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Abstract: The importance of three-dimensional (3D) point cloud technologies in the field of agriculture
environmental research has increased in recent years. Obtaining dense and accurate 3D reconstructions
of plants and urban areas provide useful information for remote sensing. In this paper, we propose a
novel strategy for the enhancement of 3D point clouds from a single 4D light field (LF) image. Using
a light field camera in this way creates an easy way for obtaining 3D point clouds from one snapshot
and enabling diversity in monitoring and modelling applications for remote sensing. Considering an
LF image and associated depth map as an input, we first apply histogram equalization and histogram
stretching to enhance the separation between depth planes. We then apply multi-modal edge detection
by using feature matching and fuzzy logic from the central sub-aperture LF image and the depth
map. These two steps of depth map enhancement are significant parts of our novelty for this work.
After combing the two previous steps and transforming the point–plane correspondence, we can
obtain the 3D point cloud. We tested our method with synthetic and real world image databases.
To verify the accuracy of our method, we compared our results with two different state-of-the-art
algorithms. The results showed that our method can reliably mitigate noise and had the highest level
of detail compared to other existing methods.

Keywords: 3D point cloud; light filed camera; 3D reconstruction; 3D modelling; three-dimensional
data; enhanced depth map

1. Introduction

In order to protect ecosystems, it is necessary to have strong environmental monitoring and
reliable 3D information in an agricultural context [1]. The issue of acquiring noiseless and complete
3D point clouds is of paramount importance to support a wide variety of applications such as the 3D
reconstruction of buildings [2], precision agriculture, road models and environmental research, which
are central in the fields of remote sensing and computer vision. Acquiring 3D data about buildings or
monuments in a city can be utilized for the analysis, description and study of 3D city modelling [3].
In fact, 3D information enables us to execute morphological measurements, quantitative analysis,
and annotation of information. Moreover, we can generate decay maps, which allow easy access and
research on remote sites and constructions. Generating 3D information for crops and plants can also
contribute to plant growth and harvest yield quantification for agriculture and production. This is
especially relevant to measure the effects of climate change on different land types [4]. The main aim of
this work is to create high quality 3D point clouds scanned with one snapshot from real objects for
the purpose of having 3D models of buildings, plants or any other real objects for remote sensing
and photogrammetry.
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A 3D point cloud can be obtained from various methods. Many existing methodologies for
reconstruction of 3D models are based on either Structure from Motion (SfM) or Dense Multi-View
3D Reconstruction (DMVR). However, these methods need multiple captures from different angles
and significant user interaction when using an ordinary camera. For this reason, recent research has
focused on the development of new strategies using less costly devices while continuing to minimize
complexity [5].

Given the current state-of-the-art, one very effective solution is to create 3D models from a single
image. A single conventional 2D image has limited information about the 3D nature of objects or scenes,
so accurate estimation of 3D geometry from a single image is difficult to achieve [6]. Nevertheless, light
field images, with the ability to capture rich 3D information with a single capture, offer an effective
solution to this problem. The introduction of light field cameras (a type of plenoptic camera) has
helped to reveal new solutions and insights into a wide variety of applications, including traditional
computer vision, image processing problems and remote sensing research. Light field cameras capture
rich information about the intensity, colour and direction of light, and can be used to estimate a depth
map or 3D point cloud from a single captured frame. Light field camera technology has the potential
to create 3D point cloud reconstructions in circumstances where standard multi-capture techniques
can fail, such as dynamic scenes or objects with complicated material appearance. The unique features
of light field images—e.g., the capture of light rays from multiple directions—provide the ability to
reconstruct 2D images at different focal planes. This feature can also aid in reconstruction of scene
depth maps [5]. A light field image can have multiple representations, but two LF representation
formats are more common for computer vision and image processing problems; the lenslet format and
4D LF format. In the work we report here, we used the 4D LF format as described below.

For the reconstruction of a 3D point cloud of an object, we developed a new method which is
based on the transformation of the point–plane correspondences. The input of our system is a 4D LF
image which can be captured by light field cameras, such as the Lytro Illum [7] or created synthetically.
The depth map of the LF can be produced by software bundled with the Lytro camera or similar
third-party software. Our method is agnostic to the source of the depth map data.

