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ABSTRACT   

Obtaining accurate and noise-free three-dimensional (3D) reconstructions from real world scenes has grown in importance 

in recent decades. In this paper, we propose a novel strategy for the reconstruction of a 3D point cloud of an object from a 

single 4D light field (LF) image based on the transformation of point-plane correspondences. Considering a 4D LF image 

as an input, we first estimate the depth map using point correspondences between sub-aperture images. We then apply 

histogram equalization and histogram stretching to enhance the separation between depth planes. The main aim of this step 

is to increase the distance between adjacent depth layers and to enhance the depth map. We then detect edge contours of 

the original image using fast canny edge detection, and combine linearly the result with that of the previous steps. 

Following this combination, by transforming the point-plane correspondence, we can obtain the 3D structure of the point 

cloud. The proposed method avoids feature extraction, segmentation and the extraction of occlusion masks required by 

other methods, and due to this, our method can reliably mitigate noise. We tested our method with synthetic and real world 

image databases. To verify the accuracy of our method, we compared our results with two different state-of-the-art 

algorithms. In this way, we used the LOD (Level of Detail) to compare the number of points needed to describe an object. 

The results showed that our method had the highest level of detail compared to other existing methods.   
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1. INTRODUCTION  

The issue of acquiring noise-less and complete 3D point clouds is of paramount importance to support advances in virtual, 

augmented reality and 3D printing. There is a significant demand for obtaining high quality 3D point clouds scanned from 

real objects for 3D rendering, computer graphics, 2D view extraction from 3D data, virtual reality, and object deformation 

[1]. A 3D point cloud can be obtained from various methods. Many existing methodologies for reconstruction of 3D models 

are based on either Structure-From-Motion (SFM) or Dense Multi-View 3D Reconstruction (DMVR). However, these 

methods need multiple captures from different angles and significant user interaction when using an ordinary camera. For 

this reason, recent research has focused on the development of new strategies using less costly devices while continuing 

to minimize complexity [2]. 

Given the status quo, one very effective solution is the creation of a 3D model from one single image. However as a single 

conventional image supplies limited information about the 3D nature of objects or scenes, accurate estimation of 3D 

geometry from a single image is difficult to achieve [3]. Nevertheless, light field images with the ability to capture rich 3D 

information with a single capture can be an effective solution to this problem. The introduction of light field cameras (a 

type of plenoptic camera) has helped to reveal new solutions and insights into a wide variety of traditional computer vision 

and image processing problems. Light field cameras capture rich information about the intensity, color and direction of 

light, and can be used to estimate a depth map or 3D point cloud from a single captured frame. Light field camera 

technology has the potential to create 3D point cloud reconstructions in circumstances where standard multi-capture 

techniques can fail such as dynamic scenes or objects with complicated material appearance. The unique features of light 

field images, such as the capture of light rays from multiple directions, provides the ability to reconstruct 2D images at 

different focal planes. This feature can also aid in depth map reconstruction [2]. A light field image can have multiple 

representations.  However, two LF representation formats are more common for computer vision and image processing 

problems; the lenslet format and 4D LF format. In this work, we used the 4D format that in our experience is more reliable 
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for depth map estimation. For the reconstruction of a 3D point cloud of an object, we develop new method which is based 

on the transformation of the point-plane correspondences. The input of our system is a 4D LF image which can be captured 

by light field cameras, such as the Lytro [4] or created synthetically. As a first step we estimate a sparse version of the 

depth map using sub-aperture image matching. As having densely sampled depth map is essential for creating a 3D point 

cloud, we enhance the depth map substantially by applying histogram equalization and histogram stretching followed by 

adding edge detection information from the original image. This kind of enhancement after estimation of depth map is one 

of the significant contributions of this work. These steps also can increase the distance between adjacent depth layers. 

Therefore, we combined the result of stretched depth map with canny edge detection results linearly and then transform 

the point-plane correspondence for acquiring a 3D point cloud. Figure 1 shows the main block diagram of our proposed 

method. 

The remainder of the paper is arranged as follows: Section 2 presents prior work relating to reconstruction of 3D point 

cloud, and estimation of the depth map. Section 3 discusses briefly plenoptic camera characteristics. In Section 4 our 

proposed method is described. Performance on real-world and synthetic image databases are compared against other 

methods discussed in Section 5, followed by conclusive remarks and potential future directions in Section 6. 

