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Abstract

Large Bayesian VARs with the natural conjugate prior are now routinely used for
forecasting and structural analysis. It has been shown that selecting the prior hy-
perparameters in a data-driven manner can often substantially improve forecast
performance. We propose a computationally efficient method to obtain the optimal
hyperparameters based on Automatic Differentiation, which is an efficient way to
compute derivatives. Using a large US dataset, we show that using the optimal hy-
perparameter values leads to substantially better forecast performance. Moreover,
the proposed method is much faster than the conventional grid-search approach,
and is applicable in high-dimensional optimization problems. The new method
thus provides a practical and systematic way to develop better shrinkage priors for
forecasting in a data-rich environment.
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1 Introduction

Since the seminal paper of Banbura, Giannone, and Reichlin (2010) showed that it is fea-

sible to estimate large Bayesian vector autoregressions (BVARs) with over 100 variables,

there has been a lot of interest in using large BVARs for forecasting and structural anal-

ysis. A few prominent examples include Carriero, Kapetanios, and Marcellino (2009),

Koop (2013), Koop and Korobilis (2013) and Banbura, Giannone, Modugno, and Re-

ichlin (2013). One key aspect of these large BVARs is the use of shrinkage priors that

formally incorporate sensible non-data information, and one popular way to do so is the

Minnesota-type natural conjugate prior that gives rise to a range of analytical results,

including closed-form expressions of the marginal likelihood.1 These analytical results are

later used in Carriero, Clark, and Marcellino (2016) and Chan (2018) to develop efficient

sampling algorithms to estimate large BVARs with flexible error covariance structures,

such as stochastic volatility, serially correlated and non-Gaussian errors.

The natural conjugate prior depends on a few hyperparameters that control the degree of

shrinkage and they are typically fixed at some subjectively chosen values. Alternatively,

a data-based approach to select these hyperparameters might be more appealing as it

reduces the number of important subjective choices required from the user. For example,

Del Negro and Schorfheide (2004), Schorfheide and Song (2015) and Carriero, Clark, and

Marcellino (2015) obtain the optimal hyperparameters by maximizing the marginal likeli-

hood over a grid of possible values.2 This grid-search approach is also incorporated in the

Bayesian Estimation, Analysis and Regression toolbox (BEAR) MATLAB toolbox devel-

oped by the European Central Bank (Dieppe, Legrand, and Van Roye, 2016). However,

this approach is typically time-consuming for low-dimensional problems, and it becomes

computationally infeasible in higher dimensions, as the number of marginal likelihood

evaluations increases exponentially in the number of hyperparameters.

We propose a computationally efficient method to obtain the optimal hyperparameters

based on Automatic Differentiation (AD), which is an efficient way to compute derivatives

1Early seminal works of shrinkage priors were developed by Doan, Litterman, and Sims (1984) and
Litterman (1986). Similar shrinkage priors for structural VARs are formulated in Leeper, Sims, and Zha
(1996) and Sims and Zha (1998).

2Giannone, Lenza, and Primiceri (2015) show that a data-based approach of selecting the
hyperparameters—compared to the convectional method of fixing them to some ad hoc values—can
substantially improve the forecast performance of large BVARs.
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based on the chain rule. More specifically, we apply AD to calculate the gradient of the

marginal likelihood with respect to the hyperparameters, which is then used as an input

in an optimization routine. By computing the gradient efficiently using AD, the proposed

method is substantially faster than the conventional grid-search approach.

AD is “automatic” in the sense that for any function that maps an input vector into

an output vector, there is an automatic way of evaluating its gradient without manually

deriving the symbolic formula of the derivatives. More precisely, AD decomposes the

function into elementary functions, and then applies the chain rule to obtain the gradient

of the original function. In principle, the gradient can be computed by other commonly

used methods, such as numerical finite-difference methods or symbolic differentiation. But

a carefully designed AD approach is often substantially faster than these two alternatives.

While AD-based methods have been widely used in Financial Mathematics, they have

only been recently introduced in Econometrics by Jacobi, Joshi, and Zhu (2018), who de-

velop an AD approach for a comprehensive prior robustness and convergence analysis of

Markov chain Monte Carlo output in the context of Bayesian estimation. Chan, Jacobi,

and Zhu (2019b) extend this framework further to predictive simulation—specifically to

analyze the sensitivities of point and interval forecasts from BVARs on prior hyperparame-

ters. We continue this line of research by applying AD to obtain optimal hyperparameters

and evaluate the forecast performance of the resulting BVAR.