Estimating a densely sampled depth map is essential for creating a 3D point cloud, but the initial
depth map provided by commercial LF cameras such as the Lytro Illum is not accurate enough for 3D
reconstruction. Figure 1 shows the production of a 3D point cloud from an LF image, based on the
proposed method. We devised an approach to enhance the depth map by using an initial LF image
as an input image to substantially improve the quality of the recovered depth map. Figure 2 shows
the detailed block diagram of our proposed method. Specifically, our approach applied histogram
equalization and histogram stretching to the initial depth map. We then calculated the gradient of the
stretched depth map along the x and y axes separately by comparing the intensity of neighbouring
pixels and then, by using a fuzzy logic method, we computationally defined which pixels belonged
to the edge of a region of uniform intensity. This kind of edge analysis can improve depth map
estimation by leveraging pixel-wise classification, based on their colour mapping properties. In parallel,
we detected and extracted Speeded-Up Robust Features (SURF) from Canny edge detection performed
on the sub-aperture images of the LF and the original depth map. We then matched features between
the edges of the original depth map and the sub-aperture image, and we then added the matched
pixels to the edges determined by fuzzy logic analysis. For obtaining the final enhanced depth map,
we combined this edge with the equalized depth map by considering the level of the reference image
(depth map). We finally transformed the point-plane correspondences to acquire a 3D point cloud.
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This proposed non-linear method obtains edges of a depth map and sub-aperture images with
greater accuracy than what can be achieved by simply adding linearly the ordinary edge detection
information provided by Canny or Sobel filters that alone carry considerably greater noise. Hence, this
innovation in the enhancement of the recovered depth map from an LF image is a key contribution of
the work we report here.

Our main contributions are:

1. We acquire a 3D point cloud based on a single image from a light field camera, which provides
valuable information in the field of remote sensing.

2. We design a novel approach for enhancing depth maps based on feature matching and fuzzy
logic, which can overcome the common problem of introducing noise.

3. We develop a method for converting the enhanced depth map to a 3D point cloud.
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2. Related Work

Existing 3D reconstruction approaches can be divided into three different groups: methods based
on capturing multiple images, creating 3D point clouds based on Deep Learning and approaches based
on 3D reconstruction from a single image.

2.1. D Reconstruction from Capturing Multiple Images

In general, the reconstruction of 3D point clouds from multiple image captures of the same scene
is a computationally expensive process and requires significant user interaction. One of the common
methods in this field is Structure from Motion (SfM) which requires the capture of photos of a scene from
all feasible angles around the object, especially for fused aerial images and LiDAR (Light Detection and
Ranging) data. While the number of images captured with SfM methods is dependent on application,
for the same application, a light field approach still has the advantage of needing fewer captures to
achieve the same result. In addition, a light field approach has the advantage of working for applications
where objects being imaged are dynamic (such as the analysis of plant growth in situ or dynamic urban
environments such as streetscapes). Currently such applications represent extreme challenges for
SfM approaches. Pezzuolo et al. [8] reconstructed three-dimensional volumes of rural buildings from
groups of 2D images by using SfM methods. For working on unmanned aerial vehicle (UAV) images,
Weiss et al. [9] utilized RGB colour model imagery for describing vineyard 3D macrostructure based
on the SfM method. Bae et al. [10] proposed an image-based modelling technique as a faster method
for 3D reconstruction. For image capture, they utilized cameras on mobile devices. One of the benefits
of using image-based modelling is the accessibility of texture information that can enable material
recognition and 3D Computer-Aided Design (CAD) model object recognition [11,12]. Moreover, some
works used the reconstruction of 3D scene geometry for the purpose of control and management
of energy in the field of 3D modelling of buildings [13]. Pileun et al. [14] estimated the positions
and orientations of the object by using Simultaneous Localization and Mapping (SLAM). The 2D
localization information is utilized for creating 3D point clouds. This reduces the time of scanning and
requires less effort for collecting accurate 3D point cloud data but still needs user interaction.