Figure 1. Overview of the proposed method. Our method consists of 4 main stages: 1. 4D format of light field image as input images, 

2. Depth map estimation based on using point correspondences between sub-aperture images, 3. Canny edge detection results are 

combined linearly with the histogram stretched depth map, 4. Transforming the point plane correspondences to create a final 3D point 

cloud. 

2. RELATED WORK  

Existing 3D reconstruction approaches can be divided into three different groups: methods based on capturing multiple 

images, creating 3D point clouds based on Deep Learning and approaches based on 3D reconstruction from a single image. 

 
2.1 3D reconstruction from capturing multiple images   

In general, the reconstruction of 3D point clouds from multiple image captures of the same scene is a computationally 

expensive process and requires significant user interaction. One of the common methods in this field is Structure from 

Motion (SFM) which requires the capture of photos of a scene from all feasible angles around the object. Pezzuolo et al. 

[5] reconstructed three-dimensional volumes of rural buildings from groups of 2-D images by using SFM methods.  Bae 



 

 
 

 

 

 

et al. [6] proposed an image-based modelling technique as a faster method for 3D reconstruction. For image capture, they 

utilized cameras on mobile devices. One of the benefits of using image-based modelling is the accessibility of texture 

information that can enable material recognition and 3D CAD model objects recognition [7, 8] . Pileun et al. [9] estimated 

the positions and orientations of the object by using Simultaneous Localization and Mapping (SLAM).  The 2D localization 

information is utilized for creating 3D point clouds. This reduces the time of scanning and requires less effort for collecting 

accurate 3D point cloud data but still needs user interaction. 

2.2 Creating 3D point clouds based on Deep Learning techniques 

Recently, approaches based on deep learning have drawn attention for solving many computer vision problems. A wide 

variety of deep learning models have been developed to create 3D point clouds but most of them require images capturing 

an object with an uncluttered background and a fixed view point [10]. Current techniques have limited application to real 

world objects. Yang et al. [11] generated point cloud based on a specific deep model named PointFlow This model has the 

advantage of having two levels of continuous flows of normalizing the point cloud. The first level is for creating the shape 

and the second level is for distributing the points. For handling large scale 3D point clouds, Wang et al. [12] developed a 

method based on the feature description matrix (FDM) combining traditional feature extraction with a deep leaning 

approach. As deep learning solely is not efficient for creating a 3D point cloud, Vetrivel et al. [13] combined a 

convolutional neural networks approach with 3D features to improve results. Wang et al. [14] used deep learning for fast 

segmentation of 3D point clouds. They introduced a new framework called Similarity Group Proposal Network (SGPN). 

However this method is still not efficient for real-world objects.   

 

2.3 3D reconstruction from a single image approaches 

Creating 3D point clouds from a single image has received significant attention from the research community. However, 

3D reconstruction from a single projection still has many problems and is a challenging topic. Mandika et al. [15] estimated 

3D point clouds from a single input view by training an auto-encoder to learn a mapping from 2D input images to 3D point 

clouds. However this type of estimate is not very accurate and requires extensive training [16]. To overcome the drawbacks 

of estimation of 3D point clouds from a single capture, light field cameras have been proposed. Using light field images 

as an input can lead 3D point cloud estimates with low cost and complexity. Perra et al. [2] used light field images as an 

input image to determine depth maps of scenes and from that information estimate 3D point clouds. The depth maps that 

are automatically acquired from light field cameras has have some potential limitations for when dealing with real objects. 

To tackle this problem, we propose a novel algorithm for estimating the depth map based on the information inherent to 

light field images.   

 

3.  LIGHT FIELD CAMERA 

A light field camera is a type of Plenoptic camera that with one image capture through an array of micro-lenses, can collect 

a wide variety of information about the color, intensity and direction of light in a scene. In contrast, in a traditional digital 

camera, the lack of data about the direction and intensity of light makes solving many problems of computer vision difficult. 