We illustrate the new methodology with a forecasting exercise that involves 18 macroe-

conomic and financial variables. We first document the computational gains of using the

proposed AD-based approach to obtain the optimal hyperparameters compared to the

conventional grid-search approach. We show that while the proposed approach remains

relatively fast for high-dimensional optimization problems, a brute-force grid-search ap-

proach would take hours or even days, and is simply impractical.

We then present forecasting results to show that the optimal hyperparameter values

obtained do in fact lead to better forecast performance. Our findings therefore highlight

the empirical relevance of selecting optimal hyperparameters for forecasting using large

BVARs. More importantly, since the proposed method works well in high dimensions, it

provides a practical and systematic way to develop better shrinkage priors for forecasting

in a data-rich environment.
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The rest of this paper is organized as follows. Section 2 first gives an overview of the BVAR

and the natural conjugate prior, as well as a few associated analytical results. We then

introduce an AD-based method to obtain the optimal hyperparameters by maximizing the

marginal likelihood in Section 3. It is followed by a macroeconomic forecsating exercise to

illustrate the usefulness of the proposed approach in Section 4. Lastly, Section 5 concludes

and briefly discusses some future research directions.

2 The Bayesian VAR

In this section we provide background of the Bayesian VAR (BVAR), the associated

natural conjugate prior, and a few useful analytical results. For textbook treatment, see,

e.g., Koop and Korobilis (2010), Karlsson (2013) or Chan (2019). Let yt = (y1t, . . . , ynt)
′

denote the n × 1 vector of dependent variables at time t. Then, a standard VAR(p) for

t = 1, . . . , T is given by:

yt = a + A1yt−1 + · · ·+ Apyt−p + ut,

where a is an n × 1 vector of intercepts, A1, . . . ,Ap are n × n coefficient matrices and

ut ∼ N (0,Σ).

The above system can be written more compactly as follows. First, stack the dependent

variables into a T × n matrix Y so that its t-th row is y′t. Let Z be a T × k matrix of

regressors, where the t-th row is z′t = (1,y′t−1, . . . ,y
′
t−p) so that k = 1 + np. Next, let

A = (a,A1, . . . ,Ap)
′ denote the k × n matrix of VAR coefficients. Then, we can write

the above VAR(p) as follows:

Y = ZA + U, (1)

where U is a T × n matrix of innovations in which the t-th row is u′t. If follows that

vec(U) ∼ N (0,Σ⊗IT ), where vec(·) vectorizes a matrix into a column vector by stacking

the columns and ⊗ denotes the Kronecker product. Finally, the likelihood function is

given by

p(Y |A,Σ) = (2π)−
Tn
2 |Σ|−

T
2 e−

1
2
tr(Σ−1(Y−ZA)′(Y−ZA)), (2)

where tr(·) denotes the trace operator.
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2.1 The Natural Conjugate Prior

The normal-inverse-Wishart prior is a joint distribution on (A,Σ) that is formed by

combining a marginal distribution on Σ with a conditional distribution on A given Σ.

More specifically, the marginal distribution on Σ is inverse-Wishart and the conditional

distribution on A is normal:

Σ ∼ IW(ν0,S0), (vec(A) |Σ) ∼ N (vec(A0),Σ⊗VA),

and we write (A,Σ) ∼ NIW(A0,VA, ν0,S0). The corresponding joint density function

is given by

p(A,Σ) = c|Σ|−
ν0+n+k+1

2 e−
1
2
tr(Σ−1S0)e−

1
2
tr(Σ−1(A−A0)′V

−1
A (A−A0)), (3)

where c = (2π)−nk/22−nν0/2|VA|−n/2Γn(ν0/2)−1|S0|ν0/2, and Γn(·) denotes the multivariate

gamma function. This normal-inverse-Wishart prior is commonly known as the natural

conjugate prior and can be traced back to Zellner (1971).

