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rural districts of the province.

Background: Recent reports of the National Ministry of Health and Treatment of Iran (NMHT) show that Gilan has a
higher annual incidence rate of leptospirosis than other provinces across the country. Despite several efforts of the
government and NMHT to eradicate leptospirosis, it remains a public health problem in this province. Modelling
and Prediction of this disease may play an important role in reduction of the prevalence.

Methods: This study aims to model and predict the spatial distribution of leptospirosis utilizing Geographically
Weighted Regression (GWR), Generalized Linear Model (GLM), Support Vector Machine (SVM) and Artificial Neural
Network (ANN) as capable approaches. Five environmental parameters of precipitation, temperature, humidity,
elevation and vegetation are used for modelling and predicting of the disease. Data of 2009 and 2010 are used for
training, and 2011 for testing and evaluating the models.

Results: Results indicate that utilized approaches in this study can model and predict leptospirosis with high
significance level. To evaluate the efficiency of the approaches, MSE (GWR =0.050, SYM =0.137, GLM=0.118 and
ANN = 0.137), MAE (0.012, 0.063, 0.052 and 0.063), MRE (0.011, 0.018, 0.017 and 0.018) and R* (0.85, 0.80, 0.78 and

Conclusion: Results indicate the practical usefulness of approaches for spatial modelling and predicting leptospirosis.
The efficiency of models is as follow: GWR > SVM > GLM > ANN. In addition, temperature and humidity are investigated
as the most influential parameters. Moreover, the suitable habitat of leptospirosis is mostly within the central
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Background

Since the discovery of leptospira in the body of Japanese
mine workers over a hundred years ago, human lepto-
spirosis has been treated as a “neglected tropical disease”
worldwide [1]. Reports of World Health Organization
show that annual incidence rate of leptospirosis per 100,
000 people varies from 0.1 to 1 in temperate regions and
10-100 in humid regions and over 100 in tropical areas.
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Global report of the disease reveals that over 1 million se-
vere cases take place annually with approximately 60,000
fatalities [2]. As a Zoonotic disease, it occurs in tropical
and sub-tropical areas with high humidity [3]. This disease
is caused by leptospira bacteria which live in the urine of
mammals such as rodents [4]. Human infection from
leptospirosis occurs through direct or indirect contact
with infected animals or environment [5]. Several contrib-
uting factors are contemplated for the incidence of lepto-
spirosis including geographical location with frequent
rainfall and floods, adjacency to mammal reservoirs and
human activities [6]. One of the most important reasons
of leptospirosis mortality is its resemblance to other
diseases such as influenza and dengue fever [7]. Indeed,
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underestimating its infectiousness and loss of timely diag-
nosis give rise to fatality [8].

Rafyi and Magami in 1968 confirmed the first report
of human leptospirosis in Iran, but no definite report
has been made about the current status of human lepto-
spirosis distribution in the country [9]. Human lepto-
spirosis, an endemic disease in Caspian region, is more
widespread in Gilan Province because of humid and wet
climate [3]. In addition, high population densities of
rural districts, farmlands (often paddy fields) and fishing
activities help propagate the prevalence of leptospirosis
in Gilan. Amongst provinces, the annual incidence rate
of leptospirosis in Gilan is always the highest. In this re-
gion, most farmers keep domestic animals in their houses
and irrigate their farms using river resources, where the
population of leptospirosis-contaminated rodents is abun-
dant [9]. Hence, modelling and predicting leptospirosis
will help policy makers to better understand the disease,
prioritise regions and budget for early prevention or treat-
ment and provide accurate planning. It will help the
government policy makers ease the burden of medical and
health care expenditure on the province.

Several studies were made on modelling leptospirosis
worldwide [10-13]. Many studies elucidated the effect of
drivers such as precipitation [14, 15], temperature [16, 17],
humidity [18, 19], elevation [20] and vegetation [10, 21]
on the distribution of leptospirosis because its prevalence
highly depends on environmental factors. However, most
studies focused on clinical aspects of the disease and
animal type of leptospirosis. Based on literature review
and to the best of our knowledge, papers rarely worked on
spatial modelling and predicting human leptospirosis
utilising Geographical Information System (GIS) and its
approaches [11, 12].

GIS is a powerful tool that its capabilities have been
already proven in various fields of studies such as disease
[22-24] and environment [25-27]. In disease problems,
GIS can play a major role in showing how the disease
propagates and finding the parameters that affect its
prevalence [28]. The advantages of GIS have been proven
in developed countries, but it is rarely employed for health
issues in developing countries such as Iran [29, 30].

