maximum 

information and minimum entropy in the generated model. DT consists of nodes that stand for 

circles and branches that stand for segments connecting the leaf nodes, as its name suggests. The 

most common algorithm to implement DT is J48 (i.e. a slightly modified version of C4.5). It 

generates a classification–DT for the given dataset by recursive partitioning of data (Zhao and 

Zhang, 2008). It examines all the possible tests to select the best option to split the dataset by 

measuring the information gain or gain ratio, which is calculated as follows:  

𝐺𝑅 =
𝐼 (𝑆, 𝐴)

𝐸 (𝑆, 𝐴)
,                                                                (3) 
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𝐸 = −𝑝𝑝 log2 𝑝𝑝 − 𝑝𝑛 log2 𝑝𝑛,                                                  (4) 

where 𝐺𝑅 is the gain ratio, 𝐸 is the entropy, I is the information gain, S is a training set, A is an 

attribute, pp  is the proportion of positive examples in S  and pn  is the proportion of negative 

examples in S (Saghebian et al., 2014). 

 

3.5.2 Support vector machines 

SVM (Cortes and Vapnik, 1995; Vapnik, 1998) is a non-parametric ML algorithm that does not 

make any assumptions on training data distributions. In SVM, a hyperplane that acts as a decision 

surface is constructed. The margin of separation between two classes (landslides and non-

landslides) is maximised via optimisation processes. This goal is achieved by mapping the original 

feature space into a surface that has high dimensionality. The aim of this transformation is to allow 

the target classes to be linearly separable. The standard procedure of these transformations is 

performed by a method called kernel trick. Kernel functions such as radial basis function (RBF) 

and logistic functions are often used (Equations 5 and 6). The learning process of the SVM is 

performed by constrained optimisation. In our implementation, SVM parameters were selected via 

a grid search and a 10-fold CV process, which yielded the following best local parameters. The 

kernel function was RBF, a penalty parameter (also known as C) of 500, and a kernel parameter 

(i.e. gamma) of 0.15. The best SVM was used throughout the experiments. This study also 

presented the impacts of these parameters on the proposed IIC and the performance of the SVM. 

Details and further information on SVM are provided in (Matkan et al., 2014; Melgani and 

Bruzzone, 2004; Zhan and Shen, 2005; Pradhan and Sameen, 2018). 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒(−𝛾‖𝑥𝑖−𝑥𝑗‖
2
), 𝛾 > 0.                                                      (5) 

𝐾(𝑥𝑖, 𝑥𝑗) = tanh(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)                                                       (6) 

 

3.5.3 𝒌-Nearest neighbours  

KNN algorithm classifies an instance by a majority vote of its (𝑘) neighbours. In other words, the 

instance is assigned the most frequent class amongst the selected neighbours. The parameter 𝑘 is 

a positive integer and is often a small number. The selection of k depends on the data being used. 
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The rule of thumb is to select large 𝑘 values when data are noisy; otherwise, small k values are 

suggested. For binary classification, an odd number of 𝑘 can be helpful to avoid difficulties with 

tied votes. Proper validation methods, such as CV, should be used to select the best 𝑘 for KNN.  

3.6 LSM assessment  

The predictive ability of the classification methods is assessed using an 𝑛-fold cross validation and 

the area under the receiving characteristic curves (ROCs) (i.e. AUC for short). ROCs are a 

graphical representation of model success and predictive accuracies, whereas AUC is a 

quantitative measure that summarises the model performance. ROC is plotted as a scatterplot with 

a landslide susceptibility percentage (horizontal axis) and cumulative landslide occurrence 

percentage (vertical axis). AUC is calculated by a trapezoidal formula as follows: 

AUC =
1

2
∑(Ti+1 − Ti)(Ci+1 + Ci − 2B),                                                   (7)

n−1

i=1

 

where Ti is the ith percent landslide susceptibility, Ci is the ith cumulative percentage of landslide 

occurrence, n is the number of the percent landslide susceptibility index value and B is the baseline 

value (i.e. B is usually equal to zero). The area between the baseline and the curve is computed by 

Equation 1 to determine the performance of the landslide susceptibility model. 

4. Results and discussion 

This section presents the main findings and discusses the implications of each of them. This 

research was implemented with open source libraries such as Numpy, Scikit-learn and Pandas in 

Python. The source code is available upon a reasonable request from the corresponding author. 