The hyperparameters of this normal-inverse-Wishart prior are A0,VA, ν0, and S0. For

large systems it is important to choose these hyperparameters carefully to induce shrink-

age. Below we describe one common way to elicit these hyperparameters.

First, since in our empirical application we will be working with data in growth rates,

we set vec(A0) = 0 to shrink the VAR coefficients to zero. The strength of shrinkage is

controlled by the prior covariance matrix VA. Inspired by the Minnesota prior, here we

assume VA to be diagonal with the i-th diagonal element vA,ii set as:

vA,ii =

{
κ1
lκ2s2r

, for the coefficient on the l-th lag of variable r

κ3, for an intercept

where s2r is the sample variance of the residuals from an AR(p) model for the variable r.

Hence, we simplify the task of eliciting VA by choosing only three key hyperparameters

κ1, κ2 and κ3. The hyperparameters κ1 and κ3 control the overall strength of shrinkage

for the VAR coefficients and the intercepts, respectively. The hyperparameter κ2 controls

the level of additional shrinkage for coefficients associated to a higher lag lengh l. When
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κ2 is larger, the coefficients associated to higher lag length are shrunk more heavily to

zero. A few sets of values for these three hyperparameters are commonly used in the

literature. For the baseline model in the empirical application, we follow Kadiyala and

Karlsson (1993, 1997) and set κ1 = 0.05, κ2 = 1 and κ3 = 100.

For the marginal prior on Σ, it is typically assumed to be relatively noninformative and

centered around the sample covariance matrix diag(s21, . . . , s
2
n). Since we will be working

with large systems in the empirical application, it is of interest to investigate if shrinking

the covariance matrix optimally could deliver better forecast performance. To that end,

we introduce two additional hyperparameters κ4 and κ5, and set k0,Σ = κ4 + n + 1 and

S0,Σ = κ5diag(s21, . . . , s
2
n). For the baseline model we use the values κ4 = 1 and κ5 = 1,

which are consistent with typical priors for Σ in the literature. Specifically, κ4 = 1 is the

smallest integer value such that the prior mean of the inverse-Wishart distribution exists

(but the variances do not). Under these values, the prior mean of Σ is diag(s21, . . . , s
2
n).

Of course, other more elaborate priors can be considered. For example, instead of using

only κ1 and κ2 to control the level of shrinkage for all VAR coefficients, one can, for

each lag length, introduce an extra hyperparameter to control the shrinkage strength. Or

one can consider a non-diagonal scale matrix S0,Σ that contains a few hyperparameters

responsible for controlling the strength of correlations between the innovations. These

possibilities can be considered under the proposed framework, and we leave them for

future research.

In summary, under this setup, we have altogether 5 key hyperparameters κ1, . . . , κ5 to

choose. Finding the optimal values using a grid-search approach for this high-dimensional

problem is simply not practical. In Section 3 we will introduce a computationally efficient

approach based on Automatic Differentiation to solve this optimization problem.

2.2 Posterior Distribution and Efficient Sampling

Given the likelihood function in (2) and the normal-inverse-Wishart prior in (3), the

posterior distribution is also normal-inverse-Wishart. More specifically, it can be shown

that the posterior distribution of (A,Σ) is given by (see, e.g., Karlsson, 2013; Chan,

2019):

(A,Σ |Y) ∼ NIW(Â,K−1A , ν0 + T, Ŝ),
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where

KA = V−1A + Z′Z, Â = K−1A (V−1A A0 + Z′Y), Ŝ = S0 + A′0V
−1
A A0 + Y′Y − Â′KAÂ.

In particular, the posterior means of A and Σ are respectively Â and Ŝ/(ν0 +T −n− 1).

In addition, the marginal distribution of A (unconditional on Σ) and the one-step-ahead

predictive distribution of yT+1 are both known.

When analytical results are not available, we can estimate the quantities of interest by

generating independent draws from the posterior distribution p(A,Σ |Y). For example,

the h-step-ahead predictive distribution of yT+h for h > 1 is non-standard, but we can

obtain posterior draws of (A,Σ) to construct the h-step-ahead predictive distribution via

predictive simulation. We can sample (A,Σ) from its posterior distribution in two steps.

