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Abstract 12 

Rockfall is a common phenomenon in mountainous and hilly areas worldwide, including 13 

Malaysia. Rockfall source identification is a challenging task in rockfall hazard assessment. 14 

The difficulty rise when the area of interest has other landslide types with nearly similar 15 

controlling factors. Therefore, this research presented and assessed a hybrid model for rockfall 16 

source identification based on the best tested stacking ensemble model of random forest (RF), 17 

artificial neural network, Naive Bayes (NB) and logistic regression in addition to Gaussian 18 

mixture model (GMM) using high-resolution airborne laser scanning data. GMM was adopted 19 

to automatically compute the thresholds of slope angle for various landslide types. Chi-square 20 

was utilised to rank and select the conditioning factors for each landslide type. The best fit 21 

ensemble model (RF–NB) was then used to produce probability maps, which were used to 22 

conduct rockfall source identification in combination with the reclassified slope raster based 23 

on the thresholds obtained by the GMM. In the meantime, landslide potential area was 24 

structured to reduce the sensitivity and noise of the model to the variations in different 25 

conditioning factors for improving its computation performance. The accuracy assessment of 26 

the developed model indicates that the model can efficiently identify probable rockfall sources 27 
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with receiver operating characteristic curve accuracies of 0.945 and 0.923 on validation and 28 

training datasets, respectively. In general, the proposed hybrid model is an effective model for 29 

rockfall source identification in the presence of other landslide types with a reasonable 30 

generalisation performance. 31 

Keywords: Rockfall; Debris flow; Hybrid model; LiDAR; Gaussian Mixture Model 32 
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1 Introduction 35 

Rockfalls are common natural hazard in many places worldwide, including Malaysia with high 36 

and steep terrain with presence of discontinuities (Simon et al. 2015). This phenomenon affects 37 

transportation ways, communication and urban areas that are situated near steep mountainous 38 

and hilly areas. The hazard of rockfall is increasing in mountainous regions due to the growth 39 

of population and economic activities (Fanos and Pradhan 2018). Rockfall can be defined as 40 

separate boulders released from a cliff with different motion modes: flying, bouncing, rolling, 41 

or sliding (Vernes 1984; Pradhan and Fanos 2017a). Such events can cause serious causalities 42 

because they are difficult to be predicted and can move rapidly depending on the geometric 43 

and geomorphologic characteristics of the moving block.  44 

Considerable research has been performed on rockfall hazard around the world including 45 

identification of rockfall source areas (Fanos and Pradhan 2016; Losasso et al. 2017), 46 

prediction of rockfall trajectories (Pellicani et al. 2016; Fanos et al. 2016), probability 47 

assessment (Gigli et al. 2014), analysis of rockfall runout distance (Fanos et al. 2016), 48 

evaluation of rockfall bounce height and velocity (Giacomini et al. 2016) and risk analysis 49 

(Mitchell and Hungr 2016;  Pradhan and Fanos 2017b).  50 

In particular, identification of rockfall source areas is required in the assessment of rockfall 51 

probability and risk because it controls the trajectory of rockfall. Rockfall sources can be 52 

identified through in-situ survey or rockfall inventory dataset. Nevertheless, such techniques 53 

are costly, time consuming and require experts in this field who are only few in number. In-54 
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situ and inventory data are also usually unavailable or incomplete in space and time for several 55 

regions (Kromer et al. 2017). The availability of geographic information system (GIS) data and 56 

accurate 3D surface models has enabled the development of many approaches for rockfall 57 

source identification (Loye et al. 2009; Lan et al. 2010; Massey et al. 2014). Existing methods 58 

rely on the identification of slope angle threshold angles that are considered unstable. For 59 

example, a threshold of >49° was used by Lopez-Saez et al. (Lopez-Saez et al. 2016), whereas 60 

>60° was utilised in (Corona et al. 2013). Moreover, recently developed approaches rely on 61 

slope geometry derived from LiDAR point cloud and other conditioning elements, such as 62 

slope, aspect, curvature, block type and landuse, by using statistical, probabilistic and machine 63 

learning methods (Guzzetti et al. 2003). In Dickson et al. (2016), identification of unstable 64 

rocks was conducted using photogrammetric survey in composite construction regions. Many 65 

controlling factors of rockfall movement along slope were assessed by Agliardi et al. (2016). 66 