An early light field camera was developed in 2005 and was called the Lytro [4] and professional version of Lytro was 

introduced in 2014, called the Lytro Illum. Light field cameras have several applications such as post-capture refocusing, 

depth map estimation and illumination estimation. One of the significant features of light field camera is shown in Figure 

2 which shows post-capture refocusing in two different focal planes. Refocusing allows for changing the focal plane to a 

different position post-capture. A light field can be considered as a vector function I (u, v, s, t) and two planes (lens plane 

and sensor plane) [17] where u and v are coordinates on the lenses plane and s and t are co-ordinates on the sensor plane 

as shown in Figure 2. 

4. PROPOSED METHOD 

We used a Lytro Illum camera in this work. After comparing different types of LF formats we decided to use the 4D LF 

format as an input image for more consistency and reliability. 



 

 
 

 

 

 

 

Figure 2. An illustration of the light field function and post-capture re-focusing. (a) Focus in the foreground. (b) Focus in the 

background. (c) A diagram of a light field camera setup where a is the distance from the camera plane to sensor plane and b is the 

distance between the sensor and the micro-lens array. 

 

Our approach is based on transforming the point-plane correspondences and in the first step we estimate the depth map. 

Estimating an accurate depth map is essential to having a complete 3D point cloud. Following this step, we will enhance 

the depth map by histogram stretching and edge detection and then by transforming we will acquire the 3D point cloud. 

4.1 Depth map Estimation 

A light field image consists of an array of sub-aperture images. A sub-aperture image is defined by light rays entering the 

the focal (sensor) plane from one point in the lens plane. As we are utilizing the 4D LF format pixel coordinates of a LF 

image I are determined using the 4D parameters of (s, t, u, v). An initial depth map estimate is formed by correspondence 

matching between sub-aperture images. 

For correspondence matching between sub-aperture images, the sum of gradients is first calculated. We begin by 

introducing P as a pixel in a non-central sub-aperture image and Pc as the corresponding pixel in the center view acquired 

by correspondence matching. For the correspondence matching we used the SIFT algorithm [18].  We can then define k as 

the label of the correspondence match and (s, t) are the coordinates of the sub-aperture image corresponding to P and (sc,tc) 

are the coordinates of the central sub-aperture image. For each correspondence the sum of gradients GD(s,t,P,Pc)  is 

acquired by a weighted sum of the gradients along the s and t dimensions: 

 

 𝐺𝐷(𝑠, 𝑡, 𝑃, 𝑃𝑐) = 𝐺𝐷(𝑠, 𝑡, 𝑃, 𝑃𝑐) + ‖𝐼(𝑃) − 𝐼(𝑃𝑐)‖ + ‖𝐼(𝑃) − 𝐼(𝑃)̅̅ ̅̅ ̅̅ ‖ (1) 

 

where 𝐼(𝑃)̅̅ ̅̅ ̅̅  is the median intensity value of the correspondences in s,t. A full-size map 𝐺𝐷́(𝑠, 𝑡, 𝑢, 𝑣)  is computed by 

allocating an array for each sub-aperture image of the same size as the sub-aperture images containing only zero values at 

each pixel location. For each correspondence, 𝐺𝐷́(𝑠, 𝑡, 𝑢, 𝑣)   is set to 𝐺𝐷(𝑠, 𝑡, 𝑃, 𝑃𝑐). This results in a map of gradients 

for each sub-aperture image which contains the value of 𝐺𝐷(𝑠, 𝑡, 𝑃, 𝑃𝑐) for locations where a correspondence was found 

and zeros elsewhere. 



 

 
 

 

 

 

To obtain the final depth map based on correspondence matching we sum across all sub-aperture gradient maps. 

 

𝐷𝑀(𝑢, 𝑣) = ∑ 𝐺𝐷́(𝑠, 𝑡, 𝑢, 𝑣)𝑠,𝑡                                                                    (2) 

 

For having a dense depth map we added defocus information as well to fill gaps between correspondences. We will save 

the depth map output as an 8-bit grayscale 2D image and for simplicity denote it as 𝐷𝑀𝑢𝑣. 

 

4.2 Histogram equalization and Canny edge detection 

After receiving the 2D depth map image from previous step, 𝐷𝑀(𝑢, 𝑣), In order to increase the distance between adjacent 

depth layers  we will enhance the depth map by histogram equalization. In the first step we are using histogram stretching 

to improve the separation between the depth planes.  