The ArcGIS Pro 2.4 was used to prepare data and represent modelling results. 

4.1 Inventory Information Curve (IIC) 

Figure 4 presents IIC of Cameron Highlands dataset. The large training subsets taken from the 

entire set approximates the original distribution effectively. This case is obvious in IIC as indicated 

by the decreasing Hellinger distance and is observed for three target scenarios: the complete dataset 

with landslide and non-landslide samples (blue solid line), the dataset with only landslide samples 

(red solid line) and the dataset with only non-landslide samples (green solid line). The graphical 
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representation of the inventory data provides insights into the landslide (positive) and non-

landslide (negative) samples, and the entire dataset combines the observations from the two targets. 

The gradual decrease in Hellinger distance indicates that the general characteristics of the entire 

inventory data can be recovered with a relatively small number of training samples. However, the 

fluctuations in the curves imply that large amounts of data are needed to model the details 

precisely. The variations in the curves also suggest that the compositions of the individual subsets 

and the training set size considerably impact the Hellinger distance.  

The shape of IIC captures the information content presented in the inventory dataset. The very 

steep curve at the beginning indicates that the small training subsets have relatively different 

distributions compared with the entire set. As the curves flatten towards the end of the plot and 

become close to each other, the training subsets represent the original distribution relatively 

accurately. AUIIC can be calculated to summarise the information into a single parameter. AUIIC 

ranges from 0 to 1 and is a useful measure to describe the characteristics of training samples and 

its differences from the entire inventory dataset. It is also useful for comparing the characteristics 

of different inventory datasets.  

In our case, AUIIC for the landslide samples (0.216) is less than that for the non-landslide samples 

(0.275). The landslide samples are all collected from within landslide boundaries, whereas the non-

landslide samples are collected from the rest of the area (presents different features, e.g. buildings, 

trees and water bodies). As a result, the distribution of different individual landslide subsets is 

varied less than that for non-landslide subsets. This condition also suggests using additional 

samples from non-landslide areas particularly their selection and subdivision into training and 

testing sets may affect the evaluation process of LSM. Thus, a systematic approach to selecting 

training and testing samples is a critical step in achieving improved learning and accurate 

evaluations in LSM.  

Figure 4. Inventory information content curve for our dataset. 

4.2 Performance of LSM using IIC-based sampling 

The aim of these experiments was to determine the relationship of the variance error of the selected 

models (i.e. SVM, KNN and DT) with IIC curve. The models were trained with the same settings 

used to generate IIC curve. They were trained on random subsets with different sizes (10%–90%) 
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and tested on the entire dataset. The errors were calculated using the following expression 𝐸 =

 1 −  𝐴𝑈𝐶, where 𝐸 is the classification.  

Figure 5 presents IIC and error rate of SVM, KNN and DT. The error rate of the models decreases 

with the increase in training subset size. The average error of the models decreases from 

approximately 0.25 to 0.06 due to the increase in the training subset size from 0.1% to 0.9% of the 

entire dataset. The errors have a general decreasing curve; however, they present minimal 

variations when looking at the details. This general pattern and the details are represented relatively 

accurately by IIC. Therefore, IIC can be a useful tool to indicate the performance of the 

susceptibility models prior to their applications.  

Figure 5. Error curves of the KNN, SVM, and DT models overlaid with IIC.  

4.3 Impacts of hyperparameters 

This research analysed the relationship between the performance of the investigated modelling 

methods with different hyperparameter configurations and the Hellinger distance using IIC and 

AUIIC. The details are explained in the following sections. 

For KNN, the effect of the 𝑘 parameter is examined, which controls the number of neighbours to 

use when classifying an instance. Figure 6a shows the error rate of KNN classification with 

different values of the k parameter. The results indicate that the error rate decreases by increasing 

the training samples, but KNN with 𝑘 =  1 achieves the lowest error. The error curve of this 

scenario is the closest to the Hellinger distance curve. By contrast, the worst result is observed 

when 𝑘 =  2. The selection of 𝑘 depends on the size and distribution of training samples because 

different values of 𝑘  are found best for different training subsets. Thus, to achieve accurate 

predictions of landslide susceptibility with KNN, the value of 𝑘 should be carefully selected with 

the proposed IIC as a suitable guide. 