The results showed that rockfall source areas cannot be easily identified because they are 67 

controlled by different factors. More recently, Mote et al. (2019) proposed a method for 68 

rockfall risk assessment through the characterization of rockfall source areas. They considered 69 

the continuous cliff bands with slope steeper than 45° as rockfall source areas. Their result 70 

shows that rockfall sources are key element in rockfall risk assessment and designing a 71 

mitigation process. However, such method is critical to obtain a realistic result as it is restricted 72 

to cliff face and rockfall source areas are controlled by additional conditioning factors. 73 

Landslides probabilities are controlled by various conditioning factors including 74 

morphological, hydrological, geological, and anthropogenic factors. However, each factor has 75 

different relative significance to landslide probability and considering a big number of 76 

conditioning factors could lead to a negative impact on landslide probability modelling thus 77 

producing an unrealistic result. On the other hand, structural and geotechnical, such the bedrock 78 

setting, the spatial frequency of discontinuities (fractures, cracks, and joints), the spatial 79 
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orientation of the families of discontinuities also influence the landslide probability mapping. 80 

However, such information demands an extensive field geomechanical surveys which are 81 

costly and time consuming. In addition, such in-situ surveys are hard to be performed in 82 

regional scale study (wide area). This study focus on using LiDAR-based landslide 83 

conditioning to examine the performance of laser scanning data for landslide probability as 84 

alternative of structural and geotechnical factors. 85 

Machine learning techniques, which have become common approaches for modeling landslide 86 

susceptibility over large regions. The basic assumption of the empirical approach is that future 87 

landslides are likely to occur in similar conditions of the past (Fanos and Pradhan 2016). 88 

Algorithms, such as random forest (RF) (Youssef et al. 2016; Chen et al. 2018), artificial neural 89 

network (ANN) (Pradhan et al. 2014; Truong et al. 2018), Naive Bayes (NB) (Pradhan et al. 90 

2014; Pham et al. 2016) and logistic regression (LR) (Bui et al. 2016; Lombardo and Mai 2018) 91 

have been widely employed for landslide probability modelling. On the other hand, ensemble 92 

methods have been quite exercised in other fields, nevertheless, the application of these 93 

techniques in the assessment of rockfall issues is still rare (Truong et al. 2018). However, the 94 

use of ensemble models can improve the result of landslide probability mapping (Evans and 95 

Hudak 2007; Chen et al. 2018).  96 

Kinta Valley is one of the main districts in Malaysia. The bedrock geology for Kinta Valley 97 

and surrounding areas are granitic hills, limestone bedrock, and mine. As a result, a lot of 98 

engineering geologic issues have been encountered Kinta Valley and its immediate 99 

surroundings, involving rockfalls, debris flow, and shallow landslides. The bedrock of 100 

limestone in Kinta Valley rises over the alluvial plains forming limestone hills with vertical to 101 

sub- vertical slopes (Simon et al. 2015). 102 

 103 
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The aforementioned studies have made remarkable attempts to propose approaches that can 104 

precisely allocate rockfall sources by photogrammetry or with LiDAR data. However, one 105 

issue still not considered which is where the analysis area includes other landslide types with 106 

nearly the same controlling conditioning factors such as shallow landslide, rockfall and debris 107 

flow. Although Fanos et al (2018) tried to identify rockfall source areas using an individual 108 

machine learning algorithm. Whereas, ensemble models can produce better accuracy. The 109 

optimization of the model hyper-parameters was nor performed. In addition, the slope 110 

thresholds were determined based on the inventory dataset not on the morphological units of 111 

the slope. Therefore, the current research proposes a hybrid model designed for rockfall source 112 

identification based on LiDAR dataset in such conditions (the presence of other landslide 113 

types). The proposed model uses three algorithms, namely, Gaussian mixture model (GMM) 114 

and stacking random forest (RF) coupled with Naive Bayes (NB) (RF–NB). Kinta Valley 115 

encountered several landslide incidents including roclfall, shallow landslide, and debris flow. 116 

Thus it was selected to evaluate the proposed hybrid model. 117 

 118 

2. The Characteristics of the Study Area  119 

The study area is located at Kinta Valley in the West of Malaysia (Figure 1), which is situated 120 

approximately 200 km north of the capital city, Kuala Lumpur. The study area is located 121 

approximately between the northeast corner (101°5'30'' E, 4°34'50'' N) and the southwest 122 

corner (101°10'45'' E, 4°30'40'' N). The study area consists of various landuse features, such as 123 

urban, grassland, peat swamp forest, oil palm forest and shrub. The extension of the study area 124 

is (5 * 5 km) with landslide density of (2.28 event/km²). 125 

  126 



 6 

The humidity at the study area is relatively high (approximately 82.3%) throughout the year, 127 

and the temperature lies between 23 °C and 33 °C (The Meteorological Service Department of 128 

