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Abstract—With the ubiquitous deployment of wireless systems
and pervasive availability of smart devices, indoor localization
is empowering numerous location-based services. With the es-
tablished radio maps, WiFi fingerprinting has become one of
the most accessible and practical approaches to localize a mobile
user. However, most fingerprint-based localization algorithms are
computation-intensive, with heavy dependence on both offline
training phase and online localization phase. In this paper,
we propose CNNLoc, a Convolutional Neural Network (CNN)
based indoor localization framework with WiFi fingerprints
for multi-building and multi-floor localization. We propose a
novel classification model by combining Stacked Auto-Encoder
(SAE) with one-dimensional CNN. The SAE can be used to
extract key features more precisely from sparse Received Signal
Strength (RSS) data, and the CNN can be trained to effectively
achieve high success rates in the localization phase. We evaluate
CNNLoc with state-of-the-arts as benchmarks on the UJIIndoor-
Loc dataset and Tampere dataset. CNNLoc shows its excellence in
both building-level and floor-level classifications and outperforms
the existing solutions with 100% success on building success rate
and an average success rate over 95% on floor-level localization.

Keywords-Indoor Localization; Deep Learning; Convolutional
Neural Network; WiFi Fingerprinting

I. INTRODUCTION

Indoor Location-Based Services (ILBSs) have become an
essential component for various indoor applications, such
as location based wireless advertising, information retrieval
and pedestrian navigation [1]. With explosive demand on
high-accuracy and low-cost localization, indoor positioning
has attracted a lot of interests from industrial community to
research literature. Knowing the floor level of a mobile user is
particularly useful to a variety of location based applications in
a multi-building and multi-floor environment. Various indoor
localization techniques have been proposed using different
types of modalities, such as, WiFi, visible light, acoustic,
Bluetooth, cellular network and their combinations [2]. The
majority of localization techniques utilize Received Signal
Strength (RSS) of Wireless Access Points (WAPs) [3] to iden-
tify locations of mobile users. The RSS fingerprints observed
by mobile users can be leveraged to deduce their locations
with the pre-constructed fingerprint dataset.

∗ Zumin Wang is the corresponding author.

In general, there are two phases in fingerprinting localiza-
tion, i.e., the offline phase (training phase) and online phase
(positioning phase). In the offline phase, the fingerprint dataset
(radio map) is constructed by collecting RSS fingerprinting
data at pre-known reference points of interested areas, shown
in Fig. 1. In this way, the RSS fingerprints are labelled with the
location information for training and matching purposes [4]. In
the online phase, mobile users can simply send queries to the
system with current RSS measurements. By finding the best
match over the dataset, the localization system will return the
closest fingerprint to the requester as well as the corresponding
locations.

Accordingly, literature studies are confronting with two
major issues in fingerprint-based localization, i.e., dataset
construction and localization accuracy. In addressing the first
issue, numerous recent studies embrace crowdsourcing based
techniques [4] to empower automatical fingerprint collection,
avoiding labour-intensive site surveys. Meanwhile, despite the
efforts to improve the accuracy and efficiency, each localiza-
tion algorithm is tested with its own dataset, so the reported
results of different algorithms are impossible to compare [4].
This is due to each work not only uses its own dataset,
but also conducts unrepeatable experiments under different
environmental settings [5]. Therefore, some open-source RSS
fingerprint datasets are constructed and released as benchmark
datasets for indoor localization, including UJIIndoorLoc [6],
Tampere University dataset [4] and IPIN dataset. [7]

A key challenge in locating indoor target based on a WiFi
fingerprinting dataset is how to achieve high-accuracy and low-
cost localization under the fluctuation of signal and noise from
multi-path effects. Traditional approaches, including proba-
bilistic , K-nearest-neighbor (KNN) and Support Vector Ma-
chine (SVM), are computation-intensive and time-consuming
with complex filtering and parameter tuning. Recently, Deep
Neural Network (DNN) based localization approaches [8], [9]
has been proposed with the rising of deep-learning. Neverthe-
less, the performance of DNN-based methods is still subject
to the sufficiency of input training data. Since DNN is fully
connected, its complexity of computation is directly related
to the depth (i.e., number of layers) of the neural network,
affecting the accuracy of localization results.
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Fig. 1: Fingerprinting based indoor localization scenario