The maximum depth of a tree in DT plays a major role in determining its prediction accuracy. It 

controls the maximum depth of the tree that will be created. Alternatively, the longest path is from 

the tree root to a leaf. The results indicate that DT performs nearly similar with a maximum depth 

of 2 being the worst (Figure 6b).  
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Two parameters, namely, the penalty parameter (𝐶) and the kernel function, were explored for 

SVM. The 𝐶 parameter determines the effect of the misclassification on the objective function in 

the optimisation process. By contrast, the kernel function is responsible for transforming the space 

of original features into a space of a higher dimension. Kernel functions are keys to separate the 

nonlinearly separable instances in SVM. Our experiments reveal that the 𝐶 parameter has a greater 

influence than the kernel function on the performance of landslide prediction (Figures 6c and 6d). 

The best result is obtained when 𝐶 =  250 or 𝐶 =  500. No difference is found when linear or 

RBF kernels are used. The error of SVM is approximately 0.07 in both cases.  

Figure 6. Impacts of hyperparameters of the selected models on LSM performance and its 

relationship with IIC. 

4.4 Impact of noise and outliers 

Noise and outliers considerably impact ML and statistical models. However, not all the methods 

are affected by the same magnitude. Thus, investigating the impacts of noise and outliers on such 

models is important to improve LSM. Several experiments were conducted to understand the 

effects of artificial noise and outliers. The Cameron Highlands dataset was modified by 

introducing Gaussian noise (mean = 0, standard deviation = 1) and 1% of the factors values by 

multiplying them by a random number between −5 and 5.  

Figures 7a and 7b show IICs for the Cameron Highlands dataset and its modified version (noise 

added). The dataset with noise has a higher variance and is less regular than the curve of the 

original dataset. Adding noise to the dataset increases not only the variance but also AUIIC. 

Therefore, IIC has a strong relationship with the quality of the samples selected from the entire 

set. This information can be used to design effective samples for training LSM models and obtain 

insights into the dataset prior to the application of the algorithms.  

This study also explored the effects of adding noise to landslide inventory datasets on the 

performance of modelling algorithms (SVM, KNN, and DT). Figures 7c and 7d present the 

performance of the models with the original and noisy datasets. The results indicate that DT is 

highly affected by noise, whereas SVM and KNN have less sensitivity to the noise added to the 

dataset. The error of DT increases from 0.06 to 0.13. By contrast, the errors calculated for SVM 

and KNN with noisy data are found to be 0.08 and 0.05, respectively. These results suggest that 
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IICs are useful tools to explore the quality of the inventory datasets before developing the models 

and can be used to decide the family of the models according to the shape of the curves. For  

datasets with few variations and low AUIIC, models that are sensitive to noise such as tree-based 

methods (DT and random forests) may not be a good choice. In those cases, models such as SVM 

or ensemble models are suggested to reduce the impacts of noise and outliers.  

Figure 7. Impacts of noise and outliers on IIC and performance of KNN, SVM, and DT. 

4.5 Comparison with other sampling methods 

Various sampling strategies can be used in experimental studies regarding LSM. The most popular 

methods are RS, SRS and CV. RS divides the inventory data into training and testing subsets 

randomly with a given threshold. SRS is like RS, but the observations belong to landslide/non-

landslide targets that are kept as proportional as possible. Instead, CV divides the inventory data 

into k subsets. One of the subsets is kept testing the model while the remaining subsets are merged 

and used to train the model. This process is repeated for several iterations. It aims at a better 

evaluation of modelling methods with limited data and it generally results in a less biased model 

compare to other methods. To show the validity of our sampling strategy based on IIC, its 

performance was compared with those of the standard techniques. Table 2 summarises the 

performance of different models based on AUC and a test dataset that is unseen during the training 

process. The parameters of the models and the subset size were kept the same during the 

experiments to ensure a fair comparison. The results suggest that the selection of training samples 

remarkably affects the performance of the models. With results regarding SVM, CV and our 

method are far better than RS and SRS. SVM with the same hyperparameters (C = 250, kernel = 

‘RBF’) and a random seed (42) achieves improved predictive accuracy when CV and our methods 

are used to generate the training samples. The accuracy of SVM decreases to approximately 0.06 

when RS and SRS are applied. For KNN, the results indicate that this model has less sensitivity to 

the sampling method used. However, our method is stable and can achieve the highest accuracy of 

0.944 (±0.03). Similarly, analysing the results of DT reveals that this model is greatly affected by 

the sampling method. CV and ours achieve the best accuracies (0.933 and 0.978, respectively). 

