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Abstract—Social distancing is crucial for preventing the spread
of viral diseases illnesses such as COVID-19. By minimizing
the closely physical contact between people, we can reduce
chances of catching the virus and spreading it to the community.
This paper aims to provide a comprehensive survey on how
emerging technologies, e.g., wireless and networking, AI can
enable, encourage, and even enforce social distancing. To that
end, we provide a fundamental background of social distancing
including basic concepts, measurements, models and propose
practical scenarios. We then discuss enabling wireless technolo-
gies which are especially effective and can be widely adopted
in practice to keep distance and monitor people. After that,
emerging technologies such as machine learning, computer vision,
thermal, ultrasound, etc., are introduced. These technologies open
many new solutions and directions to deal with problems in social
distancing, e.g., symptom prediction, detection and monitoring
quarantined people, and contact tracing. Finally, we provide
important open issues and challenges (e.g., privacy-preserving,
cybersecurity) in implementing social distancing in practice.

Index Terms—Social distancing, pandemic, COVID-19, tech-
nologies, wireless, networking, positioning systems, AI, machine
learning, data analytics, privacy-preserving, cybersecurity.

I. INTRODUCTION

COVID-19 has completely changed the world’s view on
pandemic with dire consequences to global health and econ-
omy. Within only four months (from January to April 2020),
210 countries and territories around the world have reported
more than three million infected people including more than
two hundred thousand deaths [1]. Beside the global health
crisis, COVID-19 has also been causing massive economic
losses (e.g., a possible 25% unemployment rate in the U.S. [2],
one million people lost their jobs in Canada during March
2020 [3], 1.4 million jobs lost in Australia [4], and a projected
global 3% GDP loss [5]), resulting in a global recession as
predicted by many experts [5]-[7]. In such context, there is
an urgent need for solutions to contain the disease spread,
thereby reducing its negative impacts and buying more time
for pharmaceutical solution development.

In the presence of contagious diseases such as SARS,
HINT1, and COVID-19, social distancing is an effective non-
pharmaceutical approach to limit the disease transmission [8],
[20], [27]. Social distancing refers to the measures that reduce
the disease spread by reducing the frequency and closeness of

human physical contacts, such as closing public places (e.g,
schools, workplaces), avoiding mass gatherings, and keeping
a sufficient distance amongst people [8], [9]. By reducing the
probability that the disease can be transmitted from an infected
person to a healthy one, social distancing can significantly
reduce the disease’s spread and severity. If implemented
properly at the early stages of a pandemic, social distancing
measures can play a key role in reducing the infection rate
and delay the disease’s peak, thereby reducing the burden
on the healthcare systems and lowering death rates [8], [20],
[27]. Fig. 1 illustrates the effects of social distancing measures
on the daily number of cases [11]. As can be observed in
Fig. 1(a), social distancing can reduce the peak number of
infected cases [27] to ensure that the number of patients does
not exceed the public healthcare capacity. Moreover, social
distancing also delays the outbreak peak [27] so that there is
more time to implement countermeasures. Furthermore, social
distancing can reduce the final number of infected cases [27],
and the earlier social distancing is implemented, the higher
the effects will be as illustrated in Fig. 1(b) [11].

During the ongoing COVID-19 pandemic, many govern-
ments have implemented various social distancing measures
such as travel restrictions, border control, closing public
places, and warning their citizens to keep a 1.5-2 meters
distance from each other when they have to go outside [12]-
[14]. Nevertheless, such aggressive and large-scale measures
are not easy to implement, e.g., not all public spaces can be
closed, and people still have to go outside for food, healthcare,
or essential work. In such context, technologies play a key
role in facilitating social distancing measures. For example,
wireless positioning systems can effectively help people to
keep a safe distance by measuring the distances between
people and alerting them when they are too close to each other.
Moreover, other technologies such as Artificial Intelligence
(AD) technologies can be used to facilitate or even enforce
social distancing.