2.2. Creating 3D Point Clouds Based on Deep Learning Techniques

Recently, approaches based on deep learning have drawn attention for solving many computer
vision problems. A wide variety of deep learning models have been developed to create 3D point
clouds but most of them require images capturing an object with an uncluttered background and
a fixed viewpoint [15]. Current techniques have limited application to real world objects. Yang et
al. [16] generated a point cloud based on a specific deep model named PointFlow. This model has
the advantage of having two levels of continuous flows for normalizing the point cloud. The first
level is for creating the shape and the second level is for distributing the points. For handling large
scale 3D point clouds, Wang et al. [17] developed a method based on the feature description matrix
(FDM), combining traditional feature extraction with a deep learning approach. As deep learning
alone is not efficient for creating a 3D point cloud, Vetrivel et al. [18] combined a convolutional neural
networks approach with 3D features to improve results. Wang et al. [19] used deep learning for fast
segmentation of 3D point clouds. They introduced a new framework called Similarity Group Proposal
Network (SGPN). However, this method is still not efficient for real world objects.

2.3. 3D Reconstruction from a Single Image Approaches

Creating 3D point clouds from a single image has received significant attention from the research
community. However, 3D reconstruction from a single projection still has many problems and is a
challenging topic. Mandika et al. [20] estimated 3D point clouds from a single input view by training
an auto-encoder to learn a mapping from 2D input images to 3D point clouds. However this type
of estimate is not very accurate and requires extensive training [21]. To overcome the drawbacks of
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estimation of 3D point clouds from a single capture, light field cameras have been proposed. Using
light field images as an input can lead to 3D point cloud estimates with low cost and complexity.
Perra et al. [5] used light field images as an input image to determine depth maps of scenes and then
estimated 3D point clouds. The depth maps that are automatically acquired from light field cameras
have some potential limitations when dealing with real objects such as having decreased efficiency
and accuracy for dense scenes. To tackle this problem, we propose a novel algorithm for enhancing
the depth map by adding multi-modal edge detection information, which provides more information
about the depth map. Moreover, compared to the Perra et al. [5] method, we used a transformation
method for converting the depth map to 3D, which is more reliable and does not need the segmentation
and extraction of occlusion masks required by their method.

2.4. Problems of Existing Approaches and Our Solution

Each of the three aforementioned method types have some limitations for creating dense and
accurate 3D point clouds and most of them require considerable effort to obtain 3D data. Methods that
make use of multiple images, such as SfM and SLAM, usually require finely textured objects without
specular reflections. Moreover, if the baselines used for separating the viewpoints are chosen to be
large, it causes many problems for feature correspondences on account of occlusion and changes in
local appearance [15]. For deep learning approaches, despite the recent favourable results of deep
learning models in some machine learning tasks, creating 3D point clouds remains challenging [16].
This difficulty can be attributed to the lack of order in the 3D point cloud, so no static structure of
the topology can be found for recognition and classification of the scene based on the deep learning.
This means it will be problematic to use deep neural networks directly on the point clouds because
points will not be arranged in a stable order like pixels are in 2D images.

Many attempts have been made to address the problem of 3D reconstruction from a single
snapshot, however, when those methods are applied on real images, they will suffer from a sparsity of
information. Since in the one snapshot there will be a single view of the image, some parts of the scene
will therefore be invisible. This shortage causes the generation of 3D point clouds to be problematic.
In contrast, we used a light field camera in this work, which by one snapshot provides multiple
sub-aperture images, providing sufficient data for depth map estimation. As a result, compared to
other single image methods, we can overcome the problem of this kind of deficiency. Moreover, we
enhanced the depth map in a novel, multi-modal fashion by extracting SURF features from central
sub-aperture matching and depth map images, and using fuzzy logic. This kind of enhancement
provides for our work a more accurate point cloud compared to other methods in this area, and also
makes the reconstruction of 3D point clouds much easier.

3. The Light Field Camera

In the field of environmental research, there are a wide variety of techniques trying to obtain
3D information about buildings and plants. Most of the previous techniques needed a high level of
methodological complexity, but with the emergence of light field cameras, many problems have now
been addressed in the areas of 3D modelling, measurement and monitoring. A light field camera, which
is a type of plenoptic camera that with one image capture through an array of micro-lenses, can collect
a wide variety of information about the colour, intensity and direction of light in a scene. This means,
instead of utilizing two or more single camera captures to increase the number of viewpoints, light field
cameras provide many viewpoints of a scene with a single snapshot and each such view is termed a
“sub-aperture image”. In contrast, in a traditional digital camera, the lack of data about the directional
intensity of light makes solving many problems of remote sensing and computer vision difficult.
An early light field camera was developed in 2005 and was called the Lytro [7], and a professional
version of the Lytro was introduced in 2014 (called the Lytro Illum). Light field cameras have several
features such as post-capture refocusing, depth map estimation and illumination estimation. In the
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field of remote sensing, light field cameras are also suitable for generating 3D information for different
kinds of monitoring applications, such as the monitoring of plant growth [1].