Malaysia). The average annual rainfall in Kinta Valley is 323 mm.  129 

The geological setting of the Kinta Valley is completely varied with a high percentage of 130 

igneous rocks. However, sedimentary (limestone) and metamorphic rocks (marble) are 131 

profusely present in the district. However, the selected area contains only limestone. Several 132 

faults exist in the study area (Pham et al. 2016). limestone hills prone to landslides incidents 133 

because of the presence of extensive fractures and joints that can be easily triggered by various 134 

factors, such as water saturation. The faults can also increase the potential of landslides 135 

occurrences as they triggering earthquakes. Consequently, Kinta Valley has encountered many 136 

landslide events including shallow landslide, rockfall and debris flow. 137 

 138 

Fig. 1 Study area, Kinta Valley, Malaysia 139 

 140 
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3. Materials and Methods 141 

3.1 The Used Datasets 142 

The main dataset of this research contained laser scanning data. High-resolution LiDAR point 143 

clouds were gathered using an airborne LiDAR system (RIEGL) in 2015 with a flight height 144 

of 1000 m. Consequently, high-density point clouds were produced with around 10 pts./m². 145 

The collected dataset was processed through GIS to perform filtering and interpolation 146 

processes. Processing must be applied to the gathered point clouds to eliminate noises and 147 

outliers and produce a precise DTM for extracting the conditioning factors of rockfall.  148 

The inventory dataset of landslides is a fundamental element in the assessment of rockfall 149 

source areas. This dataset was prepared from different sources including field surveys, remote 150 

sensing and historical records. High-resolution aerial photos (0.1 m) that captured during the 151 

collection of LiDAR data were utilised for the optical observation of previous landslide events 152 

in the study area. Field measurements were also performed using a GNSS system to gather the 153 

locations of landslides that occurred underneath vegetated areas or in regions invisible in the 154 

aerial photos. This process was conducted using a Global Navigation Satellite System with 155 

real-time corrections. Consequently, 87 landslides (28 shallow landslides, 39 rockfall and 20 156 

debris flow), as well as their correlated attributes, were obtained for the assessment (Figure 1). 157 

The inventory dataset was divided into two groups (training and testing) to assess the accuracy 158 

of the proposed hybrid model. Thus, 70% of the inventory dataset was used to build the model, 159 

and the remaining data (30%) were used for validation. The dataset was divided into two group 160 

randomly insuring the distribution of each group on the whole study area and each group 161 

contains all landslide types. 162 

3.2 Deriving of DTM 163 
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The collected raw data contained ground and up-ground points. Therefore, a filtering algorithm 164 

must be used to eliminate the up-ground points for obtaining an accurate DTM. The LiDAR-165 

based DTM should be constructed accurately to extract accurate conditioning factors (Chen et 166 

al. 2017). Several approaches have been proposed to perform this process. The current study 167 

used an algorithm proposed by (Messenzehl et al. 2017) called multi-scale curvature algorithm 168 

(MCC) executed within GIS environment. This algorithm can derive an accurate DTM in urban 169 

areas with different natural and man-made features (Pham et al. 2017). The terrain details 170 

(sharply cut terrains) are essential to rockfall source identification; thus, the window size 171 

number should be selected carefully to retain these details (Brenning 2005). Therefore, a 172 

particular algorithm was developed to automatically update the number of window sizes for 173 

maintaining the details of terrain.  174 

The optimal settings of MCC parameters rely on many elements, such as point cloud density, 175 

terrain characteristic and the slope interpolation resolution (Chen et al. 2017). Consequently, 176 

the MCC parameters of curvature tolerance threshold, scale domain number and convergence 177 

threshold were set to 0.3, 3 and 0.1, respectively. After the up-ground points were eliminated 178 

through filtering, the inverse weighted distance interpolation technique was used to generate 179 

the DTM from the remaining points. Given that the spacing of points was 0.4 m, the DTM was 180 

generated with a resolution of 0.5 m. The statistical analysis of the collected point clouds based 181 

on root mean square error revealed vertical and horizontal accuracies of 0.15 and 0.3 m, 182 

respectively.  183 

3.3 Preparing of Landslide Conditioning Factors 184 

The source areas of rockfall cannot be assessed on the basis of a certain factor (Agliardi et al. 185 