In this article, we present a comprehensive survey on
enabling and emerging technologies for social distancing.
The main aims are to provide fundamental background about
social distancing as well as effective technologies that can be
used to facilitate the social distancing practice. In particular,
we first present basic concepts of social distancing together
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Fig. 1: Effects of social distancing [11].

with its measurements, models, effectiveness and practical
scenarios. After that we review enabling wireless technologies
which are especially effective in monitoring and keeping
distance amongst people. Then, we discuss various emerging
technologies, e.g., Al, thermal, computer vision, ultrasound
and visible light, which have been introduced recently in order
to address many new issues related to social distancing, e.g.,
contact tracing, quarantined people detection and monitoring,
and symptom prediction. Finally, some important open issues
and challenges (e.g., privacy-preserving, cybersecurity) for
implementing technologies for social distancing will be dis-
cussed. Furthermore, potential solutions together with future
research directions are also highlighted and discussed in this
section.

Although there are few surveys related to localization and
positioning systems, e.g., [15]-[18], to the best of our knowl-
edge, this is the first survey in the literature discussing about
technologies for social distancing. It is important to note that,
due to the increasingly complex development of many types
of viruses as well as the rapid growth of social interaction
and globalization, the concept of social distancing is not as
simple as physical distancing. In fact, it also includes many
non-pharmaceutical interventions or measures taken to prevent
the spread of contagious disease such as monitoring, detection
and warning people (as presented in Table I). Alternatively,
thanks to the significant development of emerging technolo-
gies, e.g., Al, data analytics, many new solutions have been
introduced recently which can make favorable conditions for
practicing social distancing. Thus, this survey aims to provide

an overview of technologies together with their impacts to
social distancing in practice.

As illustrated in Fig. 2, the rest of this paper is organized as
follows. We first provide a brief overview of social distancing
and distance measurement methods in Section II. Then, Sec-
tion III and Section IV discuss enabling wireless technologies
and other emerging technologies for social distancing, respec-
tively. After that, we discuss open issues and future research
directions of social distancing in Section V, and conclusions
are given in Section VL.

II. SOCIAL DISTANCING: A FUNDAMENTAL BACKGROUND
A. Social Distancing

1) Definition and Classifications: Social distancing refers
to the non-pharmaceutical measures to reduce the frequency
of physical contacts and the contact distances between people
during an infectious disease outbreak [10]. Social distancing
methods can be classified into public and individual measures.
Public measures include closing or reducing access to educa-
tion institutions and workplaces, canceling mass gatherings,
travel restrictions, border control, and quarantining buildings.
Individual measures consist of isolation, quarantine, and en-
couragement to keep physical distances between people [9].
Although these measures can cause some negative impacts on
the economy and individual freedom, they play a crucial role
in reducing the severity of a pandemic [10]. If implemented
properly, social distancing can effectively reduce the transmis-
sion and severity of a disease, thereby reducing the pressure
on healthcare systems and allowing more time for government
countermeasures [10].

2) Measurements and Models: The evaluation of social
distancing measures is often based on several standardized
approaches. One of the main criteria for social distancing
measures selection is the basic reproduction number R,
which represents on average how many people a case (i.e.,
an infectious person) will infect during its entire infectious
period [19]. For example, R, < 1 indicates that every case
will infect less than 1 person, and thus the disease is declining
in the considered population. Since the value of R, represents
how quickly the disease is spreading, R, has been one of
the most important indicators for social distancing measures
selection [20], [27]. Mathematically, R, can be determined by

/0 ~ b(a) Fa)da,

where b(a) is the average number of new cases an infectious
person will infect per unit of time during the infectious period
a, and F'(a) is the probability that the individual will remain
infectious during the period a [19].

Besides showing the transmissibility of a disease, R, also
gives some intuitive ideas how to limit the disease spread.
As observed from (1), R, can be reduced in different ways,
i.e., to decrease b(a) or F(a). To reduce b(a), there are
several approaches such as to lower the number of contacts
the infected individuals make per unit of time (e.g., avoid
mass gatherings and public places closures) or to reduce the
probability that a contact will infect a new person (e.g, by

R, (1)
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wearing masks). To reduce F'(a), the infected person needs to
be cured or completely avoid contacts with the non-infected
(e.g., isolation and quarantine).