Given that the heterogeneity relationship between the
disease and effective parameters, some methods should
be utilized to consider heterogeneity [31]. Geographically
weighted regression (GWR) is a common approach that
can solve the heterogeneity by considering variability of
coefficients in diverse locations across the study area
[32]. An advantage of GWR is considering the location
of parameters as input to improve spatial prediction cap-
ability and reduce heterogeneity effect. GWR is an effi-
cient approach for modelling in various fields of study
[33-35], especially disease modelling and predicting.
However, GWR is a linear method that cannot consider
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the nonlinear behaviour of the phenomenon. Owing to
high capability in solving nonlinear problems, Artificial
Neural Network (ANN), a widely used approach in dis-
ease prediction, is selected to predict leptospirosis
disease [36—39]. Another approach used in this study is
General Linear Model (GLM), which is a statistical
model commonly used in modelling and predicting
diseases [40]. It utilizes the polynomial regression to
investigate the relationship between dependent and in-
dependent variables [41]. Also, SVM, a supervised clas-
sifier, is used as a novel machine learning method
which can be used for classification and in regression
analysis [42]. The SVM classifier takes a set of input
dataset and predicts the class of each input data which
is used in various medical issues [30, 43] .

This study aims to model and predict human leptospir-
osis in Gilan Province of Iran, using capabilities of GWR,
GLM, SVM and ANN approaches. Background section
provides knowledge about leptospirosis and the reasons of
its prevalence based on previous studies. Methods section
explains how data are prepared and asserts fundamentals
about utilized approaches. Results section presents the re-
sults of models. Discussion section interprets data ally with
analysing the information which can be obtained from the
results of the models in detail. The final section describes
the conclusions of the study and indicates future work.

Methods

Study area

Gilan, a northern province of Iran, ranks second in rice
cultivation. Figure 1 depicts the geographical location of
Gilan at 48°53'-50°34" longitude and 36°34'-38°27" lati-
tude. It consists of approximately 2.531 million inhabitants,
107 rural districts and 14,042 km? area. It stretches across
Alborz Mountains with dense forests in the south (high-
lands) and Caspian Sea in the north (lowlands). In this
study, modelling is performed at the rural district level, and
the centroids of the rural districts are considered as the
base level for analysis. These centroids are selected as the
points to which all parameters are allocated. Notably, the
centroids are the geometric centres of polygons of the rural
districts. The mean, maximum and minimum area of the
rural districts are 129,253,376 m?, 441,566,882 m” and
113,055,500 m?, respectively.

Data acquisition and preparation

The input parameters utilized in this study are disease,
climate, topography and vegetation data collected from
relevant organisations in Iran (Ministry of Health and
Meteorology Agency) from 2009 to 2011. The popula-
tion data of rural districts used in this study are gathered
from the National Centre of Statistics of Iran, and these
data are updated every 5 years by this organisation
across the country. The latest updated population data
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at the rural district level of Gilan, which included the
population size of different divisions of the country separ-
ately, are used in this study. The data in 2009 and 2010
are used for modelling, and the models are assessed by the
data in 2011. All data are prepared and integrated using
ArcGIS 10.2 and Microsoft Excel 2010 for further analysis.
To avoid very large or small weights, the input data are
normalised between [0,1] using Eq. (1) [44].

Normalized (x) = (%i~Xomin) /
xmax_xmin)

where x; denotes the input parameter; x,,;, and x,,,, are

minimum and maximum values of x;, respectively.

Disease data
All villages in Iran are covered by the well-founded Na-
tional Health Care Network (NHCN), which is sponsored
by National Ministry of Health and Treatment of Iran.
The disease data (positive results of ELISA' blood test of
patients) are gathered from database of NHCN and Health
Centres (HC) of Gilan. The spatial distribution of the dis-
ease throughout the study area is illustrated in Fig. 2.
Incidence rate measures the frequency of disease occur-
rence in the population over a specified time. The major

"Enzyme-Linked ImmunoSorbent Assay

advantage of calculating incidence rate is the omission of
the effect of population on disease prevalence across the
study area. To eliminate the effect of population on re-
sults, incidence rate is calculated using Eq. (2):

number of Leptospirosis cases

Incidence Rate =
Population at risk

10, 000

(2)

Climate data
Temperature (degree Celsius), humidity (percentage) and
precipitation (millimeter) are gathered from 12 synoptic
climate stations of Gilan in Excel format (.xIsx) (Fig. 3).
Given that the climate data are collected from the me-
teorological stations and the limited number of these
stations across the study area, a continuous surface of
the climate parameters is produced utilising IDW?
interpolation method. The obtained maps are demon-
strated in Fig. 4.

Topographic and vegetation data
Gilan shows remarkable topographic variations with almost
3700 m altitude difference between the lowest and highest

’Inverse Distance Weighting
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Fig. 2 Leptospirosis distribution of Gilan at the rural district level in 2009-2011
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locations and average altitude of 1800 above sea level. Ele-
vation continually decreases from south to north. Owing to
the significant variability of elevation, climate and vegeta-
tion differ across the study area. The elevation map is ob-
tained from NASA*s 90m resolution SRTM®*data. All
parameters such as elevation are assigned to the centroids
of rural districts for further analysis. ArcGIS software tool
‘Extract to Points’ is employed, and the elevation data are
assigned to the centroids.