One of the significant features of light field cameras is shown in Figure 3, which shows post-capture
refocusing in two different focal planes. Refocusing allows for changing the focal plane to a different
position post-capture. This feature has a significant role in the generation of a depth map from a LF
image. A light field can be considered as a vector function I(u, v, s, t) between two planes (lens plane
and sensor plane) [22] where u and v are coordinates on the lenses plane and s and t are co-ordinates
on the sensor plane as shown in Figure 3.Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 17 
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micro-lens array.

An aligned light ray is determined in a system when it first crosses the uv plane (lens plane) at
coordinate (u, v) and then crosses the st plane (sensor plane) at coordinate (s, t), and can be encoded by
the function of I(u, v, s, t) [22]. Each position on the sensor plane can be modelled as a pinhole camera
viewing the scene from a position s, t on the sensor plane.

4. Proposed Method

In this work, we used a LF image and its depth map as an input image. Our approach is
based on transforming the point–plane correspondences on an enhanced depth map. Since having
an accurate depth map is of paramount importance to generate a complete 3D point cloud, we
improved the depth map in two different steps. In the first step, we applied histogram stretching and
equalization on the original depth map. In the second step of enhancement, we added multi-modal
edge detection information to the equalized depth map, then we acquired the 3D point cloud by
coordinate transformation.
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4.1. Histogram Stretching and Equalization

In the first step of enhancement, we applied histogram stretching and equalization on the original
depth map as one of the novel aspects of this work. Our input was an 8-bit grayscale 2D depth map
image, DM(u, v). In order to increase the distance between adjacent depth layers, we applied histogram
stretching and then on the result of the histogram stretching, we applied histogram equalization.
The equations below show the histogram stretching to improve the separation between the depth planes.

muv =
DMmax −DMmin

255
(1)

buv = 255−muv ∗DMmax (2)

HSuv = muv ∗DMuv + buv (3)

where DMuv is a 2D depth map image with a minimum value denoted as DMmin and a maximum
value denoted as DMmax and HSuv is the histogram stretched depth map. Then, we applied histogram
equalization on the result of the histogram stretching to spread the intensity values over full range of
the histogram image and for enhancing the contrast of the depth map [23].

Given the histogram stretched depth map HSuv, if we consider rk as the dynamic range of
intensities in the depth map, then the probability based on the histogram p(rk) can be calculated as
below:

p(rk) =
Total pixels with intensity rk

Total pixel in depth map HSuv
(4)

From this probability we can perform histogram equalization based on the below equation:

HQuv =
n∑

k=0

p(rk) (5)

where n is the number of pixels and HQuv is the result of histogram equalization.

4.2. Adding Edge Detection Information

The second step of enhancement was the most important part, where we added multi-modal edge
detection information. This is another significant and novel aspect of this work. We developed a new
strategy in this area, making use of the fuzzy logic-based edge information created from the depth
map and feature correspondence matching between sub-aperture images to create a multi-modal edge
estimation. This information was then combined to obtain a multi-modal edge detection. As a result,
this kind of edge detection was more reliable compared to ordinary edge detection because noise was
reduced compared to prior art edge detection methods such as Canny and Sobel. This means we
determined edges efficiently in a multi-model fashion, based on the depth map in conjunction with the
sub-aperture images, rather than selecting any edge which was created by current state-of-the-art edge
detection methods working on the sub-aperture images alone. The details of this development are
shown in Figures 4 and 5, which also show the steps required for improvement of the depth map.
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4.2.1. Fuzzy Logic

We found that a fuzzy logic approach can help us with detecting edges by comparing the intensity
of neighbouring pixels, and based on the gradient of the image, we can find which pixels belong to an
edge. This kind of logic is very helpful for depth map images because of the structure of level of depth
map is based on the gradients.

We first obtained the image gradients based on the convolution of the image to acquire a matrix
containing the u-axis and v-axis gradients of the depth map image.