Overall, the results of these experiments indicate the importance of utilising suitable sampling 

strategies whilst subdividing the inventory datasets into training and testing subsets. In addition, 
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CV and the proposed method can be an alternative to the classical RS methods, especially for SVM 

and DT. 

Table 2. Training and testing accuracies of LSM with different sampling methods. 

 

5. Conclusions 

The quality of landslide training samples play an important role in the performance of the 

susceptibility models. Selection of training samples with random processes does not guarantee the 

best models. This research studies the selection of training samples with a novel method based on 

Hellinger distance measurements which calculate the difference in the probability distributions of 

training subsets and the entire dataset. Experimental analyses were conducted to understand the 

properties of IIC and its use in selecting training samples for applying ML and statistical models 

for landslide susceptibility assessment. Experiments were also conducted to explain the impacts 

of model’s hyperparameters, noise and outliers on the performance of the selected models (KNN, 

SVM and DT), and the relationship between the error rate of these models and the shape of IICs. 

Furthermore, the proposed method was compared with other benchmark methods such as RS, SRS 

and CV. 

Results from this research indicate that the proposed IIC as a graphical representation of landslide 

inventory data provides insights into the landslide and non-landslide samples, and the entire 

dataset. This research also provided a parameter (AUIIC) that describes the characteristics of 

training samples and its differences from the entire inventory dataset. AUIIC is an important 

parameter to compare different inventory datasets and determine suitable training samples for 

certain susceptibility models. Our experiments on various models (SVM, KNN, DT) showed that 

IIC is a useful tool to approximate the predictive performance of the susceptibility models prior to 

their applications. This feature provides a cost-effective solution for model selection in landslide 

susceptibility assessment. The use of IIC also helped in selecting appropriate hyperparameters of 

the landslide susceptibility models. In another experiment, we introduced artificial noise to the 

landslide inventory dataset. The results indicated that adding noise to the dataset introduces high 

variance in AUIIC. The results also suggested that DT was affected by the artificial noise larger 

than the SVM and KNN models. The performance of our sampling strategy also proved to be better 
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than RS, SRS, and CV for the selected models as shown in the comparative studies conducted in 

the research.  

The performance of landslide susceptibility models is dependent on the number of training samples 

and their quality. This is more impactful when the training data is scarce. This is because the 

estimates of the first, second-order statistics cannot accurately represent all the information which 

is contained in the data. Inaccurate estimation of these data properties effect analysis of the data 

including modelling. Therefore, further studies should be conducted to improve our understanding 

on training data selection and estimation of the sample’s quality. New improved methods should 

be developed to predict in a statistically reasonable way the required number of training samples 

for ML and statistical models.  
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Figure 2. Location of the study area (part of Cameron Highlands, Malaysia) and the landslide 

inventory map. 
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Figure 2. Landslide conditioning factors. 
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Figure 3. Flowchart of the research methodology used to provide the landslide susceptibility 

map. 
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Figure 4. Inventory information content curve for our dataset. 
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Figure 5. Error curves of the KNN, SVM and DT models overlaid with IIC.  
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Figure 6. Impacts of hyperparameters of the selected models on LSM performance and its 

relationship with IIC for (a) KNN, (b) DT, (c) SVM penalty parameter, and (d) SVM kernel 

function. 
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Figure 7. Impacts of noise and outliers on IIC and performance of KNN, SVM and DT. 
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Table 1. Information on LiDAR data collection mission. 

Parameter Value 

Date January 15, 2015 

Average flight height 1,510 m 

Point density 8 points per m2 

Frequency rate 25,000 Hz 

Absolute vertical accuracy 0.15 m 

Absolute horizontal accuracy 0.3 m 
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Table 2. Training and testing accuracies of LSM with different sampling methods. 

Method 
Testing AUC 

SVM KNN DT 

Random Sampling 0.884 (±0.08) 0.938 (±0.12) 0.916 (±0.07) 

Stratified Random Sampling 0.887(±0.04) 0.942 (±0.06) 0.887 (±0.04) 

Cross-validation (10-fold) 0.943 (±0.04) 0.941 (±0.07) 0.933 (±0.05) 

IIC (this work) 0.913 (±0.01) 0.944 (±0.03) 0.978 (±0.03) 
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