3) Effectiveness: To evaluate the effectiveness of social
distancing, a common approach is to measure the attack rate
which is the percentage of infected people in a susceptible
population (where everyone has no immunity in the beginning
of the disease) at the time of measurement [22]. The attack
rate reflects the severity of a disease at a given time, and thus it
has different values during the disease outbreak. Among these
values, the peak attack rate is often considered and compared
to the current healthcare capacity (e.g., intensive care unit
capacity) to see the current system’s ability to handle the peak
number of patients. After the outbreak is over, data is often
collected to determine the final attack rate which is the ratio
between the total number of infected cases in the population
over the entire course of the outbreak.

Social distancing measures are proven to be effective if
implemented properly [22]-[28]. Different types of social
distancing measures may have diverse levels of effectiveness
on the disease spread. In [22], the effect of social distancing
measures at workplaces is evaluated by agent-based simulation
approach. In particular, six different workplace strategies that
reduce the number of workdays are simulated. The results
show that, for a seasonal influenza (R, = 1.4), reducing the
number of workdays can effectively reduce the final attack rate
(e.g., up to 82% if three consecutive workdays are reduced).
Nevertheless, in a pandemic-level influenza (R, 2.0),
reducing the number of workdays has significantly less impact,
i.e., 3% (one extra day off) to 21% decrease (three extra
consecutive days off). Several other studies present similar
results. In [23], it is shown that workplace social distancing
can reduce the final attack rate by up to 39.22% ina R, = 1.4
setting. Similarly, [24] shows that different types of measures
can reduce the attack rate from 11% to 20% depending on the
frequency of contacts among the employees.

For school closure measures, studies also show positive
effects. In [25], a modeling technique is employed to examine
the effects of four different social distancing measures under

three varying R, settings. Among different types of measures,
the school closure measure is shown to be able to reduce the
final attack rate by 20%, 10%, and 5%, and the peak attack
rate by 77%, 47%, and 32% in the cases where R, < 1.9,
2.0 < Ry <24, and R, > 2.5, respectively. Similarly, it is
shown in [26] that prolonged school closure in a pandemic
context can reduce the final attack rate by up to 17% and the
peak attack rate by up to 45%.

Another common social distancing measures is isolation of
the infected cases and cases with similar symptoms. In [27],
large-scale epidemic simulations are performed to evaluate
different strategies for influenza pandemic mitigation. Among
the simulated strategies, the results show that the proper
implementation (such that an isolated individual reduces 90%
of its contact rate) of isolation can reduce the final attack rate
by 7% in a R, = 2 setting. Similarly, it is shown in [25] that
isolation can reduce the final attack rate by 27%, 7%, and 5%,
and the peak attack rate by 89%, 72%, and 53% in the cases
where R, < 1.9, 2.0 < Ry < 2.4, and R, > 2.5, respectively.

For household quarantines, studies have shown that this
measure can be effective if the compliance level is sufficient.
In [27], the effects of voluntary quarantine of household for a
duration of 14 days are examined. Simulations are carried out
with the assumption that 50% of households will comply with,
which leads to a 75% reduction of external contact rates, while
the internal contact rate will increase by 100%. The results
show that this measure can reduce the final attack rate by up
to 6% and the peak attack rate by up to 40%. Similarly, in [28],
simulations are performed to examine the impacts of different
measures. For household quarantines, the result shows that this
measure can reduce the final attack rate by 31% and the peak
attack rate by 68% with R, = 1.8 and a compliance rate of
50%.

Apart from the abovementioned measures, the effectiveness
of the other social distancing measures either received limited
attention or was often considered in combination with another
approach. In [27], the effectiveness of travel restrictions and
border control measures are examined. However, the results
only show that different levels of travel restrictions (from



90% to 99.9%) can delay the peak attack rate by up to six
weeks, while how travel restrictions affect the attack rate is
not examined. Another type of measures that does not receive
much attention is community contact reduction measures (e.g.,
avoid crowds and mass gatherings cancellation). In [25], it is
shown that this type of measure can reduce the final attack
rate by 17%, 14%, and 10%, and the peak attack rate by 72%,
49%, and 38% in the cases where R, < 1.9, 2.0 < R, < 2.4,
and R, > 2.5, respectively.