For this purpose, we convolved the depth map HSuv with gradient operator, , using the convolution
method. The gradient values were in the [−1 1] range.

Gx = [−1 1], Gy= Gx́ (6)

Guv =
∑

u

∑
v

HS(u, v)G(x− u + 1, y− v + 1) (7)

Considering the gradients of the depth map as an input, we will create a fuzzy inference system
(FIS) for edge detection.
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FIS is made based on the decision of whether a pixel is belonging to an edge or not. Membership
functions are needed to define a fuzzy system. We defined a Gaussian membership function for each
input:

µuv = Gaussian(Guv) = e[−(Gmax−Gmin)
2/2σ2] (8)

where µuv is a Gaussian function, Gmax, Gmin are the maximum and minimum value of gradient and σ
is the standard deviation associated with the input variable.

Fuv defines the final pixel classification as edge or non-edge.

Fuv =

∑
u,v ∂cµuv(∂uv)∑

u,v µuv(∂uv)
(9)

where ∂uv are the fuzzy sets as a part of a fuzzy rule, similar to [24] and ∂c is the output class centre of
fuzzy rule. As a result, the final fuzzy edge is defined by Fuv where 0 indicates that the pixel is almost
certainly not part of an edge and 1 indicates that the pixel is almost certainly part of an edge.

4.2.2. Feature Matching

In the second step of enhancement we also in parallel extracted the SURF features of intermediate
results CSAuv (Canny edge detection for the central sub-aperture image) and CDEuv (Canny edge
detection of original depth map). Then, we matched the features and extracted features with higher
amplitude to add to the result of the edge detection using fuzzy logic.

For this purpose, we used the SURF detector for detecting features. The SURF detector extracts
features based on the Hessian matrix, which is determined at any point po = (u, v) and scale σ=1.2 as
the second order derivative of Gaussian filter.

Happrox(po,σ) =
[

Duu(po,σ) Duv(po,σ)
Duv(po,σ) Dvv(po,σ)

]
(10)

where Duu(po,σ), Duv(po,σ), Dvv(po,σ) are the convolution of the Gaussian second order at the point
of po = (u, v). This can be executed methodically if utilizing an integral image, as a result we calculate
the integral image for those two input images:

CSA(u, v) =
∑

0≤i≤u

∑
0≤ j≤v

CSA(i, j) (11)

CDE(u, v) =
∑

0≤i≤u

∑
0≤ j≤v

CDE(i, j) (12)

The determinant of approximate Gaussians can be presented as follows:

det
(
Happrox

)
= DuuDvv − (0.9Duv)

2 (13)

Therefore, the interest points, which includes their locations and scales, will be detected in
approximate Gaussian scale space [25].

For matching the features of those two images, we used the nearest neighbour method similar
to [25]. In this way, image CSAuv has n1 directed line segments and image CDEuv has n2 directed line
segments, and the nearest neighbour pair can be obtained by defining matrix K as below:

K(i, j) =
{

1 CSA is the nearest neighbor of CDE
0 otherwise

(14)

Then, we determined the features point with the highest amplitude from K(i, j).
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At the end of this step, we added the result of feature matching to the edge of fuzzy logic. As a
result, we will have a multi-modal edge detection that we called Intuv.

Intuv = |Fuv|+ |Kuv| (15)

In the next step, we added this edge detection to the equalized depth map by applying a median
filter, and the result will be saved in Tuv.

Tuv = Adding[ Intuv and HQuv] (16)

4.3. Creating 3D Point Cloud by Transforming the Point-Plane Correspondences

For estimation of the 3D point cloud, we needed to estimate Tz (the z component of each point at
position u,v) from which a point cloud can be created by transforming the point–plane.

For the points in the final point cloud, we started by selecting Tx = Tu and Ty = Tv, then for
computing Tz:

D = b ∗ f l ∗ f c (17)

Tz =
D

Txy ∗ f c ∗ b∗max
(
Txy

) (18)

where b is amount of the baseline, f l is the focal length and f c is the focus distance. The variable f l
is an intrinsic parameter and depends on the captured image. The variables b and f c are extrinsic
parameters and depend on the type of camera. The x and y coordinates of the point are then given by:

T́x =
Tx ∗ Tz

Se
(19)

´́
yT =

Ty ∗ Tz

Se
(20)

where Se is the sensor size (mm). We then denote the estimation of 3D point cloud by Txyz:

Txyz =
(
T́x , T́y, Tz

)
(21)

5. Experimental Results

We evaluated our method with three different databases and compared the proposed method
with two state-of-the-art methods, as described in further detail below. For assessing the accuracy of
our proposed method numerically, we used two different metrics: Histogram Analysis and LoD (Level
of Details), as shown in part 5.3.