First, we draw Σ marginally from (Σ |Y) ∼ IW(ν0 + T, Ŝ). Then, given the Σ drawn,

we sample A from the conditional distribution

(vec(A) |Y,Σ) ∼ N (vec(Â),Σ⊗K−1A ).

Here the covariance matrix Σ⊗K−1A is of dimension nk = n(np+ 1), and sampling from

this normal distribution using conventional methods—based on the Cholesky factor of the

covariance matrix—would involve O(n6) operations. This is especially computationally

intensive when n is large. A more efficient way to sample from this conditional distribution

is to exploit the Kronecker product structure in the covariance matrix and to use an

efficient sampling algorithm to draw from the matrix normal distribution; see, e.g., pp.

301-302 in Bauwens, Lubrano, and Richard (1999) and Carriero, Clark, and Marcellino

(2015). This more efficient approach involves only O(n3) operations. In addition, we can

further speed up the computations by avoiding any large matrix inversion. We refer the

readers to Chan (2019) for computational details.
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2.3 The Marginal Likelihood

Given the likelihood function in (2) and the normal-inverse-Wishart prior in (3), the

associated marginal likelihood of the VAR(p) has the following analytical expression:

p(Y) = π
−nT

2 |VA|−
n
2 |KA|−

n
2

Γn
(
ν0+T

2

)
|S0|

ν0
2

Γn
(
ν0
2

)
|Ŝ|

ν0+T
2

. (4)

The details of the derivation are given in Appendix B. Below we comment on a few

computational details to improve numerical stability and computational efficiency.

First, note that to evaluate the marginal likelihood in (4), one needs not compute the

inverse of the precision matrix KA—which can be computationally intensive when n is

large—as is commonly done in the literature. Second, to prevent arithmetic underflow

and overflow, we evaluate the marginal likelihood in log scale. In particular, to compute

the log determinant of a square positive definite matrix, say, B, we return 2
∑

log ci,

where ci is the i-th diagonal element of the Cholesky factor of B.

3 Automatic Differentiation for Marginal Likelihood

In this section we introduce the proposed approach based on Automatic Differentiation

(AD) to select optimal hyperparameters by maximizing the marginal likelihood—which is

available in closed-form given in (4). In a nutshell, we apply AD to obtain the gradient of

the log marginal likelihood with respect to the hyperparameters, which is then used as an

input in an optimization routine, such as gradient ascent or Newton’s method.3 Since the

gradient is efficiently computed using AD, this approach is substantially faster than other

commonly used methods for computing the gradient, such as numerical finite-difference

methods or symbolic differentiation. Below we discuss in detail how AD works.

AD is an efficient way to compute derivatives based on the chain rule. It is “automatic”

in the sense that for an algorithm that maps an input vector into an output vector, there

3In the application we use MATLAB built-in function fmincon to minimize the negative log likelihood
with respect to the hyperparameters. The solution, of course, coincides with the maximizer of the log
marginal likelihood. The two key inputs for fmincon are the functions to evaluate the log marginal
likelihood and its gradient, the latter of which is obtained via AD.
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is an automatic way of evaluating its gradient without manually deriving the symbolic

formula of the derivatives. More specifically, consider a function that maps

θ0 → G(θ0),

where θ0 is the set of inputs that we are interested in computing the associated gra-

dient. AD first decomposes the original function G into elementary functions, such as

multiplication and exponentiation, G1, . . . ,Gk:

G = Gk ◦Gk−1 ◦ · · · ◦G1,

where

Gi : (xi,θ0)→ xi+1

and xi is the intermediary values at step i. Then, the derivative of G can be obtained

via the chain rule, which is implemented automatically in the compute program:

∂G(θ0)

∂θ0

=
k∑
i=1

∂

∂xk
Gk

∂

∂xk−1
Gk−1 · · ·

∂

∂xi+1

Gi+1
∂

∂θ0

Gi,

where ∂Gi

∂xi
, i = 1, . . . , k are the intermediate gradients of the elementary functions. De-

pending on the software package, these intermediate gradients are often available readily

as built-in functions. Otherwise they need to be provided by the user. But since they are

elementary functions, their gradients are simple to compute. And once coded up, they

can be added to the library to be reused in the future.