When combined together, social distancing measures are
proven to be even more effective in various studies [25],
[27], [29]. It is shown in [25] that when all four measures,
i.e., school closure, isolation, workplace nonattendance, and
community contact reduction, are in effect, they can drastically
reduce the attack rates in all the considered R, settings. In
particular, the final attack rate can decrease from 65% to only
3% and the peak attack rate from 474 cases per 10 thousand
to only five cases, in the highest R, setting. Similarly, [27]
examines the effects when household quarantines, workplace
closures, border control, and travel restrictions are combined.
The results show that the final and peak attack rate are three
times and six times, respectively, less than when no policy is
implemented. Moreover, the peak attack rate can be delayed
by nearly three months in a R, = 1.7 setting. In [29], it
is also shown that when four types of measures (i.e., school
closure, household quarantines, workplace nonattendance, and
community contact reduction) are in effects, the final attack
rate can be reduced 3-4 times depending on R,.

There are several studies focusing on the negative impacts
of social distancing. In [30], simulations are performed to
evaluate the benefit and cost of different social distancing
strategies. In this study, simulations are carried out without and
with social distancing under different caution levels settings.
Simulation results are evaluated based on the benefits of the
reduced infection rate and the economic cost of reducing
contacts. The main finding of this work is that a favorable
result can only be obtained by implementing social distancing
measures with a high caution level. Since the economic
cost is also considered, it is shown that implementing social
distancing with an insufficient caution level gives worse results
than that of the without social distancing case. In [31], a
game theoretical approach based on the classic SIR model is
proposed to evaluate the benefits and costs of social distancing
measures. Interestingly, the results show that in the case where
R, < 1, the equilibrium behaviors include no social distancing
measures. Moreover, social distancing measures are shown to
achieve the highest economical benefit when R, ~ 2.

In the current COVID-19 pandemic, the World Health
Organization (WHO) estimates that the value of R, would
be in the range of 2-2.5 [33]. As can be seen from the
abovementioned studies, social distancing measures can play a
vital role in mitigating this pandemic with such R, values. For
example, Fig. 3 illustrates the rolling 3-day average of daily
new confirmed COVID-19 cases in several countries [32].
Generally, after a country began implementing social distanc-
ing (e.g., lockdown in all those countries) for 13-23 days, the
daily number of new cases begins to drop. Moreover, the figure
also shows the total number of confirmed cases. As can be

seen from the second graph, the curves representing the total
number of cases become less steep after social distancing are
implemented (i.e., flattening the curve).
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Fig. 3: Real-world effects of social distancing [32].

Despite its significant potential, ait can be observed that
social distancing is very effective only when applied properly.
Nevertheless, it is not easy to implement because of many
reasons such as the negative economic impacts, personal
freedom violation, and difficulties in changing people’s behav-
iors. Thus, technologies play a key role in facilitating social
distancing, which will be reviewed in the next sections.

4) Practical Scenarios: The practical social distancing sce-
narios presented in this survey are illustrated in Fig. 4 and
summarized in Table I.

The scenarios can be briefly classified as follows:

e Keeping distance: In these scenarios, various position-
ing and Al technologies can assist in keeping distance
between people. Based on that, when a person gets too
close to another or a crowd, the person can be alerted
(e.g., by smartphones).

o Real-time monitoring: Many positioning and Al technolo-
gies can be utilized to monitor people and public places in
real-time. The purposes of such monitoring are to gather
meaningful data (e.g., numbers of people inside buildings,
contacts, symptoms, crowds, and social distancing mea-
sures violations) to facilitate social distancing. Based on
this data, appropriate measures can be carried out (e.g.,
limit access to building when there are too many people
inside, avoid crowds, and penalize violations).
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o Information system: Technologies such as Bluetooth,
Ultra-wideband, thermal, and AI can be employed to
collect the movement data of the infected individuals,
and the contact that these individuals made. Based on
this information, susceptible people who were at the
same place or had contacts with the infected ones can
take cautious actions (e.g., self-isolation, and check for
disease).

e Incentive: Social distancing has negative impacts on
personal freedom and the economics. Therefore, incentive
mechanisms are needed to encourage people to comply
with social distancing measures (e.g., incentivize people
to share their movement data and self-isolate). Optimiza-
tion techniques and technologies such as Bluetooth, Wi-
Fi, cellular can also support those incentive mechanisms.

e Scheduling: Various scheduling techniques can be em-
ployed to increase the efficiency of workforce and home
healthcare service scheduling, thereby decreasing the
number of employees at workplaces and patients at hospi-
tals. Moreover, scheduling techniques can also be applied
for traffic control to reduce the number of vehicles and
pedestrians on the street. Furthermore, technologies such
as Wi-Fi, RFID, and Zigbee can be applied for building
access scheduling.

o AI: Al technologies can be employed for social distancing
data mining. The results can help to predict the future
trends and movement of the infected and susceptible
individuals.