5.1. Result on Databases

We utilized three different databases: one synthetic database and two real world light field image
databases. We tested our method with several images. For the synthetic database, we used a database
popularized by the research community, which was created by Honauer et al. [26]. For the real world
image databases, we used the real world LF database from JPEG (JPEG Pleno Database) [27], which
includes the result of their depth map estimation. We also used a third custom database of images
acquired using a Lytro Illum. For a more comprehensive evaluation, we captured images in different
situations, including images with shading, low-texture, and challenging images such as very bright
images and images with occluded pixels. Our method was tested on a wide variety of images, of which,
a sample of results on synthetic images is shown in Figure 1. Figures 5 and 6 are based on the JPEG
database. Figure 7 shows the result for images we captured using a Lytro Illum camera. Figure 8 is
another sample of JPEG database.
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Figure 6. Obtaining a 3D point cloud based on the JPEG real world light field image (Nature-Flowers).

5.2. Methods Compared

To illustrate the accuracy of our proposed method, we compared our result with the methods of
Perra et al. [5] and Dansereau et al. [28] for creating 3D point clouds based on depth maps. As shown
in Figures 7 and 8, we compared the output by our method with their data. We re-implemented the
method of Perra et al. in Matlab to compare its performance with our result. As seen in Figures 7 and 8,
because Perra et al. used Sobel edge detection for modifying their depth map, this kind of edge
detection will cause noise that appears as blue pixels in the image. For Dansereau et al. [28], we also
re-implemented just the 3D reconstruction part of their method in Matlab and evaluated their result
against ours. Another comparison on a challenging image is shown in Figure 7. We captured this
image with a Lytro Illum camera.
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5.3. Evaluation Methods

For evaluating the performance of 3D point cloud algorithms, we used two different metrics:
Histogram Analysis and Level of Details (LoD). These metrics assess the accuracy of a 3D point
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cloud by considering two important factors—density and distribution [29]. In this way, by analysing
the histogram we can assess the range of distance values of the 3D point cloud distribution and by
measuring LoD, we can evaluate the range of densities. We describe each part below:

Histogram Analysis: One significant factor for assessing the accuracy of the 3D point cloud is
evaluating the distribution of positions of pixels in the 3D point cloud by analysing the histogram [29,30].
A histogram of an image is a plot that indicates the distribution of intensities in an image. For a point
cloud, this concept can be extended to indicate the distribution of positions of points in the point cloud.
Ideally, for a dense, natural scene, the histogram of positions should have an even, flat distribution,
indicating details evenly distributed across all depths and directions. To compute histogram statistics,
we calculate the histogram of our 3D point cloud as well as histograms of two other state-of-the-art
methods. To increase the accuracy of the evaluation, we measured the histogram of the 3D point cloud
based on each dimension (X, Y and Z) along with the mean and standard deviation. Figure 9 shows
the histogram of 3D point clouds for the three different methods for a light field image that is captured
by a Lytro camera (Green. Figure 7). These histograms indicate the number of pixels in the image at
each different value of position relative to the centre of the viewpoint. In Figure 9, the first part (a)
corresponds to the histograms which are obtained from our 3D point cloud, and it is clear that the
range of positions of our 3D point cloud is higher and more evenly distributed than the other methods
compared, especially in the Z dimension.

In Figure 9b, the histograms from Perra et al. [5] are shown, which have a more even distribution
of positions compare to Dansereau et al. [28]. As a result, based on the histogram analysis, we can
confirm that for the factor of distribution, our 3D point cloud provides more favourable distribution of
positions compared to the two other methods.