Vegetation is another environmental factor which influ-
ences leptospirosis vector directly or indirectly [10]. To in-
vestigate the effect of vegetation at the rural district level,
Normalised Difference Vegetation Index (NDVI) is used
in this study. This process is performed using the satellite
images of the Gilan and the capabilities of ENVI® software,
a well-known software in image processing. Satellite im-
ages of MODIS® during 2009-2011 are used to extract
NDVI via ENVI software. Their period is 16-day ally with
250 m spatial resolution. The satellite images are mo-
saicked, and the NDVI index of study area is subsequently
calculated and used as the vegetation parameter in the
study. The vegetation values of all rural districts are allo-
cated using the calculated NDVI. Elevation data and vari-
ability of NDVI in 2009 and 2011 are presented in Fig. 5.

All parameters and their characteristics are presented
in Table 1.

GWR

GWR presented by [45] is the most important regression
approach in spatial modelling. The general equation of
this approach is expressed as follows (Eq. (3)):

*National Aeronautics and Space Administration
*Shuttle Radar Topography Mission

®Environment for Visualizing Images

®The Moderate Resolution Imaging Spectroradiometer

Y; —Bo

+ ZkBk

where j = 1,2,...,n shows the number of rural districts, Y;
is the incidence rate of leptospirosis in rural district j,
(U}, V;) denotes the geographic location of rural district
j» B; is the local coefficient of parameter k, Xj is the
value of input parameter in rural district j, ¢; is the error
value, and By is obtained from minimising Eq. (4):

(3)

Xjk +¢j
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Fig. 3 Distribution of 12 synoptic climate stations across Gilan
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Bo(Uj,V)) = Z Wik <Y/—BO(U/7 Vi)- ZBk(Uﬁ V)) X/k)
k=1 k=1
(4)

where W), is distance decay function for location j.
Three distance decay functions are applicable in GWR
model, namely, Poisson, Gaussian and Logistic. In this
study, Gaussian function (Eq. (5)) is used due to its
higher efficiency [46]:

Wik = exp(—d]zk/b2) (5)

where dj is the spatial distance between rural district i
and &, and b identifies the kernel bandwidth. Three band-
width selection criteria, including AIC (Akaike Informa-
tion Criterion), CV (Cross Validation) and BIC (Bayesian
Information Criterion), and two kernels (fixed and adap-
tive) are available in modelling by GWR [45].

GWR model for leptospirosis prediction
To predict leptospirosis, a model is established based on
environmental parameters utilising GWR approach. Five
parameters, including temperature, precipitation, humidity,
elevation and vegetation, in 2009 and 2010 together with
disease data are used as inputs of the model. The model is
used for predicting of leptospirosis in 2011.

According to the description of methods and input pa-
rameters, the GWR model is formulated as Eq. (6):

Yj = BO(LI,, Vj) + Btemel (Uj7 V}g
+ BprecXZ(uj7 V}) + BhumXB uj7 V})
+ BeleVX4(Uj, V/) + BVeng(u57 V}) (6)

where Y; denotes the incidence rate of leptospirosis (the
independent parameter), Byeps Bprees Biums Berev and By,
are the correlation coefficient values of input parame-
ters, X;, X5, X3 and X, are the values of dependent pa-
rameters in a definite rural district, and (U, V}) denotes
the location of rural district j.

Fixed and adaptive kernel functions are applicable for
the GWR model. Fixed kernel considers a constant
bandwidth (distance to neighbour in metre) across the
study area, which is the main deficiency of this kernel,
whereas adaptive kernel applies variable and appropriate
bandwidths (number of neighbours) in each rural district
according to the number of neighbours [47]. In addition
to type of kernel, defining bandwidth selection criteria is
necessary in the GWR model. Three bandwidth criteria
of AIC, CV and BIC are available. Adaptive kernel and
AIC criteria are utilized in this study due to better per-
formance [48]. Notably, all steps are performed using
GWR 4.0 software.”

“http://gwr.maynoothuniversity.ie/gwrd-software/
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ANN

ANN is a nonlinear model that focuses on determination
of dependence between input and output parameters by
simulating highly connected processing units (neurons)
of human nervous system [49]. It consists of three layers
including input, hidden and output, and it is composed
of weighted connections between the inputs and outputs
[50]. A major characteristic of ANN is its capability to
learn for solving complex problems [51]. The other ad-
vantage of ANN is proper description of nonlinear de-
pendences. However, the black box mechanism is its
major shortcoming [52].

A particular form of ANN is Multilayer Perceptron
(MLP) which is created by multiple layers of nodes in
a directed graph [53]. MLPs are Feed-Forward Neural
Networks (FFNN) that stream information in one dir-
ection from the input to the output layer. MLPs are
the most popular FNNs due to efficient training pro-
cesses [54].