To address the above issues, we explore the possibility of
using a CNN for indoor localization. By leveraging the CNN,
the convolution can replace the general matrix multiplication
in neural networks thus reducing the computation complexity.
We propose a CNN-based indoor Localization with WiFi
fingerprinting (CNNLoc). Compared with the existing indoor
localization approaches, the main contributions of this work
are summarized as follows.

1) We propose an innovative deep-learning based model for
multi-building and multi-floor indoor localization. Our
model leverages a stacked auto-encoder to reduce the
data dimension and combines a one-dimensional CNN
to increase the network depth and improve localization
accuracy.

2) We present a novel algorithm to extract a verification
dataset from the training dataset, resolving the uncertain-
ty brought by conventional random selection especially
when the dataset volume is small.

3) We evaluate CNNLoc on two open-source datasets
and make a complete comparison with state-of-the-art
approaches as benchmarks. CNNLoc demonstrates its
excellency with high accuracy, and outperforms all of
the benchmarks with 100% success on building success
rate and an average success rate over 95% on floor-level
localization.

The remainder of this paper is organized as follows. We
review the related indoor localization work in Section II. In
Section III, based on open-source datasets, we present the
system architecture of CNNLoc. In Section IV, we devise
an innovative algorithm for extracting a verification dataset
and introduce the data preprocessing and model pre-training.
In Section V, we optimize our model through experiments
and compare CNNLoc with several benchmarks in terms
of localization accuracy under two public datasets. At last,
we conclude this work with a discussion on future work in
Section VI.

II. RELATED WORK

WiFi based Indoor localization generally falls into two
main categories: device-free and device-based localizations
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Fig. 2: System architecture of CNNLoc

[3]. In device-free localization, the target entities do not carry
any wireless devices and the deployed system captures the
presence and motion of each target entity via their reflection on
the WiFi signals. Meanwhile, device-based localization tracks
a WiFi-enabled mobile device through various measurements,
including Time-of-Arrival (ToA), Angle-of-Arrival (AOA),
Received Signal Strength (RSS) and Channel State Informa-
tion (CSI). WiFi fingerprinting has become a major approach
as it can achieve applicability in various indoor environments.
In particular, machine learning has recently become attractive
for WiFi-fingerprinting based indoor localization. In [10], a
weighted KNN algorithm was proposed to assign different
weights to WAPs and it can achieve room-level localization.
In [11], a DNN-based indoor fingerprinting scheme was em-
ployed to address the labour-intensive and time-consuming
issues in achieving reliable and accurate localization. In [12], a
deep CNN was proposed to train the weights of AOA images
derived from CSI information. In [13], a CNN-based WiFi
fingerprinting method was presented, and it outperformed the
DNN-based methods. In this paper, we leverage deep learning
by integrating a CNN with SAE for more accurate and efficient
localization in a multi-building and multi-floor environment.

III. SYSTEM DESIGN

In this section, we first present the system architecture of
CNNLoc, then we introduce the offline phase and online phase
with detailed model design of CNNLoc, respectively.

A. System Architecture

In this subsection, we present the system architecture of
CNNLoc, as shown in Fig. 2. The localization process of
CNNLoc consists of training phase and testing phase. The
first step of training phase it to build a fine-grain fingerprint
database and preprocess the RSS data into normalized finger-
print. More importantly, the deep learning model is built with
SAE layers and CNN layers, then we train this model with the
preprocessed data. In online positioning phase, the CNNLoc
will compute the fingerprint data of location requester and
send back the localization results to the requester. Next, we
first specify the data input and output and present the floor
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Fig. 3: Floor model with SAE and CNN layers

model and building model in detail. In addition, we explain
the cost function and earlystopping methods used in CNNLoc
model.