2016). Thus, the present research used many conditioning factors such as hydrological, 186 

morphological, soil and anthropogenic factors to identify the rockfall sources in Kinta Valley. 187 
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Many factors were extracted from LiDAR dataset, aerial photos and the databases of 188 

government agencies.  189 

Morphological factors (altitude, slope, aspect and curvature) were extracted from the produced 190 

0.5 m DTM and GIS spatial analysis tools. The highest altitude in the current research was 375 191 

m, whereas the lowest altitude was 37 m (Figure 2a). Slope, which is a major factor that 192 

controls rockfall, was utilised (Figure 2b). The aspect ratios were from 0° to 360°, which 193 

represent the direction of slope from the north in a clockwise direction (Figure 2c). The second 194 

derivative of the DTM was used to calculate the curvature factor (Figure 2d). The curvature 195 

controls the flow divergence and convergence across a terrain and the deceleration and 196 

acceleration of downslope flows. Therefore, this factor affects deposition and erosion.  197 

The topographic roughness index (TRI) is a key hydrological factor that affects landslides 198 

(Figure 2e). This factor can be calculated using Equation 1: 199 

TRI =  √max2 − min2 ,                (1) 200 

where max is the highest cell value in the nine rectangular neighbourhoods of altitude and min 201 

is the minimum value.  202 

In the meantime, anthropogenic factors involve landuse/land cover (LULC) and distances to 203 

road. Other factors such as distances to stream (derived from a topographic layer) and 204 

lineament (derived from an existing map) were also considered in this study. Geological factor 205 

is not considered in this research because of the selected study area contains only one type 206 

(limestone). Thus, this factor has no impact on landslide probability mapping. In addition, the 207 

focus of the current research is on examining the performance of LiDAR deriving landslide 208 

conditioning factors. This can increase the generalization of the proposed methods and reduce 209 

the model sensitivity to the variation on the conditioning factors. The LULC layer was 210 
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produced using classified SPOT 5 satellite images with supervised SVM approach 211 

(Department of Survey and Mapping Malaysia). Field survey was performed to verify the 212 

LULC layer. The landuse map was classified into nine classes: water body, river, 213 

transportation, residential building, other buildings, cemetery, forest, mixed vegetation and 214 

open land (Figure 2f). Euclidean distance method was used to calculate the distances to road 215 

(Figure 2g), river (Figure 2h) and lineament (Figure 2i).  216 

Sparsely vegetated areas are more prone to landslide incidents than forests. In the current 217 

research, vegetation density was utilised as one of the factors for the rockfall source 218 

identification. This factor was derived from SPOT 5 satellite images.  Four classes were 219 

produced: dense vegetation, moderate vegetation, low vegetation and non-vegetation (Figure 220 

2j). Overall, 10 conditioning factors were included in the modelling of rockfall source area 221 

identification. Soil texture (Figure 2k) consists of three different types (rocky loam, silt/clay, 222 

and loam). This factor is also considered in this research. 223 
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 227 

Fig. 2 Landslide conditioning factors 228 

3.4 The Developing of the Proposed Hybrid Model 229 

This research presents a hybrid model based on two algorithms, namely, ensemble stacking 230 

(RF–NB) and GMM, which involved many processing steps, as shown in Figure 3. The major 231 

datasets used in this research were landslide inventory map, GIS layers and a DTM derived 232 

from airborne LiDAR point clouds. The landslide inventory dataset was utilised to train various 233 

ensemble machine learning models and validate the hybrid model. GIS layers including LULC, 234 

vegetation density, soil texture, lineament, river and road were adopted to obtain the remaining 235 
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conditioning factors. The high-resolution DTM was produced using LiDAR point clouds for 236 

extracting many factors such as slope, aspect, altitude curvature and TRI. 237 

The first processing step is to determine the slope angle threshold of each landslide type 238 

automatically based on slope geomorphological units. GMM was run using the slope data that 239 

derived from the generated DTM to identify these thresholds. The second step is to determine 240 

the best conditioning factors that can identify variance landslide types, including rockfall. This 241 

process is performed using Chi-square model as a factor optimisation approach. Consequently, 242 

the relevant factors of each landslide type are determined. This process aims to reduce the 243 

number of factors for decreasing the time of computation and improving the generalisation 244 