In ANN, input data should be normalised before
feeding to the model because different data with di-
verse ranges should be mapped into a similar range.
Training data which adjust the weights of neurons
and decline the model bias are also important in
modelling using ANN [55]. Data training has several
algorithms, and Levenberg—Marquardt algorithm is a
popular one [56]. After training data, test data should
be utilized to evaluate the performance of the net-
work. Figure 6 exhibits the structure of MLP used in
this research.

ANN model for leptospirosis prediction

MLP, a class of FFNN is utilized for leptospirosis pre-
diction. MATLAB 2018 is used for MLP implementa-
tion. According to the trial and error approach
(Additional file 1), one hidden layer is selected to be
utilized in this study. The final MLP architecture con-
sists of five nodes in input layer, including temperature,
precipitation, humidity, elevation and vegetation, one
hidden layer with five nodes and one node in output
layer, which presents the incidence rate of leptospirosis.
Data of 2009 and 2010 and Leungberg—Marquard al-
gorithm are used for training the model to predict
the disease in 2011. Weights are randomly initialised,
and the threshold of the training process is considered
when the error difference of two consecutive runs of the
model is negligible. Notably, after running ANN under
such condition (reaching a negligible difference of two
consecutive runs), the maximum number of epochs is
36. Total sample points are 969 for 2009 and 2010 in
which 290 samples are selected as validation set. The
learning rate, which is acquired using trial and error ap-
proach, is 0.01.
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SVM

SVM, first introduced by Vapnik [57], is a supervised
classifier based on the statistical theory. In a linear situ-
ation, the basic SVM tries to maximize the distance
between closest samples of binary classes by creating op-
timal hyperplanes [57]. However, most of the problems
in real world do not behave in linear manner. In order
to deal with non-linear datasets, SVM utilizes kernel

Table 1 Input parameters and their characteristics

functions to map data into higher dimensional space in
which the data is linearly separable [58].

Consider the input data as {x; x, ..., x;} named vec-
tors and their corresponding labels as y;e{-1, +1},
SVM constructs hyperplanes which separate positive
labels from negative ones. Equations (7) and (8) are
used to investigate the label of data in non-linear
situation [59]:

Parameter Type Data Description Unit

Disease data Output of model Positive reported cases of human leptospirosis across Gilan province Number
Temperature Input of model Monthly average temperature of rural districts Centigrade
Precipitation Input of model Monthly average rainfall of rural districts Millimetre
Humidity Input of model Monthly average humidity of rural districts Percentage
Elevation Input of model Average height of rural districts Meter
Vegetation Input of model Average NDVI of rural districts Without unit
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Where b is the bias, K(x;;) is the kernel function and
a; denotes the Lagrange’s multiplier which can be calcu-
lated by maximizing eq. (9). C is regularization constant
which balances the maximization of sample distances
and model error [60].

Maximize Z;lai— % Z;le;laia vy jK (x,'x ,»)
9)

SVM model for leptospirosis prediction

In order to apply SVM model, input data are categorized
into 5 classes (very low, low, moderate, high, and very
high classes). The Data of 2009 and 2010 is used to train
the SVM model and it is utilized to predict leptospirosis
in 2011. Because SVM is a binary classifier, it cannot be
directly used for a multiclass problem. In order to per-
form a multiclass classification using a binary classifier,
one-against-all method can be used to divide each multi-
class classification into groups of binary classifications
[57]. In this study, 5-bainry SVMs are constructed (5 is
the number of classes) in which, each binary classifier
separates one class from the rest of the classes. Another

vital step in running an SVM model is the selection
of its parameter (C) and the type of kernel function
[59, 61]. Leave-one-out cross-validation method [62]
is applied on training dataset to select Parameter C
and the value of 2 is obtained as the best value in
this study. The most common kernel functions have
been used in previous studies are the linear, polyno-
mial, and Radial Basis Function (RBF) [63]. Therefore,
in order to determine the best kernel function, these
functions are compared in this study and the output
result is presented in Table 2. As it is shown in this
table, RBF could obtain more accurate result in this
study. Java programming language is used to imple-
ment SVM in this study.

Sensitivity analysis

ANN and SVM function as a black box, so investigating
the relative importance of input parameters is not pos-
sible. However, sensitivity analysis can be used to exam-
ine the contribution of input parameters in modelling
and predicting [64]. To perform sensitivity analysis, one
parameter is excluded from the model in each run, and
the effect of that parameter on model performance is

Table 2 Efficiency of different kernel functions

Kernel Function R?

Linear 0.63
RBF 0.80
Polynomial (degree 2) 0.65
Polynomial (degree 3) 0.50




Mohammadinia et al. BMC Infectious Diseases (2019) 19:971

determined based on the evaluation criteria [65]. A
larger decrease indicates greater influence of the
parameter.