B. Input and Output Specification

TABLE I: Feature comparison of two datasets

Features UJIIndoorLoc Tampere
Number of training samples 19938 697
Number of test samples 1111 3951
Number of WAPs 520 992
Default value of missed RSS 100 100
Floor representation floor number floor height

To specify the input and output structure of proposed model,
we employ UJIIndoorLoc [6], the biggest open-access indoor
localization database in literature studies. To evaluate the
performance of CNNLoc, we also adopt the recently released
Tampere dataset and the details are shown in Section V.
As shown in Table I, the UJIIndoorLoc database contains
21049 fingerprint samples and covers 3 buildings with 4 or
5 floors. Accordingly, we determine the input of CNN model
as X = (x1, ...xi, ...x520), where x is a 1-D vector with length
of 520 and xi denotes the RSS measurement on WAP i. In
training phase, each RSS measurement is associated with an
unique label of building number or floor number. For example,
(X, b, f) denotes the RSS fingerprint X with building label b
and floor label f . For training purpose, the dataset is divided
into three parts, i.e., the training set, the verification set and
the test set.

C. Floor Classification Model

In this section, we introduce the one-dimensional convo-
lutional neural network (1D-CNN) classification model for
multi-level indoor localization. The 1D-CNN model consists
of self-encoding layers, a dropout layer, convolutional layers
and an output layer. The architecture of floor model is illus-
trated in Fig. 3 and we introduce the details of 1D-CNN model
as follows.

SAE: For sparse data, the Stacked Auto-Encoder (SAE) can
effectively reduce the data dimension and still preserve the
necessary feature information [11]. In our SAE model, we
leverage unsupervised learning to compress the input data to
64 features. The outputted features are further connected to
CNN model for classification.

1D-CNN: Due to the small variations of RSS fingerprints
between adjacent floors, a major challenge in improving
localization accuracy is how to distinguish users at these floors.
For example, a benchmark approach proposed in [6] can only
achieve the success rate of floor classification at 89.92%. In
order to obtain better prediction results, we connect a 1D-
CNN model to the pre-trained SAE to further supervise the
entire model. With the calculation of SAE, the input data of
CNN is refined as a feature vector with length of 64. To avoid
overfitting, we add a Dropout layer between the SAE and
CNN. To enable convolutional calculation, we further convert
the feature vector into a two-dimensional vector data. The 1D-
CNN operate three convolutional operations, the output is a set
of 33 convolutional layers. To this end, the two-dimensional
layers are flatten into one-dimensional features connected to
output layer for classification.



D. Building Classification Model

While building classification is prior to the floor classifica-
tion, we use the same self-coding layer as floor model, which
is further connected to a fully connected hidden layer and a
building classification layer.

E. Cost Function

We adopt cost function 1 to calculate the degree of in-
consistency between the localization results and groundtruth.
The localization result is more accurate when the value of
cost function is smaller. The cost function we use is called
quadratic cost function, as shown in Equation 1.

C =
1

2n

∑
x

∥y − a∥2 (1)

Here, n is the total number of input samples, X represents
the input vector of training samples, y represents the vector of
groundtruth, a represents the corresponding localization output
vector.

F. EarlyStopping Strategy

We further adopt EarlyStopping strategy to monitor the
performance of CNNLoc on verification set. During each
training session, the trained model will be evaluated by
verification dataset. For example, if the localization accuracy
on verification dataset shows no improvement within last p
training sessions, the training process will be terminated. In
CNNLoc model, we use the patience parameter p to control
the training process with EarlyStopping. In this way, we can
improve the training efficiency and localization performance
simultaneously.