The details of technologies used in social distancing scenarios

are illustrated in Fig. 5.

B. Positioning Systems

Since the main principle of social distancing is to reduce
the closeness of human contacts, approaches to determine the
positions and measure the distance between people can play
a vital role in facilitating social distancing measures. Using
ubiquitous technologies, such as Wi-fi, cellular, and GNSS,
positioning (localization) systems can thus play a key role
in many abovementioned practical social distancing scenarios
such as distance keeping, public places monitoring, contact
tracing, and automation.

1) Overview of Positioning Systems: Fig. 6 illustrates the
general process and several popular methods of a positioning
system [34]. Generally, a positioning system’s main aim is
to continuously determine the position of an object in real-
time [18]. To achieve this goal, firstly, signals are transmitted
from the target to the receiving nodes (e.g., sensors). From the
received signals, useful properties such as arrival time, signal
direction, and signal strength (depending on the measurement
methods) are extracted in the signal measurement phase. Based
on these properties, the position of the target can be calculated
using various methods in the position calculation phase [34].
Several effective signal measurements and position calculation
methods are presented in the rest of this section.

2) Signal Measurements: Typical signal measurement
methods can be classified based on the extracted property of
the received signal. Among them, time-based methods use the
arrival time of the signal to determine the distance between
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Fig. 5: Application of technologies to

the receiving nodes and the target [34]. Time-based methods
can be further classified as follows:

o Time-of-Arrival (TOA) [37]: This method determines the
distance D between the receiving node and the target
based on the time it takes for the signal to travel from
the target to the node, i.e.,

D = ct, 2

where c is the speed of the signal transmission and ¢ is
the time for the signal to reach the receiving node.
Time Difference-of-Arrival (TDOA) [37]: This method
uses two kinds of signal with different speeds and calcu-
lates D based on the difference between them, i.e.,

D D

==t
C1 C2

3)

where ci, co, t1, and to are the speeds and arrival time
of the two signals, respectively.

Round Trip Time (RTT) [34]: The RTT method measures
the duration in which the signal travels to the targets and
comes back, i.e.,

_ tgpr — At

D
2

“4)

i

different social distancing scenarios.

where tp7 is the time of the whole round trip, and At is

the predetermined delay between when the target receives

the signal and when the target starts sending back.
A common disadvantage of the TOA and TDOA methods is
that they require synchronized clocks at the node and the
target to determine ¢,¢; and ¢s, which may be costly to
implement and requires frequent calibrations to maintain the
accuracy. Although the RTT method does not require clock
synchronization, it needs to know the delay At which cannot
be predicted in many circumstances [35]. Consequently, extra
efforts are needed to determine At in advance.

Unlike the time-based methods, the Angle-of-Arrival (AOA)
method determines D by measuring the angle of the incoming
signals by using directional antennas or array of antennas. The
measured angles can then be used in the triangulation method
to geometrically determine the target position. However, a
main disadvantage of this method is that it requires extra
directional antennas which are costly to implement [34].

The Received Signal Strength Indicaton (RSSI) method
measures the attenuation of the signals to determine the
distance. Typically, the relationship between RSSI and distance
can be formulated as follows [41]:

Pr = a—10nlogo(d) + X, (5)