capability of the proposed model. The use of only the best factors enables to improve the 245 

performance by eliminating redundant and noise information. Thereafter, stacking (RF–NB) 246 

model is trained with the inventory data and the selected factors. The stacking (RF–NB) model 247 

predicts the landslide probabilities in consideration of the landslide types in the study area. On 248 

the other hand, the landslide potential area was constructed. Consequently, a binary raster is 249 

generated to reflect the regions that are probable (class 1) and not probable (class 2) to 250 

encounter rockfall. This raster is produced through integrating two reclassified elements: slope 251 

and landuse. Considering that the study area has encountered many landslides types, the 252 

thresholds of slope angle obtained through GMM are used to reclassify the slope raster. The 253 

slope raster is reclassified accordingly after the thresholds are estimated automatically. In the 254 

meantime, the landuse raster is classified into two classes by integrating water bodies, stream, 255 

cemetery, residential building, transportation and other buildings in one class, and the other 256 

class contains the remaining classes (forest, vegetated area and open land). The two reclassified 257 

elements are integrated to produce the landslide potential area. This process is advantageous 258 

because it reduces the sensitivity of the model to the spatial variance in conditioning factors of 259 

landslides. In addition, it allows to filter-off the regions with no possibility of landslide. After 260 
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the thresholds of slope angles are estimated by the GMM method and the likelihood landslide 261 

occurrence, the probable source regions can be identified through geoprocessing steps in 262 

ArcGIS. Lastly, the remaining data in the inventory dataset are used to validate the obtained 263 

results for demonstrating the performance of the proposed ensemble model. The stacking 264 

ensemble models were implemented using Python, whereas the GMM was run using Matlab 265 

R2016b. The proposed hybrid model was performed in ArcGIS 10.5 environment. 266 

 267 

Fig. 3 Flowchart of the proposed hybrid model 268 

3.5 Determination of slope thresholds 269 
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The distribution of slope angle can be represented in many Gaussian distributions that can 270 

reflect the morphological characteristics, such as rock cliff, steep slope, moderate steep, foot 271 

slope and plain. A slope is rated as a probable rockfall source area where the slope angle lies 272 

over a particular threshold of slope angle, which can be defined through the Gaussian 273 

distribution of the morphological unit (rock cliff becomes predominant over the steep slope). 274 

GMM comprises 𝑘 multivariate components normally used as a parametric model for the 275 

distributions of landslide probability given by the following equation (Tien Bui et al. 2018): 276 

𝑝(𝑥| ⋋) = ∑ 𝑤𝑖 𝑔(𝑥|𝜇𝑖, ∑  
𝑖

 

𝑘

𝑖=1

),              (2)  277 

where 𝑥 is d-dimensional features, 𝑤𝑖, 𝑖 = 1, … , 𝑘, are the mixture weights and 𝑔(𝑥|𝜇𝑖, ∑ ), 𝑖 =𝑖278 

1, … , 𝑘, are the component Gaussian densities. Each component density is a d-variate Gaussian 279 

function of the form 280 

𝑔(𝑥|𝜇𝑖, ∑) =
1

(2𝜋)
𝐷
2 |∑  𝑖 |

1
2

𝑒𝑥𝑝 {−
1

2
(𝑥 − 𝜇𝑖)

′ ∑ (𝑥 − 𝜇𝑖)
−1

𝑖
},                  (3)

𝑖

 281 

with mean vector 𝜇𝑖 and covariance matrix ∑  𝑖 . The mixture weights satisfy the constraint that 282 

∑ 𝑤𝑖 = 1.𝑘
𝑖=1  283 

The GMM parameters were computed on the basis of the training dataset by using the iterative 284 

expectation–maximisation algorithm.  285 

3.6 Ensemble Machine Learning Models 286 

Machine learning algorithms provide better results for landslide identification than other 287 

probabilistic methods. In the last decades, machine learning algorithms have been used 288 

effectively in identifying probable landslide areas (Brenning 2005; Evans and Hudak 2007; 289 
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Scrucca et al. 2016). Methods, such as RF (Trigila et al. 2003; Chen et al. 2018; Segoni et al. 290 

2018; Fanos et al. 2018), logistic regression (LR) (Catani et al. 2005; Pradhan et al. 2014; Bui 291 

et al. 2016), artificial neural network (ANN) (Manzo et al. 2013; Chen et al. 2017; Pham et al. 292 