Level of Details: One of the significant factors for evaluating the amount of density of a 3D
model is measuring the level of detail [31]. In computer graphics, the level of detail is defined as
the number of vertices (or faces) that generate an object. The level of detail influences the density of
the 3D model [31]. Therefore, having a higher number of vertices or surfaces means having higher
density, which creates a more complex and potentially informative surface [5]. Moreover, sometimes
level of detail is utilized to indicate the number of needed polygons for describing an object. The
information about the LoD will be obtained from the 3D mesh. For this purpose, we write the 3D point
cloud to PLY (Polygon File Format) format for the calculation of mesh data. Then, we calculated the
number of vertices and surfaces for each object. For comparing the LoD of our 3D point cloud with
the two other state-of-the-art methods, we have chosen some light field images as an input and after
converting the 3D point cloud to PLY format, we obtained the LoD properties. Table 1 shows the result
of LoD information for the three different 3D model of light field images. It can be seen that the result
of our method produced a higher number of vertices and faces compared to the two other methods.
As a result, our method can create a denser 3D point cloud. We have done this experiment in several
light field images and in all experiments, the amount of density in our method was higher than those
two methods. It should be noted that LoD can be increased by the addition of noise, however the
results of the histogram analysis in the previous section show that our approach produces a more even
distribution of point cloud positions, which is not what one would expect if our approach was simply
noisier than other approaches.
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(Figure 7). (a) Shows the histograms obtained from our 3D point cloud method. (b) Indicates the
histograms of Perra et al. [5] method for creating 3D point cloud and (c) shows the result of Dansereau
et al. [28]. From the figure it is obvious that the histograms of our method (a) have a more favourable
distribution of positions, especially in Z dimension, compared to the two other methods.

Table 1. Numerical evaluation of 3D point cloud based on LoD ([number of vertices], [number of faces]).

Light Field Image Perra et al. [5] Dansereau et al. [28] Our Method

Buildings-Black-fence. Figure 8 [65,264] a, [12,6970] b [62,215] a, [123,056] b [70,568] a, [139,452] b

Nature-Flowers. Figure 6 [84,729] a, [165,584] b [72,980] a, [141,069] b [98,245] a, [192,874] b

Green. Figure 7 [72,548] a, [142,309] b [73,415] a, [145,977] b [82,579] a, [161,231] b

a number of vertices, b number of faces.

6. Discussion

The experimental results were evaluated visually and statistically, as explained in Section 5.
We tested our method with several light field images and from the results we can show that our 3D
point cloud is more accurate and has less noise due to our modification of the depth map in two
different steps. We solved the problem of pixel distribution in the first step of the modification by using
histogram stretching and equalization. Furthermore, we solved the problem of density by using special
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edge detection compared to using any current state-of-the-art methods for adding edges. We showed
that by using fuzzy logic we could choose some special edges in a multi-modal fashion by comparing
the intensity of neighbouring pixels. Our proposed approach is also novel because it employs parallel
processing to improve what is conventionally achieved in generating a raw depth map from the
Lytro camera. Unlike previous methods, the method involves a dual-enhancement approach that first
computes the fuzzy logic orientation field computed from the histogram equalized sum of depth map
and central sub-aperture images. The alternative phase of our approach is to determine the Canny
edge response to the central sub-aperture image and the LF depth map, which are then computed for
SURF features and combined together through feature matching and merged with the result of the first
orientation field computation phase. This newly proposed approach was found here to generate 3D
point clouds for the purpose of remote sensing which were superior in detail and clarity, compared
with the conventional approaches for generating a 3D point cloud from the depth map of a LF alone.

7. Conclusions

We have generated a 3D point cloud based on one light field image. For this purpose, we propose
a modified two-step depth map approach for increasing the accuracy of the depth map estimation
for the generation of a 3D point cloud by transformation of the point–plane correspondences. In the
first step, we used histogram stretching and equalization which can improve the separation between
the depth planes, and in the second step, we developed a new strategy for adding multi-modal edge
detection information to the previous step using fuzzy logic and feature matching. In this work,
we utilized a light field camera which can be useful for remote sensing applications such as generating
a 3D point cloud for agriculture monitoring and monitoring of plant growth. We have chosen our
images of buildings and plants to show some applications of our work in the area of remote sensing
and environmental research. The results confirm that our method can generate 3D point clouds with
improved accuracy compared to other state-of-the-art methods, and our modified depth map ensures
an improved result. In future work, we will consider the performance of our model using objects with
complicated material appearances which are more challenging to scan into 3D point clouds.
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