IV. DATA PRE-PROCESSING AND MODEL PRE-TRAINING

Before start to train the deep learning model proposed in
previous section, we pre-process the data and pre-train the
model in three folds. First, we devise a novel algorithm to
extract a verification set from the training set. Second, we
normalize the input data and restore it into original represen-
tation, thereby improving the accuracy of the result. Third, the
SAE model is pre-trained before we start to train the whole
CNNLoc model.

A. Extracting the verification set

CNNLoc has several setting that we can use to control
the behavior of the learning process, and these settings are
called hyperparameters. If learned on the training set, the
hyperparameters would always choose the maximum possible
model capacity, resulting in overfitting. Therefore, we need
to extract a disjoint set called verification set out of training
set and use this verification set to update the hyperparameters
accordingly. However, as most conventional methods extract
the verification set by random selection, the performance of
trained model are not always stable. To solve this problem,
we adopt uniform sampling [14] to extract the verification
set from the training set evenly, thus improving the stability
experimental results.

Fig. 4: Extract the verification dataset from the training dataset

Methodology: The uniform sampling algorithm for UJIIn-
doorLoc dataset is presented in Algorithm 1. The input is the
all-dataset AD, side length of grid L and number of samples
per grid N . The output is the training set T and the verification
set V .

First, the all-dataset AD is divided into sub-dataset SD by
building and floor. Second, we create a grid with a cell length
of L for each floor to cover all the coordinates in SD. The
set of center coordinates for each cell in the SD is denoted
as C. Third, for each coordinate center G in set C, we select
a set of data I in the SD covered by the cell whose center
is G. Finally, if I not empty, for each N data closest to the
coordinates of the center point G are selected as verification
set V the remaining part as training set T in the set of data I .

As shown in Fig. 4, subgraph(a) shows the relative position
of AD, and subgraph(b) is the relative position of the verifi-
cation set V , which is extracted from AD. In this experiment,
the parameters L, N is set to 5 and 3 respectively. It is worth
mentioning that this dataset collects multiple data at each
position, so the points shown in the figure are the result of
the superposition, and the number of real points is more than
the number of displays.

B. Dataset preprocessing

We preprocess UJIIndoorLoc dataset for training CNNLoc
model first. In this dataset, the value of input RSS data ranges
from -104 dBm to 0 dBm, and we convert these RSS values
from (-104, 0) into (0, 1) using Function 5. For any WAP is not
detected in one measurement, its RSS value is marked as 100
dBm, and we denote the RSS value on any undetected WAP
0. In [15], it is indicated that the different data representation
of RSS fingerprints can influence the success rate and error
rate during localization. Specifically, the authors compare the
linear representation (Equation 3), exponential representation
(Equation 4) and the exponential representation (Equation 5).
As a result, exponential and powed data tend to represent
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Algorithm 1 The verification set is extracted from the training
data.
Input: All-dataset AD,

Side length of grid L,
The number of samples per grid N

Output: Training set T ,
Verification set V

1: for all Getting Sub-dataset SD of each floor of each
building from AD do

2: Create a grid with a cell length of L for each floor to
cover all the coordinates in the SD. C ←The set of
center coordinates for each cell

3: for all G ∈ C do
4: I ←A set of data in the SD covered by the cell

whose center is G
5: if I not empty then
6: NP ←(N data closest to G center in I)
7: Delete NP from I
8: V.append(NP )
9: T.append(I)

10: end if
11: end for
12: end for
13: return T ,V

the RSS values as they really are. Furthermore, they can
better tame the fluctuations existing RSS signals, so we adopt
exponential and powed data for WiFi fingerprint representation
in this work.

Positivei(x) =

{
0, RSSi is None

RSSi −min, otherwise
(2)

where i is the WAP identifier, RSS is the actual intensity level
provided by i-th WAP, min is the lowest RSS value minus 1

considering all the of fingerprints and WAPs of the database.

0− 1Normalizedi(x) =
Positivei(x)

−min
(3)

Equation 3 corresponds to the positive values representation,
where intensity values are normalized in the positive [0, 1]
range.