2017) and NB (Chen et al. 2017, Lombardo and Mai 2018), are popular and widely applied 293 

machine learning algorithms for landslide probability and produce high accuracy. However, 294 

existing methods for the modelling of landslide probability prove that the forecasting of 295 

landslide probability can be improved using hybrid machine learning algorithms (Fanos et al. 296 

2018). Thus, new hybrid machine learning models for landslide probability should be 297 

developed. 298 

The current research partially fills this gap in literature through proposing a new hybrid 299 

machine learning model for the probability modelling of different landslide types. Stacking is 300 

a machine learning ensemble approach. Contrary to other ensemble models, stacking can create 301 

a strong learner from weaker ones with better tuning in the search for landslide probability 302 

modelling processes. In comparison with other ensemble models, stacking also requires lesser 303 

running time and computational resources for training, optimisation and validation (Alves 304 

2017). In this research, different stacking models, namely, (RF–ANN), (RF–NB), (RF–LR), 305 

(ANN–NB), (ANN–LR) and (NB–LR), were optimised and trained on the basis of the 306 

inventory data and the obtained conditioning factors. The hyperparameters of the used machine 307 

algorithms were firstly optimised using the grid search optimisation approach (Kotthoff et al. 308 

2017). Then, the best fit stacking ensemble model (RF–NB) was utilised to derive the 309 

probability maps of different landslide types. The model was run with 174 samples of the 310 

inventory dataset (87 landslides and 87 non-landslides). 311 

4 Results and Discussion 312 

4.1 Slope thresholds  313 
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The slope angles distribution of various landslide types are presented in Figure 4 based on the 314 

inventory data. Various landslide types had occurred at various slope angles, which indicates 315 

the potential to identify and recognise the source areas of these types through the GMM. The 316 

figure also demonstrates that rockfall incidents had occurred at the highest slope angle range 317 

(45–75°). Shallow landslide incidents had occurred within the slope angle in the range from 318 

23° to 43°. By contrast, debris flows had occurred at the lowest slope angle range (15°–25°). 319 

The thresholds of slope angle depend on the variation in slope angle distribution in a particular 320 

region. Thus, the GMM was used to evaluate the ability of determining the thresholds, and the 321 

slope angles were fine tuned in an unsupervised way via the GMM algorithm. Consequently, 322 

rockfall could be distinguished from other landslide types automatically on the basis of the 323 

slope angles. 324 

 325 

Fig. 4 Distribution of slope angle for various landslide types in the training dataset 326 

The thresholds of slope angles derived via the GMM is illustrated in Figure 5. They included 327 

five components determined on the basis of the geometric unit of slope terrain. Thresholds 328 
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were calculatedwithout the label (landslide type). In other words, it is unsupervised process. 329 

The mean values (μi) of the five components were obtained as follows: 1.46°, 6.23°, 16.43°, 330 

43.21°, 66.31° and 47.22°. Thereafter, the normal values were defined depending on the μi 331 

values in consideration of the standard deviation and mean values of the dataset. This way 332 

could determine the efficient thresholds of slope angles. After the slope angles were plotted 333 

against the normal values, the effective thresholds of slope angles could be identified through 334 

the intersection of curves (slope terrain type), as illustrated in Figure 5. For example, the 335 

efficient threshold for debris flow was specified through intersecting the curves of foot slopes 336 

with moderate slopes and moderate slopes with steep slopes. This procedure resulted in an 337 

effective slope angle in the range from 9° to 23°. For shallow landslide, the effective slope 338 

angle threshold was determined by intersecting the curves of moderate slopes with steep slopes 339 

and steep slopes with cliffs. Consequently, the effective slope angle threshold ranged from 23° 340 

to 57°. By contrast, the efficient threshold of rockfall was identified via intersecting of steep 341 

slopes with cliffs and above. Therefore, the final threshold was chosen as > 57°. 342 

 343 

Fig. 5 Effective thresholds of slope angles determined through GMM 344 
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4.2 Results of Factors Optimisation 345 