Hence, AD is different from the two other commonly used methods for computing the

gradient, namely, symbolic differentiation and finite-difference methods. Due to the use

of built-in derivatives of elementary functions and the application of chain rule, AD is

often substantially faster than both. Similar to symbolic differentiation implemented in

many widely-used softwares, AD computes the exact gradient of the original function up

to floating point errors. But unlike symbolic differentiation that focuses on obtaining the

exact expression of the gradient, AD evaluates the gradient alongside the evaluation of

the original function. That is, for each Gi the AD program computes

GAD
i :

(
xi,

∂xi
∂θ0

,θ0

)
→
(

xi+1,
∂xi+1

∂θ0

)
.
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Since only floating point values are used in the above structure, a good efficiency may be

obtained. Additionally, AD permits the use of control structures—e.g., loops, branches

and sub-functions—common to modern computer languages but not easily amenable to

symbolic differentiation.

Finite-difference methods approximate the gradient by using multiple evaluations of the

original function. They are typically more computationally intensive when the number

of dimensions of the domain is large. In comparison to finite-difference methods, AD

requires additional model analysis and programming, but this additional effort is often

justified by the improvement in the quality and speed of the calculated gradient.

Despite of its efficacy, a computationally naive implementation of AD, however, can result

in prohibitively slow code and excess use of memory. Careful considerations can mitigate

these effects. There are various modes and implementation subtleties associated with

AD, see Griewank (1989). This paper uses the so-called forward mode implementation,

i.e., we initialize the derivatives at the beginning of the algorithm and update them for-

ward. While the backward mode can potentially increase the computational speed, as

the dimension of the problem increases, the forward mode ensures the memory require-

ments are within a manageable constraints and allows the method to be applied to more

complicated examples. We also use “operator overloading”, rather than “source transfor-

mation” that typically requires the development of sophisticated compiler-type software

to read in a computer program and to write a new augmented program for derivatives.

The operator overloading we use here is to introduce a new class of objects that includes

the differential component of the intermediary values on the expression graph. This can

be easily done in modern computer languages such as C++ or MATLAB.

4 Application: Forecasting with Large BVARs

We consider a forecasting exercise with large Bayesian VARs to illustrate the usefulness

of the proposed approach. After outlining the macroeconomic dataset in Section 4.1,

we document the computational gains of using Automatic Differentiation (AD) to ob-

tain the optimal hyperparameters compared to the conventional grid-search approach in

Section 4.2. Then, in Section 4.3 we show that by optimizing the hyperparameters, we

can substantially improve the forecast performance of standard BVARs. In particular,

10



we demonstrate that shrinking the error covariance matrix optimally can further improve

forecast accuracy.

4.1 Data

The dataset for our forecasting exercise consists of 18 US quarterly variables and covers

the quarters from 1959Q1 to 2018Q4. It is sourced from the FRED-QD database at the

Federal Reserve Bank of St. Louis as described in McCracken and Ng (2016). We use a

range of standard macroeconomic and financial variables, such as Real GDP, industrial

production, inflation rates, labor market variables and interest rates. They are trans-

formed to stationarity as suggested in McCracken and Ng (2016). The complete list of

variables and how they are transformed is given in Appendix A.

4.2 Full Sample Results

We first find the optimal hyperparameters by maximizing the marginal likelihood given

in (4) using the full sample. We consider two variants. In the first version, we optimize

only κ1, κ2 and κ3, while fixing κ4 and κ5 to their baseline values. This reflects the stan-

dard practice of the literature. In the second version, we optimize all the hyperparameters

κ1, . . . , κ5.

For each optimization exercise, we compare computational times of the proposed AD

approach with that of the grid-search approach. The results are reported in Table 1. For

the 3-dimensional optimization problem (i.e., optimizing the marginal likelihood with

respect to only κ1, κ2 and κ3), using a coarse grid with 30 grid points in each dimension

takes 17.8 seconds. Doubling the grid points to 60 takes much longer, to over 2 minutes,

as it takes 8 times more marginal likelihood evaluations. In contrast, using the proposed

AD approach takes only 27 seconds.

For the 5-dimensional optimization problem of finding the optimal values of all 5 hyper-

paraemters κ1, . . . , κ5, the grid-search approach would take hours or even days. But the

proposed AD approach remains fast and takes only about about 32 seconds. Hence, the

computational gains of using the AD approach can be substantial even in low dimensional

problems. For high-dimensional problems, grid-search is simply impractical, whereas the
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proposed approach remains feasible.