Exponentiali(x) =
exp(

Positivei(x)

α
)

exp(
−min

α
)

(4)

Powedi(x) =
(Positivei(x))

β

(−min)β
(5)

where α is set to 24 and the exponent β is set to the
mathematical constant e.

C. Model pre-training

As the input data for WiFi fingerprint positioning is very
sparse, we import SAE model before CNN layers to compress
the dimensions of the input data. In specific, we pre-train
the SAE network [9] to obtain appropriate parameters before
we train the CNNLoc model. Ultimately, the whole CNNLoc
model (consisting of encoder of SAE and CNN layers) will
be further fine-turned.

V. PERFORMANCE EVALUATION

In this section, we evaluate the proposed CNNLoc by com-
paring its performance with state-of-the-art approaches. Two
public open-source datasets, UJIIndoorLoc dataset [6] and
Tampere dataset [4], are employed for experimental studies.
We implement the CNNLoc on a Computing Cluster with
16GB GPU, and the deep learning model is trained on Keras-
2.2.2 (with Tensorflow-gpu-1.10.0) using Python-3.6.6.
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TABLE II: General parameter setting of the model

Parameter Values
SAE activation function Rectified Linear Unit (ReLU)
SAE Optimizer Adam (lr=0.001)
SAE loss Mean Squared Error (MSE)
1D-CNN activation function ReLU
1D-CNN Optimizer Adam (lr=0.001)
1D-CNN loss MSE
1D-CNN Output layer activation
function

Softmax

Earlystopping parameter patience 3
Batch size 66

A. Model Optimization

In this section, we explore how to optimize the CNNLoc
model through experiments. The parameters used in the opti-
mization experiments are shown in Table II.

CNN model optimization. We evaluate the structure of
a CNN model with the same SAE model. To make the
comparison be more reasonable, we adopt the SAE (256-128-
64) from [11], where the SAE contains three hidden layers
of 256, 128 and 64 neurons. We vary the CNN structure
with number of layers from 1 to 3 with different filters and
kernel sizes. For example, Conv(99-33,63-22) refers to two
convolutional layers having 99 output filters with kernel size
33 and 63 output filters with kernel size 22, respectively. In
Fig. 5, we compare performance of different CNN models
and find that Conv(99-22,66-22,33-22) can achieve the best
success rate of 95.14% in floor classification.

SAE model optimization. We evaluate the performance
of various SAE models by using the optimized CNN model.
Therefore, the Conv(99-22,66-22,33-22) is connected to the
SAE models with different combinations of hidden layers. The
comparison results are shown in Fig. 6 and the best SAE model
is the two-layer SAE with 128 and 64 neurons in each layer.

Dropout layer optimization. To prevent convolutional neu-
ral networks from overfitting, we further adopt a dropout layer
before convolutional computation. According to a fraction
rate, the dropout layer randomly sets the number of input units
to 0 at each update during the training process. We use the
optimized SAE model and CNN model obtained from above
evaluations and evaluate CNNLoc with different dropout rates.
We list the floor classification success rates under different

dropout rates in Table III. It can be observed that the success
rate reaches the peak of 0.9541 when the dropout rate is 0.7.
On this basis, we show the validation and training results
without/with dropout (of rate=0.7) in Fig. 7. During each
iteration of the training stage, we test the CNNLoc model
using the training dataset and verification dataset, respectively.
In Fig. 7, the blue curves show the test results using the
verification dataset and the red curves show the test results
using the training dataset. This figure shows that as the training
time increases, the accuracy rates using the training dataset
and verification dataset both rise to over 95%. However, when
the CNNLoc does not have the dropout layer, the overfitting
problem occurs, as the localization accuracy on the verification
dataset is lower than and not approaching to that on the
training dataset. In contrast, when we integrate a dropout layer
to CNNLoc, the localization results on verification dataset and
training dataset ultimately approach to each other. In this way,
we address the overfitting problem in model training.