 

𝑚𝑢𝑣 =
𝐷𝑀𝑚𝑎𝑥 − 𝐷𝑀𝑚𝑖𝑛

255
 

𝑏𝑢𝑣 = 255 − 𝑚𝑢𝑣 ∗ 𝐷𝑀𝑚𝑎𝑥                                                                    (3) 

𝐻𝑆𝑢𝑣 = 𝑚𝑢𝑣 ∗ 𝐷𝑀𝑢𝑣 + 𝑏𝑢𝑣 

 

where 𝐷𝑀𝑢𝑣 is 2D depth map image with a minimum value denoted as 𝐷𝑀𝑚𝑖𝑛 and a maximum value denoted as 

𝐷𝑀𝑚𝑎𝑥 and 𝐻𝑆𝑢𝑣 is the histogram stretched depth map. 

In the second step, canny edge detection is applied on the input image 𝐼(𝑢, 𝑣). The main aim of the Canny operator is to 

utilize the first derivative of a Gaussian in different directions as a filter of noise and then on the filtered image the 

maximum value of local gradient will be calculated to determine image edges [19]. 

For smoothing filter, the Canny filter uses a Gaussian filter as denoted below: 

 

 𝐺(𝑢, 𝑣) =
1

2𝜋𝜎2 𝑒𝑥𝑝 (−
𝑢2+𝑣2

2𝜋𝜎2 ) (4) 

 

which is applied to the input image 𝐼(𝑢, 𝑣) by convolution. 

 

 𝐼(𝑢, 𝑣) =  𝐺(𝑢, 𝑣) ∗ 𝐼(𝑢, 𝑣) (5) 

 

After that for detecting the edges, the value of the local gradient and direction of image are calculated. 

 

                                   𝐼1(𝑢, 𝑣) = (𝐼(𝑢, 𝑣 + 1) − 𝐼(𝑢, 𝑣) + 𝐼(𝑢 + 1, 𝑣 + 1) − 𝐼(𝑢 + 1, 𝑣))/2 

 𝐼2(𝑢, 𝑣) = (𝐼(𝑢, 𝑣) − 𝐼(𝑢 + 1, 𝑣) + 𝐼(𝑢, 𝑣 + 1) − 𝐼(𝑢 + 1, 𝑣 + 1))/2 (6) 

𝐶𝐴𝑢𝑣 = √𝐼1(𝑢, 𝑣)2 + 𝐼2(𝑢, 𝑣)2 

𝜃(𝑢, 𝑣) = arctan (𝐼1(𝑢, 𝑣) + 𝐼2(𝑢, 𝑣)) 

 

where 𝜃(𝑢, 𝑣) is the direction of gradient and 𝐶𝐴𝑢𝑣 is the edge image. 

 

In the third step, the histogram stretched image and the edge image are combined linearly (image fusion), and the result 

will be saved in 𝑇𝑢𝑣. 
 𝑇𝑢𝑣 =  |𝐻𝑆𝑢𝑣 + 𝐶𝐴𝑢𝑣| (7) 



 

 
 

 

 

 

4.3 Creating 3D point cloud by transforming the point-plane correspondence 

For estimation of 3D point cloud we need to estimate 𝑇𝑧 (the z component of each point at position u,v) from which a 

point cloud can be created by transforming the point-plane. 

For the points in the final point cloud we start by selecting Tx = Tu and Ty = Tv, then for computing 𝑇𝑧: 

 

𝐷 = 𝑏 ∗ 𝑓𝑙 ∗ 𝑓𝑐 

𝑇𝑧 =  
𝐷

𝑇𝑥𝑦∗𝑓𝑐∗𝑏∗max (𝑇𝑥𝑦)
                                               (8) 

 

which  𝑏 is amount of the baseline, 𝑓𝑙 is the focal length and 𝑓𝑐 is the focus distance. 𝑓𝑙 is an intrinsic parameter and 

depends on the captured image. 𝑏 and 𝑓𝑐 are extrinsic parameters and depend on the type of camera. The x and y coordinates 

of the point are then given by: 

T𝑥́ =  
T𝑥 ∗ 𝑇𝑧

𝑓𝑐
 

(9) 