Table 1 shows the estimated ranks of the conditioning factors accounting for the different types 346 

of landslides, particularly the key factors (α < 0.05) (aspect, slope, curvature, TRI, landuse, 347 

distance to lineaments, distance to streams, distance to roads and vegetation density). Chi-348 

square model accuracies (areas under curve (AUC)) are shown with the best conditioning 349 

factors. Regarding rockfall, the best five conditioning factors were observed as slope, TRI and 350 

distances to lineament, road and stream. However, vegetation density, curvature and aspect 351 

were found less significant for the prediction of the rockfall occurrence probabilities in the 352 

study area.  353 

Table 1 Factor ranking by Chi-square 354 

Factor Shallow Rockfall Debris Flow Overall 

Aspect 1 9 4 4 

Slope 5 1 8 5 

Curvature 8 8 7 8 

TRI 6 2 3 2 

Landuse 4 6 9 7 

Distance to lineaments 9 3 6 3 

Distance to streams 2 5 5 9 

Distance to roads  3 4 1 1 

Vegetation density 7 7 2 6 

AUC 0.79 0.94 0.88 0.85 

 355 

4.3 Results of Stacking Ensemble Models 356 

The best conditioning factors were derived for each landslide type in the previous section. 357 

Consequently, different stacking ensemble models were developed on the basis of machine 358 

learning algorithms (RF, ANN, NB and LR) for the prediction of landslide occurrence 359 

probability in the study area. These models were trained with the best conditioning factors and 360 
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the inventory dataset. The success rate curve (ROC) and the prediction rate curve (PRC) were 361 

used to assess the performance of each stacking ensemble model. The best fit stacking 362 

ensemble model (RF–NB) was used to derive the probability maps of each landslide type. 363 

Figure 6 illustrates the generated probability maps. The probability map is raster with spatial 364 

resolution of 0.5 m which is the same resolution of the generated DTM.The probability maps 365 

reflect that shallow landslides could occur in the east of the area. However, higher probability 366 

was observed in the steep terrain than in low-slope regions. Some portions in the south and 367 

northwest could experience shallow landslides. Figure 6a shows the highly susceptible regions 368 

for shallow landslides, which are marked in red colour. In the meantime, the northwest and 369 

northeast regions were predicted as highly prone to rockfall. The regions of steep cliffs with 370 

high slopes had high probability to encounter rockfall (Figure 6b). Furthermore, the middle 371 

towards eastern portions of the study area had high probability to encounter debris flow, 372 

particularly the areas with the low slope angle of < 23° (Figure 6c).  373 
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 374 

Fig. 6 Probabilities of different landslide types 375 

Thereafter, the slope raster was reclassified using the effective thresholds of slope angles to 376 

create the landslide potential area raster. A raster with two classes, namely, high potential and 377 

less potential of encountering landslides, was obtained. The raster considered landuse and slope 378 

angle. The northeast portion, which has steep slopes, was more prone to landslides than others. 379 

In general, 24% of the study area could encounter landslides. The next sections demonstrate 380 

the results of the developed model to classify these regions depending on the landslide types 381 
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and transform the probability raster into source areas by utilising the effective thresholds of 382 

slope angles. 383 

4.4 Results of Accuracy Assessment of the Ensembles Models  384 

The proposed ensemble model was validated using Receiver Operating Characteristic (ROC) 385 

and precision recall curve (PRC). ROC and PRC explain the known landslide percentage that 386 

lay on the rank of the probability level and show the graph of cumulative frequency (Evans and 387 

Hudak; Chen et al. 2018). The ROC was produced using the landslide inventory dataset for 388 

training, whereas the PRC was produced using the validation landslide dataset. Moreover, the 389 

area under curve (AUC) was adopted to assess the accuracy of the tested ensemble models for 390 

producing the landslide probability maps; high accuracy is achieved when the area is large 391 

(Pradhan et al. 2010; Hong et al. 2015; Wen et al. 2016; Park et al. 2018). 392 

Amongst the tested stacking ensemble models, stacking (RF–NB) was found as a best fit model 393 

for producing landslide probabilities (Table 2). The highest ROC was found for rockfall 394 

(0.935), followed by that for debris flow (0.881). The highest PRC was obtained for rockfall 395 

(0.913), followed by that for debris flow (0.859). The model showed the lowest ROC and PRC 396 

of 0.805 and 0.797, respectively, for shallow landslides. In general, the proposed model showed 397 

weighted averages of 0.889 and 0.856 for ROC and PRC, respectively. The lowest performance 398 

accuracy was obtained from the stacking (NB–LR) model with three landslide types. In 399 

addition, the stacking (RF–LR) model also proved to be a good ensemble model for predicting 400 

landslide probabilities. However, the proposed stacking (RF–NB) ensemble model could be 401 

considered an efficient tool because the accuracy assessment revealed an excellent 402 

performance of the proposed model based on the validation and training data. Moreover, the 403 