GLM

The Generalized Linear Model is one the most common
statistical approach identified for prediction mapping
[66]. GLM assumes a relationship between the
dependent variable and different independent variables
given by (Eq. (10)):

(10)

where E (y) is the value of dependent variable y, X; indi-
cates j'™ independent variables regarding to p covariates
to be estimated and B; is the i™ coefficient.

GLM model for leptospirosis prediction

GLM model is established based on the input variables
in which the variables do not change locally in spite of
GWR model. In this study the following model is used
as the GLM model for prediction of leptospirosis:

Ln (A) :Ll’l (B()) +B1X1 +BzX2++Bpo (11)
where Ln (A) is log of disease data, Xj, jth independent
variables (j=2, .., p) and B;, ™ coefficients of variables
(f=0, ..., p). The ordinary least-squares estimates are cal-
culated to obtain Maximum-likelihood estimates for
GLM which performs like a multivariate analysis. All im-
plementation of this approach is done using SPSS soft-
ware version 23.

Spatial autocorrelation

Spatial autocorrelation is useful for analysing and exam-
ining randomness of residuals [67]. Moran’s [ is com-
monly used for checking spatial autocorrelation and
cluster detection which ranges between -1 and 1 (Eq.
(12)) [67]:

Zi=(Y-Y)/S (12)
where Wj; is the spatial weight between i™ and j™ prov-
inces; z; and z; are the values of z-score in i™ and j™®
provinces, respectively; Y; is the number of cases for i™
province; and S is the sum of all spatial weights. Moran’s
I is used to determine the spatial autocorrelation of re-
siduals for investigating the model deficiencies.
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Evaluation

To assess the results of approaches, Mean Square Error
(MSE), Mean Absolute Error (MAE), Mean Relative
Error (MRE) and R? are employed as Eqs. 13-16.

MSE is the most common statistic for regression

evaluation and it is defined as follow (Eq. (13)) [68]:
MSE — Z:l:1(yt—5’i)2 (13)

n

where y; is leptospirosis report and ¥; is its prediction.

For each rural district, it calculates the average square

difference between the predictions and actual values. It

is useful when we have unexpected values that we

should pay attention.

MAE means that all the individual differences are
weighted equally in the average. It is calculated using Eq.
(14) [68]:

MAE:Z?:1|yi_5}i| (14)
n

The advantage of this statistic is that it is not sensitive
to outliers as MSE. We considered the relative errors in
each rural district and calculate the mean of it to obtain
MRE value. Equation ((15)) represents this statistic [69]:

n yi_jli
S
! Ji
n

MRE = (15)

Realizing the performance of models is difficult when we
use only MSE, MAE and MRE criteria. R* is a metric has
the advantage of being scale-free and can solve this issue.
Many papers indicate that the range of R? is between 0 and
1. Equation (16) is used to calculate R [36, 61]:

Z;’:l (yi_jli)z
Z:l:lyiz

where y; is the incidence rate in rural district i, y, is the
predicted value, and # is the number of rural districts.

R =1- (16)

Results
According to the database of NHCN, leptospirosis oc-
curs annually in certain months (approximately March
to September) and remarkably coincides with the begin-
ning of rice planting and end of harvest season (Fig. 7.a).
Reports confirmed that in 2009 (312 cases), 2010 (657
cases) and 2011 (217 cases), 1186 positive cases were
reported, and the peak of leptospirosis prevalence oc-
curred in 2010 in Gilan, which is twice as much as last
year. Amongst reported cases, 70% of patients were men
who are more vulnerable to leptospirosis infection than
women (Fig. 7.b).

The calculated correlations of input parameters are
shown in Table 3. The table shows the maximum
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correlation between elevation and temperature (- 0.33),
which is consistent with reality (the higher elevation, the
lower the temperature); the minimum is between vegeta-
tion and temperature (0.11). Variance inflation factor
(VIF) is calculated for input parameters, and the results
are presented in Table 3. All VIF values are less than 2.71,
confirming no severe multicollinearity amongst input
parameters.

Minimum, maximum, range and standard deviation
obtained from GWR model are presented in Table 4,
which shows the variability of each parameter in the
spatial modelling of leptospirosis.

Table 5 presents the coefficients of input parameters
obtained from GLM model. They clarify the impact of
each parameter on modelling leptospirosis distribution.

The output of sensitivity analysis of ANN and SVM
are presented in Table 6 and Table 7. Temperature and
humidity are utmost effective parameters of leptospirosis
prediction because their removal leads to a decrease in
the value of four criteria. On the contrary, removing
vegetation and precipitation lead to improving the

Table 3 Pearson correlation coefficients among parameters

accuracy of prediction, which shows less effect of both
parameters in prediction.

Figure 8.a shows the actual number of leptospirosis
disease in 2011. Figure 8.b, 8.c, 8.d and 8.e show the re-
sults of GWR, ANN, SVM and GLM prediction in 2011,
respectively. The disease rarely occurs in the southeast
rural districts.