TABLE III: Results of different dropout rates

Dropout rate 0.4 0.5 0.6 0.7 0.8 0.9

Success rate 0.9478 0.9529 0.9520 0.9541 0.9514 0.9481

B. Evaluation on different verification datasets
To validate the proposed Algorithm 1 on various verification

datasets, we further evaluate the impact of the selection of a
verification dataset. Here, the parameters set for CNNLoc are
shown in Table II and Table IV. Based on the trained model
using a fixed or a randomly selected verification dataset, we
evaluate the performance of CNNLoc using the test dataset for
5 times and present the results in Table V. It can be observed
that the testing results on the model with fixed verification
datasets are more stable than those of randomly extracted
verification dataset.

The primary parameters used in these experiments are
inherited from Table II, and added parameters are listed in
Table IV. The results and their average values are listed in
Table V. The experimental results show that using a randomly
selected verification dataset are less stable and the average
success rate is lower compared with the results using the fixed
verification dataset.



TABLE IV: Parameter Values for model

Parameter Values
SAE hidden layers (128-64-128)
1D-CNN hidden layers (99-22, 66-22, 33-22)
SAE/1D-CNN Adam(lr=0.0001)
Dropout rate 0.7
Max training iterations 40

TABLE V: Comparison of results on different verification
datasets

Data type 1st(%) 2nd(%) 3rd(%) 4th(%) 5th(%) Average(%)
fixed 94.96 94.69 95.41 95.32 94.96 95.07
random 95.41 93.97 95.14 92.08 94.51 94.22

C. Experiments on UJIIndoorLoc dataset

In this subsection, we demonstrate the superiority of the
proposed CNNLoc model by comparing it with the state-of-
the-arts on the UJIIndoorLoc dataset. We apply the uniform
extraction algorithm on UJIIndoorLoc dataset and obtain 2,198
samples for the verification set, 17,739 samples for the training
set, and 1,111 samples for the testing set. The benchmark
approaches include MOSAIC [16], 1-KNN [6], 13-KNN [15],
DNN [11] 2D-CNN [13] and scalable DNN [9]. We illus-
trate the comparison results in Fig. 8 in terms of building
success rate and floor success rate. CNNLoc and most of the
benchmark approaches achieve 100% success rates in building
localization, showing that the proposed SAE can effectively
handle building classification. Meanwhile, CNNLoc outper-
forms other benchmarks with a highest floor success rate of
95.92%.

D. Experiments on Tampere dataset

To show the scalability of CNNLoc, we adopt a recently
released WiFi RSS fingerprint database, i.e., Tampere dataset
[4], to evaluate the performance of CNNLoc. In Table I,
we compare the key features of UJIIndoorLoc dataset and
Tampere dataset. With 992 WAPs in theTampere dataset,
CNNLoc is adapted to have an input layer with the length
of 992 at the SAE model. As the Tampere dataset uses floor
height as the floor representation instead of the floor number
used in UJIIndoorLoc, we preprocess the dataset using the
z-coordinates to represent the floor levels. The experimental
results are shown in Fig. 9 and CNNLoc outperforms the state-
of-the-art methods by 2.45% to 12.25%. Therefore, CNNLoc
performs highly accurate rates in multi-building and multi-
floor localization.

VI. CONCLUSION

In this work, we have presented CNNLoc, a deep-learning
based WiFi fingerprinting framework for multi-building and
multi-floor localization. By combining SAE with a 1D-CNN,
CNNLoc can be used to precisely extract key features from
sparse WiFi fingerprints and achieve a high success rate. We
have evaluated CNNLoc on two open-source datasets, i.e.,
UJIIndoorLoc and Tampere. The experimental results have
demonstrated the superiority of CNNLoc, as CNNLoc has

achieved the highest success rates in multi-building and multi-
floor localization compared with the state-of-the-art approach-
es. As our future work, we will focus on improving location
accuracy by devising new deep-learning models for indoor
localization.
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