Table 1: Computation times of the proposed AD approach and the grid-search approach

(in seconds). The numbers in parenthesis are the numbers of grid points in each dimension

for the grid-search approach.

optimize κ1-κ3 optimize κ1-κ5

grid (30) grid (60) AD grid (30) grid (60) AD

17.8 138 27.2 16,020 496,800 32.0

Next, we report the optimized values of the hyperparameters in Table 2. Recall that

for the baseline we set κ1 = 0.05, κ2 = 1, κ3 = 100, κ4 = 1 and κ5 = 1 (see, e.g.,

Kadiyala and Karlsson, 1993, 1997). It turns out that the optimal κ1 for both 3- and 5-

dimensional optimization problems is quite close to the baseline value of 0.05. However,

for other hyperparameters the optimal values can be very different from the baseline.

For example, the optimal κ2 is 3.2, which is over 3 times larger than the baseline value.

These values suggest that the baseline case might be under-shrinking the VAR coefficients

associated with higher lags. Overall, by using the optimal values of κ1, κ2 and κ3, one

can increase the log marginal likelihood by about 123.

Table 2: Baseline and optimized values of the hyperparameters.

baseline optimize κ1-κ3 optimize κ1-κ5

κ1 0.05 0.051 0.041

κ2 1 3.2 3.2

κ3 100 28.2 24.2

κ4 1 1 13.0

κ5 1 1 10.3

log-ML 11,093 11,216 11,395

More interestingly, the results from the 5-dimensional optimization problem suggest that

there is substantial gain in shrinking also the error covariance matrix, which is ignored

in the literature so far. Recall that under our setup, the prior mean of Σ is κ5/κ4 ×
diag(s21, . . . , s

2
n), where s2r is the sample variance of the residuals from an AR(p) model

for the variable r. Our result suggests that the optimal prior mean of Σ is only about
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77% of the sample residual variances. By shrinking the error covariance matrix optimally

one can dramatically increase the log marginal likelihood by 179, compared to the case

of optimizing only κ1, κ2 and κ3.

In summary, our full sample results suggest that there is substantial gain in selecting mul-

tiple hyperparameters optimally. Moreover the optimal hyperparameter values obtained

could be quite different from those baseline values commonly used in the literature. In

the next section, we will present evidence that these “better” hyperparameter values do

in fact lead to better forecast performance.

4.3 Forecasting Results

In this section we evaluate the forecast performance of BVARs with optimal hyperparam-

eters relative to a standard benchmark where these hyperparameters are fixed at some

judiciously chosen values. Our sample period is from 1959Q1 to 2018Q4 and the eval-

uation period starts at 1985Q1 and runs till the end of the sample. In each iteration,

we use only the collection of data up to time t, denoted as Y1:t, to obtain the optimal

hyperparameters by maximizing the marginal likelihood as given in (4). We consider two

nested optimization problems. In the restricted version, we follow the standard practice

of the literature and optimize only κ1, κ2 and κ3, while fixing κ4 and κ5 at their baseline

values. In the unrestricted version, we optimize all the hyperparameters κ1, . . . , κ5.

We report in Figure 1 the optimal hyperparameters κ1, κ2, κ4 and κ5 over time. In

the clear from the figures that there is substantial time variation in the optimal values,

highlighting the empirical relevance of obtaining the optimized values, rather than setting

them at some fixed values. In particular, there seems to be a structural break in the

optimal values around the Great Recession of 2007-2009. For example, the optimal κ1

increases from about 0.039 to 0.043, implying less shrinkage of the VAR coefficients

is preferred by the data. Similarly, the optimal κ4 and κ5 drop substantially at the

same time, reflecting less shrinkage of the error covariance matrix. All these results are

consistent with the observation that parameter uncertainty increases at the aftermath of

the Great Recession and less shrinkage of model parameters provides a better fit of the

data.
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Figure 1: Optimized values of the hyperparameters κ1, κ2, κ4 and κ5 over time.