Local variability of GWR model in each rural district
is shown in Fig. 9.a. The size of dots in the map illus-
trates the prediction accuracy of GWR model in differ-
ent rural districts. Local collinearity of GWR model is
examined to evaluate the fitness of model via calculating
condition numbers for each rural district (Fig. 9.b).

The coefficients of GWR model are demonstrated
in Fig. 10. Similarities are observed between coeffi-
cients of temperature and humidity with prediction
map of 2011.

Detected clusters at 95% significance level are demon-
strated in Fig. 11 for GWR, GLM and ANN models.
GWR, GLM and ANN models do not perform well in
leptospirosis prediction in several districts.

Variable Criteria Temperature Precipitation Humidity Elevation Vegetation VIF

Temperature Correlation 2.20
Significance

Precipitation Correlation 025" 117
Significance 0.002

Humidity Correlation 028" 029" 164
Significance 0.002 0.003

Elevation Correlation -033" -031" -0.15% 244
Significance 0.005 0.003 0.077

Vegetation Correlation 0.11%* 026" 027" —0.12%* 271
Significance 0.098 0.003 0.003 0.63

* Correlation coefficient with 0.05 significance level
** Correlation coefficient with 0.1 significance level
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Table 4 Coefficients of parameters using GWR model

Page 11 of 18

Table 6 Results of sensitivity analysis in ANN model

Parameter Min Max Range Std Temperature  Precipitation Humidity Elevation Vegetation
Temperature —109.37 1631.32 1740.69 241.26 R’ -0.07 0.03 -0.06 -0.02 0.02
Precipitation — 16445 292.79 32164 4243 MSE  —0.0203 0.0052 -0.0131 -0.0048 0.0032
Humidity —336.93 476.01 81294 129.89 MAE  -0.0221 0.0011 -00118  -0.066 0.0070
Elevation -0.59 0.24 0.83 0.17 MRE  -0.0214 0.0041 -0.0109 —0.0032 0.0041
Vegetation -0.15 0.23 0.39 0.09

independence, less than 0.70 correlation is acceptable
Discussion [71]. Thus, two-tailed Pearson correlation as a common

During 2009-2011, reports of leptospirosis in Gilan re-
vealed that it occurs in definite months and disappears
for the remainder of the year. This periodic prevalence
explains the relationship between leptospirosis cases and
paddy season when workers start to work in paddy
fields. This phenomenon is due to the fact that in paddy
season when workers begin to plant or harvest rice, their
contact with contaminated water or soil increases, and
the possibility of disease prevalence increases. In Gilan,
rice farming and livestock are popular amongst farmers
because suitable climate contributes to the fertility of
soil which is inevitable for farming, and the existence of
many rural regions covered by grasslands and forests
facilitates feeding animals. Considering that this job is
physically demanding, the ratio of men to women
workers is approximately 2 to 1 in 2009-2011, which
confirms that men are more vulnerable to this disease
and deserve more attention (Fig. 7.b). This fact prompted
decision makers to carry out prevention programmes such
as boosting the knowledge of workers by explaining the
advantages of using gloves during work time or bandaging
the wound as soon as it occurs. Knowledge and literacy
are at low levels in rural districts, so such programmes led
to a great decrease of disease reports (almost 1/3) in 2011
(Fig. 7.a).

Spatial modelling of leptospirosis would better clarify
different aspects of this phenomenon. To model the dis-
ease, the correlation between input parameters should
be investigated using the assumption of independence
[70]. Correlation values vary from O (no correlation be-
tween two parameters) to 1 (maximum correlation be-
tween two parameters), and the closer the values are to
0, the more reliable they are as input in the model.
Based on statistical studies about the assumption of

Table 5 Coefficients of parameters using GLM model

approach [72] is used in this study to calculate the cor-
relation amongst all parameters. According to the ob-
tained values, maximum correlation is between elevation
and temperature parameters (0.33) with 0.005 signifi-
cance level, and minimum is between vegetation and
temperature (0.11) with 0.1 significance level. The re-
sults prove that all values are less than critical threshold
(0.70) [71] and can be reliably utilized in spatial model-
ling of leptospirosis (Table 3).

In addition to assumption of independence, multicolli-
nearity should be considered in spatial modelling [73].
Severe multicollinearity increases the variance estimation
of coefficients and decreases the reliability of the model.
VIF measures the intensity of multicollinearity amongst
independent parameters [74]. Confirmed by statistical
studies, VIF values of input parameters that are less than
10 are acceptable for entering the model [75]. Table 3
presents that the maximum calculated VIF values of pa-
rameters belong to vegetation parameter (2.71), and the
minimum is acquired for precipitation parameter (1.17).
All VIF values are less than 10, which proves acceptable
multicollinearity amongst input parameters. According
to the assumption of independence and VIF values, in-
put parameters can be fed to GWR, GLM, SVM and
ANN models for predicting leptospirosis distribution in
this study.