𝑇́𝑦
́ =  

T𝑦 ∗ 𝑇𝑧

𝑓𝑐
 

where 𝑆𝑒 is the sensor size (mm). We then denote the estimation of 3D point cloud by 𝑇𝑥𝑦𝑧 : 

 

𝑇𝑥𝑦𝑧 = (𝑇́𝑥 , 𝑇́𝑦, 𝑇𝑧)                                                                        (10) 

 

5. EXPERIMENTAL RESULTS 

We evaluated our method with two different databases and compared the proposed method with two sate of art methods, 

as described in further detail below. For estimating the error of proposed method we used LOD (level of details) as shown 

in part 5.3. 

5.1 Result on databases  

We used two different databases; one synthetic database and one real world light field image database.  For the synthetic 

database we utilized a database popularized by the research community, which was created by Wanner et al. [20]. For the 

dataset of real images we used a Lytro Illum to capture various images. For having better evaluation we captured images 

in different situations, including images with shading, low-texture, and challenging images such as very bright images and 

images with occluded pixels. Our method is tested in wide variety of images of which a sample of results on synthetic 

image is shown in Figure 1 and two other samples of real images captured ourselves are shown in Figure 3 and Figure 4. 

 



 

 
 

 

 

 

Figure 3. A step by step illustration of our methodology for creating 3D point clouds. (a) Input light field image. (b) Depth map based 

on our approach. (c) Result of histogram stretching applied to the depth map. (d) The results of applying canny edge detection to the 

central sub-aperture image. (e) Image fusion (combining (c) and (d) linearly). (f) 3D point cloud. 

 
5.2 Methods compared 

To illustrate the accuracy of our proposed method, we compared our result with those Perra et al. [2] and Dansereau et al. 

[21]. Perra et al. [2], produced 3D point clouds based on the depth map that is created by software supplied with the Lytro 

camera, however this software does not produce an accurate depth map in all situations. As shown in Figure 4, we compared 

the depth map output by the Lytro software with our depth map.  We re-implemented Perra et al’s method in Matlab to 

compare its performance with our result.  For Dansereau et al. [21] we also re-implemented just the 3D reconstruction part 

of their method in Matlab and evaluated their result against ours. The comparison on a very challenging image is shown 

in Figure 4. The image is captured in low-light conditions and also has shadowed areas. However, it is clear that our result 

is more accurate compared to other methods. 

 

5.3 Evaluation methods 

For evaluating the performance of point cloud reconstruction algorithms, one important factor is the level of details (LoD) 

[22]. In computer graphic the level of details is evaluated by number of surface. We calculated the number of points in our 

point cloud for comparison against two other methods.  Table 1 shows the result of this comparison. 

 

Table 1.  Comparing numbers of point in synthetic (Papillon) and real image (Cat). 

Light field image Perra et al.[2] Dansereau et al.[21]. Our method 

Papillon 57860 43650 69523 

Cat 86230 74253 102365 

 



 

 
 

 

 

 

 
Figure 4. Comparing our result with other state-of-the-art methods. (a) Light field input image; (b) Depth map created by the Lytro 

software; (c) Depth map that is produced by our method; (d) 3D point cloud obtained by re-implementing the method of Dansereau et 

al. [21]; (e) 3D point cloud obtained by re-implementing the method of Perra et al. [2]; (f) The result of our 3D point cloud 

reconstruction algorithm. 

CONCLUSION 

We have developed a solution for creating 3D point clouds based on the one single image capture. We used a light field 

image as an input to our system. The unique features of light field cameras lead to accurate depth map estimates. In 

particular, rich information about scene can be obtained from the one image capture, including light intensity and the 

direction of light at a range of angles incident to the sensor. In our method, the 3D point cloud has been produced by 

transformation of the point-plane correspondences. We first estimate the depth map based on the sub aperture image 

matching, and then we create the 3D point cloud with transformation of the point-plane based on the enhanced depth map. 

The results confirm that our method can create point clouds with improved accuracy compared to other state-of-the-art 

methods and our depth map is more accurate than that estimated by the Lytro software. In future work, we will work on 

converting 3D point cloud to recover the surface geometry of objects for further manipulation. 
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