Given the substantial time variation in the optimal hyperparameters, one might expect

that a BVAR where we re-optimize the hyperparameters when new data point comes

in would forecast better than the BVAR in which these hyperparameters are fixed. To

investigate this possibility, we turn to forecasting results next. We focus on four key

macroeconomic variables, namely, Real GDP growth, PCE inflation, Fed funds rate and

Unemployment rate, that are closely monitored by central banks and other policymakers.

In our forecasting exercise we evaluate both point and density forecasts. We use the

conditional expectation E(yi,t+h |Y1:t) as the h-step-ahead point forecast for variable i and

the predictive density p(yi,t+h |Y1:t) as the corresponding density forecast. The metric

used to evaluate the point forecasts is the root mean squared forecast error (RMSFE)

defined as

RMSFE =

√∑T−h
t=t0

(yoi,t+h − E(yi,t+h |Y1:t))2

T − h− t0 + 1
,

where yoi,t+h is the actual observed value of yi,t+h. For RMSFE, a smaller value indicates
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better forecast performance.

To evaluate the density forecast, we use a measure that is based on the predictive likeli-

hood p(yi,t+h = yoi,t+h |Y1:t), i.e., the predictive density of yi,t+h evaluated at the actual

value yoi,t+h. More specifically, we evaluate the density forecasts using the average of log

predictive likelihoods (ALPL):

ALPL =
1

T − h− t0 + 1

T−h∑
t=t0

log p(yi,t+h = yoi,t+h |Y1:t).

For this metric, a larger value indicates better forecast performance. For easy compari-

son, we report the ratios of RMSFEs of a given model to those of the standard BVAR.

Hence, values smaller than unity indicate better forecast performance than the bench-

mark. For the average of log predictive likelihoods, we report differences from that of the

standard BVAR. In this case, positive values indicate better forecast performance than

the benchmark.

Table 3 reports the RMSFEs relative to the baseline BVAR where the hyperparameters

are fixed. Consistent with the results in Carriero, Clark, and Marcellino (2015), using op-

timal hyperparameters improves point forecast performance. For example, by optimizing

κ1, κ2 and κ3, the RMSFEs of forecasting the unemployment rate and Federal funds rate

are reduced by 7% and 11%, respectively. More interestingly, we can further improve the

point forecast performance by shrinking the error covariance matrix Σ optimally. In par-

ticular, optimizing all hyperparamters κ1, . . . , κ5 further reduces the RMSFEs associated

with the unemployment rate and Federal funds rate by 2% and 3%, respectively.

Table 3: Root mean squared forecast errors relative to the baseline BVAR where the

hyperparameters are fixed.

h = 1 h = 4

optimize κ1-κ3 optimize κ1-κ5 optimize κ1-κ3 optimize κ1-κ5

Real GDP 0.97 0.95 0.95 0.94

PCE inflation 0.98 0.98 0.99 0.98

Fed funds rate 0.89 0.86 0.91 0.89

Unemployment rate 0.93 0.91 0.96 0.96
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Next, we report in Table 4 the ALPLs relative to the baseline BVAR. Overall, these

density forecast results are similar to those of the point forecasts. More specifically, for

forecasting all 18 variables jointly, optimizing the hyperparameters κ1, κ2 and κ3 delivers

better density forecast performance relative to the baseline case. In addition, using

optimal values for all the hyperparameters κ1, . . . , κ5 further improves density forecasts.

For forecasting individual variables, optimizing κ1, κ2 and κ3 never hurts density fore-

cast performance relative to the baseline. However, for some variables optimizing also

κ4 and κ5 reduces the forecast gains. This could be because the optimal hyperparam-

eters are chosen by maximizing the marginal likelihood—i.e., the one-step-ahead joint

density forecast performance—and they might not be optimal for some variables. Choos-

ing the hyperparameters optimally for forecasting a subset of key variables would be an

interesting research direction.