The values of coefficients calculated for each param-
eter using GWR and GLM are presented in Table 4 and
Table 5. GWR considers a different model for each rural
district, so the coefficients of parameters vary across the
study area. Slight changes in the range of elevation
(Dago9 = 0.17, Dyg10=10.73 and Dyp;; =0.13) and vegeta-
tion (Dyggo = 0.09, Dypio=0.14 and D,yp; = 0.16) reveal
almost uniform and constant effect of these parameters.
High values of temperature, precipitation and humidity

Parameter B Standard Error  Table 7 Results of sensitivity analysis in SYM model

Temperature 194 28.04 Temperature  Precipitation  Humidity Elevation Vegetation
Precipitation —741 6.57 R -0.09 0.03 -0.05 -0.01 0.01
Humidity 13.25 16.01 MSE  -0.0316 0.0021 -00276  -0.0062  0.0051
Elevation 3.80 0.29 MAE  —-0.0298 0.0019 -00206  -0.059 0.0062
Vegetation -2.87 0.14 MRE  —0.0284 0.0026 -0.0266  -0.0028  0.0055
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Fig. 8 a Leptospirosis data of 2011, (b) Prediction maps using GWR, (c) ANN, (d) SVM and (e) GLM models

range (1740.69, 321.64 and 812.94, respectively) show in-
constant effects on diverse rural districts. Despite GWR
and GLM models, ANN and SVM operate as black box.
The coefficients of parameters cannot be calculated, but
sensitivity analysis can be utilized for this issue. The results
of sensitivity analysis are presented in Table 6 and Table 7,
which show the effect of parameters on spatial modelling of
leptospirosis distribution. According to four evaluation cri-
teria, omission of temperature and humidity parameters de-
creases the fitness of the models, which confirms their
importance in modelling the disease. Temperature and hu-
midity do not directly affect leptospirosis distribution but

provide appropriate circumstances for durability of leptos-
pira and indirectly affect the prevalence of leptospirosis.
Paddy fields are almost always located in rural districts with
higher values of these parameters, and they are more vul-
nerable to the disease occurrence, as shown in Fig. 10,
where coefficients are mapped for better understanding
of the effect of parameters on different rural districts.
Maps of coefficients of humidity and temperature are
closer to prediction maps and reports of leptospirosis
data in 2011. This finding proves that these two pa-
rameters play more important roles in the modelling
and predicting leptospirosis.
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The models clarify the fact that the disease prevalence
occurs more in the central rural districts. The existing
remarkable number of paddy fields and livestock activ-
ities, which leads people to more contact with the con-
taminated environment, can be the major reasons of this
pattern. Given that leptospirosis is an occupational
water-borne disease [76] and no paddy fields are in the
southeast area of the province, the probability of the dis-
ease prevalence is negligible there. Visual comparison of
the prediction maps shows that GWR, SVM and GLM
models predict high disease prevalence in the central
rural districts while the prediction of ANN model is less
consistence with the reported cases of disease across the
study area. Although SVM and GLM indicate satisfying
results, GWR prediction map in 2011 is more similar to
the map of leptospirosis data in 2011. Model predictions
are statistically discussed in the “prediction evaluation”
section.

A major advantage of GWR model is the presentation of
local variability and local collinearity [77] which are not
available in modelling with ANN, SVM and GLM. Local
variability for each rural district shows the power of the
model in different locations across the study area. Figure 9a
demonstrates that GWR model performs more accurately

on some rural districts with high local R®. The maximum
value is 0.96, and the minimum is 0.16, but the overall R* is
0.85 for the entire study area (Fig. 9a). The other issue is
local collinearity, which is unavoidable in modelling and it
has adverse effects on the estimation of coefficients. Ac-
cording to many studies, local collinearity of more than 30
indicates decreased reliability of results [78]. GWR shows
local collinearity by measuring the condition number for
each location. Condition numbers over 30 result in serious
concern. Condition number measures how much the out-
put value of the model can change for a small variation in
the input of the model. Figure 9b indicates that the ob-
tained condition number for each rural district is less than
20, and the local collinearity is negligible for the prediction
of leptospirosis.

Prediction evaluation

GWR, GLM, SVM and ANN models are trained by utilis-
ing the data of 2009 and 2010 to predict leptospirosis
distribution in 2011. The results are compared with obser-
vations of leptospirosis (reported cases) in 2011. Four
evaluation criteria, including R*, MAE, MSE and MRE, are
employed to assess the results (Table 8). The values of R
are 0.85, 0.78, 0.80 and 0.75 for GWR, GLM, SVM and
ANN models, respectively. The values of MSE, MAE and
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Table 8 Evaluation results of GWR, GLM, SYM and ANN in
modelling Leptospirosis

Approach R MSE MAE MRE
GWR 085 0.050 0012 0011
GLM 078 0.118 0.052 0017
ANN 075 0.137 0063 0018
SVM 0.80 0.103 0037 0015