model generalisation was expected to be excellent because the PRC of rockfall was higher than 404 

that of ROC accuracy, especially in areas with nearly the same characteristics as the tested 405 
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area. Nevertheless, the accuracy of model performance is also affected by the number of the 406 

landslide inventory samples. A realistic model accuracy and result can be achieved with a big 407 

number of inventory samples for training and testing dataset. On the other hand, small number 408 

of inventory dataset can lead to unrealistic result even with high accuracy achieved through 409 

training process. Therefore, the better accuracy achieved in this study is with rockfall dataset 410 

due to the big number of inventory samples in comparison with other landslide types. In 411 

addition, the lack of the spatial frequency of discontinuities (fractures, cracks, and joints) did 412 

not affect the accuracy of the proposed model as it achieved a high accuracy especially with 413 

rockfall.  414 

Table 2 Accuracy assessment of the proposed model 415 

Stacking 

Model 

Debris Flow Rockfall Shallow Landslide 

ROC PRC ROC PRC ROC PRC 

RF–ANN 0.820 0.753 0.809 0.785 0.735 0.713 

RF–NB 0.881 0.859 0.935 0.913 0.805 0.797 

ANN–NB 0.795 0.813 0.754 0.739 0.705 0.689 

RF–LR 0.857 0.839 0.874 0.853 0.743 0.755 

NB–LR 0.703 0.675 0.734 0.715 0.659 0.627 

ANN–LR 0.751 0.719 0.795 0.773 0.685 0.667 

 416 

4.5 Identification of Rockfall Sources  417 

The estimated landslide probabilities could be transformed into the source regions by using the 418 

efficient thresholds of slope angle derived through the GMM. Subsequently, the reclassified 419 

slope raster based on the obtained threshold (>57°) was intersected with the rockfall probability 420 

raster within GIS environment to create the probable rockfall source regions. Figure 7 shows 421 

the predicted areas of potential rockfall. These regions had steep cliff with other analysed 422 

elements (slope components). The model prediction accuracy could be evaluated by 423 
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determining locations of the recorded rockfall incidents. Most of the historical rockfall 424 

incidents (91 %) were accurately predicted through the developed hybrid model. The model 425 

predicted that 3.5% (around 0.55 km2) of the area is susceptible to rockfall. The regions that 426 

were predicted to be susceptible to rockfall were also investigated through in-situ survey. Many 427 

locations were observed to be sensibly predicted as high potential regions to rockfall. These 428 

regions were mainly formed by steep cliff surrounded by vegetated areas (Figure 7).  429 

 430 

Fig. 7 Identified rockfall source areas using the proposed ensemble model 431 

5 Conclusions 432 

This research developed an ensemble model using two algorithms, namely, GMM and stacking 433 

ensemble model based on RF and NB, to identify rockfall source regions in the presence of 434 

other landslide types (shallow landslide and debris flow). The GMM model was used to 435 
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determine the effective thresholds of slope angle for different landslide types and construct the 436 

landslide potential area raster. In the meantime, the best landslide conditioning factors were 437 

selected through the Chi-square method. Various ensemble models were developed on the basis 438 

of different machine learning algorithms (RF, ANN, NB and LR). The best fit ensemble model 439 

(stacking RF–NB) was used to produce the probability maps. The binary slope raster created 440 

through GMM was intersected with the rockfall probability map.  441 

The developed ensemble model performed well with training and validation regions chosen at 442 

Kinta Valley. The model showed accuracies of 0.935 and 0.913 on training and validation 443 

datasets. For shallow landslide and debris flow, the proposed ensemble model provided 444 

accuracies of 0.805 and 0.881 on the training dataset and 0.797 and 0.859 on the validation 445 

dataset. Overall, the proposed ensemble model showed excellent average accuracy on all the 446 

landslide types in the inventory dataset. The model achieved weighted average accuracies of 447 

0.889 and 0.856 on the training and validation datasets, respectively. Since the proposed model 448 

achieved a good accuracy, it proves that the conditioning factors derived from LiDAR can be 449 

used as an alternative of the geomechanical factors, such as discontinuity and fractures. 450 

The major contribution of this study is the development of a hybrid model can predict the 451 

probable rockfall source regions accurately in the presence of other landslide types. However, 452 

additional assessment can be performed to improve the computing performance and accuracy 453 

of the proposed model for predicting a particular landslide type in the existence of other types 454 

in complex regions.  455 
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