Table 4: Average of log predictive likelihoods relative to the baseline BVAR where the

hyperparameters are fixed.

h = 1 h = 4

optimize κ1-κ3 optimize κ1-κ5 optimize κ1-κ3 optimize κ1-κ5

All variables 0.909 1.037 0.955 1.113

Real GDP 0.012 0.009 0.022 0.025

PCE inflation 0.033 0.025 0.031 0.031

Fed funds rate 0.027 0.018 0.032 0.032

Unemployment rate 0.039 0.044 0.018 0.031

5 Concluding Remarks and Future Research

We have developed a computationally efficient method based on Automatic Differentia-

tion to select the optimal hyperparameters for large BVARs. Using a large US dataset,

we demonstrated that the computational gains of this new method compared to the

convectional grid-search approach can be substantial in high-dimensional problems. In

addition, we showed that by selecting the hyperparameters optimally, one can obtain no-

table improvement in forecast performance. Our findings therefore highlight the empirical

relevance of using a data-driven approach to select hyperparameters for forecasting using
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large Bayesian VARs.

For the setting considered in this paper, the marginal likelihood has an analytical expres-

sion, which can be used to speed up computations. For most complex models, however,

the marginal likelihood is not available in close-formed, and its evaluation often requires

Monte Carlo simulation. It would be useful to develop similar methods to choose optimal

hyperparameters in those settings. Chan, Jacobi, and Zhu (2019a) take a first step in that

direction by developing AD-based methods for a range of VARs and factor models. More

generally, selecting optimal hyperparameters by maximizing the marginal likelihood for

time-varying models, such as stochastic volatility models developed in Cogley and Sar-

gent (2001, 2005) and Primiceri (2005), would be an important but challenging research

problem.
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Appendix A: Data

The dataset is sourced from the FRED-QD database at the Federal Reserve Bank of St.

Louis (McCracken and Ng, 2016). It covers the quarters from 1959Q1 to 2018Q4. Table 5

lists the 18 quarterly variables and describes how they are transformed. For example,

∆ log is used to denote the first difference in the logs, i.e., ∆ log x = log xt − log xt−1.

Table 5: Description of variables used in the forecasting exercise.

Variable Transformation

Real Gross Domestic Product ∆ log

Personal Consumption Expenditures ∆ log

Real Disposable Personal Income ∆ log

Industrial Production Index ∆ log

Capacity Utilization: Manufacturing (SIC) no transformation

All Employees: Total nonfarm ∆ log

Civilian Employment ∆ log

Civilian Unemployment Rate ∆

Nonfarm Business Section: Hours of All Persons ∆ log

Housing Starts: Total ∆ log

Personal Consumption Expenditures: Chain-type Price index ∆2 log

Gross Domestic Product: Chain-type Price index ∆2 log

Consumer Price Index for All Urban Consumers: All Items ∆2 log

Real Average Hourly Earnings of Production and Nonsupervisory

Employees: Manufacturing, deflated by Core PCE ∆ log

Effective Federal Funds Rate ∆

Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield

on 10-Year Treasury Constant Maturity no transformation

Real M1 Money Stock ∆ log

S&P’s Common Stock Price Index : Composite ∆ log
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Appendix B: Derivation of the Marginal Likelihood

In this appendix we prove that the marginal likelihood of the VAR(p) under the normal-

inverse-Wishart prior has the following expression:

p(Y) = π
−nT

2 |VA|−
n
2 |KA|−

n
2

Γn
(
ν0+T

2

)
|S0|

ν0
2

Γn
(
ν0
2

)
|Ŝ|

ν0+T
2

.

Using the likelihood in (2) and the normal-inverse-Wishart prior density in (3), the result

follows from direct computation:

p(Y) =

∫
p(A,Σ)p(Y |A,Σ)d(A,Σ)

= c(2π)−
Tn
2
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2 e−

1
2
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1
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where c = (2π)−nk/22−nν0/2|VA|−n/2Γn(ν0/2)−1|S0|ν0/2,

KA = V−1A + Z′Z, Â = K−1A (V−1A A0 + Z′Y), Ŝ = S0 + A′0V
−1
A A0 + Y′Y − Â′KAÂ.

In the above derivation we have used the fact that∫
|Σ|−

ν0+T+n+k+1
2 e−

1
2
tr(Σ−1Ŝ)e−

1
2
tr(Σ−1(A−Â)′KA(A−Â))d(A,Σ)

= (2π)
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2 2
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2 |K−1A |
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2
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|Ŝ|−
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2 .

Note that the right-hand side of the above equality is simply the normalizing constant of

the NIW(Â,K−1A , ν0 + T, Ŝ) distribution.
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