MRE are calculated for GWR (0.050, 0.012 and 0.011),
GLM (0.118, 0.052 and 0.017), SVM (0.103, 0.037 and
0.015) and ANN (0.137, 0.063 and 0.018). Needless to say,
the lower the values of these criteria, the better the effi-
ciency of the model. Hence, the performance of models in
prediction of leptospirosis is GWR > SVM > GLM > ANN.
This might be attributed to several reasons: The advantage
of GWR as a weighted regression in modelling local vari-
ability and spatial heterogeneity, the nature of leptospir-
osis distribution varying across the study area locally, the
superiority of SVM, as a supervised learning approach, in
dealing with small classified datasets, the structure of
GLM considering a polynomial with constant coefficients
throughout the region and the shortcoming of ANN in
handling small datasets.

Spatial autocorrelation (Moran's 1) of residuals and
significance level

Spatial autocorrelation in the residuals of model verifies
weakness in some parts of the model [79]. In this study,
weak but meaningful spatial autocorrelation is found in
residuals. Environmental parameters model and predict
the disease carefully, but the power of model is less in
some regions. The capability of Moran’s I is verified in
the investigation of residuals [80], so it is used in this
study.

The results of Moran’s I are presented in Table 9. A
greater convergence of Moran’s I to expected index indi-
cates better performance of clustering [81]. In addition,
z-score and p-value are criteria to determine the fitness
of models. The lower value of p-value and the higher
value of z-score elucidate that residuals of models are
clustered in some rural districts. The values of Moran’s
I, z-score and p-value are (0.2947, 0.3673 and 0.5406),
(6.71, 7.63 and 12.01) and (0.0010, 0.0010 and 0.0012)
for GWR, GLM and ANN respectively. Moran’s I of
GWR is closer to Expected Index (-0.0093) and the

Table 9 Results of Moran'’s | for GWR, GLM and ANN residuals in

2009-2011

Method Moran’s Index Expected Index z-score p-value
GWR 0.2941 —0.0093 6.71 0.0010
GLM 0.3673 —0.0093 763 0.0010
ANN 0.5406 —-0.0093 12.01 0.0012
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value of z-score is lower than GLM and ANN. It means
GWR presents less deficiency in modelling and predict-
ing leptospirosis. The result of spatial autocorrelation on
residual for SVM is not presented in this part because
SVM works with the label of classes.

Spatial clusters of GWR, GLM and ANN residuals ob-
tained from Moran’s I approach are presented in Fig. 11.
It illustrates the performance of models for prediction in
various areas. High—High (HH) shows rural districts sur-
rounded by neighbours with high spatial autocorrelation.
Low—High (LH) indicates rural districts that have low
spatial autocorrelation of residuals, but their neighbours
have high values. Low—Low (LL) presents rural districts
surrounded by neighbours with low spatial autocorrel-
ation. Given the high spatial autocorrelation in residuals,
HH clusters illustrate the rural districts where the models
have lower performance in prediction of leptospirosis.

Conclusion

Leptospirosis is predicted in this study utilizing GWR,
SVM, GLM and ANN models. Five input parameters, in-
cluding temperature, precipitation, humidity, elevation
and vegetation are used in this study. Model predictions
are investigated statistically and visually to understand
the efficiency of used approaches. According to the re-
sults, the performance of the models is as follow: GWR >
SVM > GLM > ANN. Also, spatial autocorrelation of re-
siduals is used to investigate the deficiency of models.
The results prove that GWR presents less deficiency in
modelling and predicting leptospirosis. Additionally,
based on coefficients of GWR and GLM parameters and
sensitivity analysis of SVM and ANN, temperature and
humidity have greater effects on the leptospirosis distri-
bution. Moreover, analysis of coefficients shows that
higher temperature and humidity coincide with higher
disease occurrence in central regions. In contrast, the
southeast rural districts have the lowest outbreaks due
to lack of related occupations conducive to leptospirosis
propagation. In a nutshell, utilizing useful approaches
for prediction of leptospirosis can provide health man-
agers and governments with sufficient information to set
proper measures for controlling the disease prevalence
across the study area.

Many researches including our study are limited based
on data and model. As an analytical shortcoming of many
disease studies, Modified Areal Unit Problem (MAUP)
presents that scale of study is crucial in spatial analysis
[82]. In this study, the results of leptospirosis prediction
are acceptable at the rural district level, but this disease
should be examined in other scales for better understand-
ing the fitness of models. Disease data used in this study
are based on the address of patients, whereas the exact lo-
cations of the disease occurrence are paddy fields. The
paddy fields must be considered as the base level for more
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accurate analysis, but such data are not available in Iran.
More social and epidemiologic parameters should be
considered for more accurate prediction.

As future work, the model will be developed by
considering socioepidemiologic parameters. Time series
models such as Autoregressive Integrated Moving Aver-
age (ARIMA) and their comparison with geographically
temporal weighted regression is also considered as
future work.
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