TABLE I: Practical Social Distancing Scenarios

Scenarios Description Technologies References
. Distance between Detect and monitor the distance Bluetooth, Ultfasound, [721], [195], [237],
Keeping any two people between any two people Thermal, Inertial, [102], [286]
Distance Y peop y peop Ultra-wideband ’
. . Al Thermal, Inertial, [103], [248], [341],
Distance to/from crowds Alert when approaching a crowd Ultra-wideband, Vision [236]. [286]
Public place Monitor and gauge the number of people Wi-Fi, RFID, Zigbee, (110], [111]
monitoring inside/at a public place Cellular, GNSS ?
Physical contact Monitor physical contacts, ]
monitoring e.g., handshakes, hugs, between people Thermal [236], [237]
Real-time Symptom detection Detect and monitor sickness symptoms, ..
Lo .o Vision [172]
Monitoring and monitoring e.g., body temperature, coughs.
Susceptible group . . .
detection Monitor highly susceptible groups Thermal [244], [245]
Detect and monitor Detect and monitor quarantine people Al Cellular,
. (e.g., for complying/violating the . . - [180], [343]
quarantined people . . . . Visible Lights, Vision
isolation/quarantine requirement)
'Wi-Fi, Bluetooth,
RFID,Zigbee,
Crowd detection Detect crowds/gatherings in public places Ultra-wideband, {‘713}’ 3(6)]2]’[551]1 7,
Cellular, GNSS, Vision, ’ ’
Visible Light, Al
Using location information to determine
Non-essential if the trip is essential (e.g., medical
travel detection facilities and gasoline stations) or not GNSS, Thermal [161], [162], [241]
(e.g., restaurants and cinemas)
Traffic/movement monitoring | Dciect, the vehicles on the street GNSS, Vision, Cellular | [119], [161], [162]
when isolation measures are in effect
Lockd_own violation Detect violations of public place’s closure GNSS. Cellular, Thermal [119], [161], [162]
detection or lockdown. [240]
Track the infected people’s movement to Cellular. GNSS
Information | Infected movement data notify susceptible people who were at C i S [2491-[251], [257]
omputer Vision
system the same places
. Bluetooth,
Contact tracing Tl“ra'ce' the contacts that an infected Ultra-wideband, [65], [102], [237]
individual made [341]
Thermal, Al
Location/movement sharing Encourage people to share their movement Bluetooth, (65]. [67]. [360]
Incentive encouragement data incentive mechanism ’ ’
. ) . » Wi-Fi, Cellular, [135], [136], [363]
Stay-at-home Encouragement Incentivize people to stay home incentive mechanism [284]. [362]
Workforce scheduling Limit the number of people at the workplaces Scheduling [263]-[266]
Medical/health Schedule medical appointments to reduce .
Scheduling appointment scheduling the number of patients Scheduling [2691-[273]
Home healthcare Optimize home healthcare services to reduce .
scheduling the number of patients at the hospitals Scheduling [2741-278]
Public place/building Control the number of people Ultra-wideband, Wi-Fi, 147], [76], [84],
access scheduling inside public buildings RFID, Zigbee [111]
Traffic control Regulate and reduce vehicles and Visible Light, Scheduling | [230], [279], [280]
pedestrians density
Improve positioning and navigation of Ultra-wideband, GNSS, [166]. [291]. [292]
. Robot-assisted social distancing | robots, especially medical robots inside Visible Lights, ’ ’
Automation . . [211], [228]
hospitals Ultrasound, Inertial
Autonomous delivery systems Reduce the number of people going outside .
(e.g., UAVs, ...) (food, merchandise, etc., delivery) GNSS, Inertial [159]. [293]. [294]
Infected movement prediction Predict infected people’s movement Al [342]
Quarantined/at-risk people Predict quarantined and at-risk people’s current
Al . AL-TISK peop location to enforce them stay at Al [343], [344]
location prediction . . . o
isolation/protection facility
People/traffic density prediction | Predict people density and traffic density Cellular, Al [128]-[132], [345]
Sickness trend prediction Predict sickness trends in specific areas Al [347]

where Pg is the RSSI value at the receiver (e.g., access point),
d represents the distance from the user device to the access
point, X is a random variable (caused by the shadowing effect)
which follows the Gaussian distribution with zero mean. « is a
constant value which can be known in advance and depends on
fading, antennas gain, and emitted power of the user device.
Thus, based on the RSSI level of the received signals, the
access point can estimate the position of the user device in
indoor environments.

3) Position Calculation: Based on the measured signal
properties, different methods are employed to calculate the
target’s position. Among them, Trilateration is a common
method which uses three reference nodes and the distances
between them to the target to calculate the position [34],
as illustrated in Fig. 6. More specifically, using the coordi-
nates (z1,y1), (2, ¥y2), (z3,y3) of the reference nodes and
the corresponding measured distances D1, Do, and Ds, the



coordinate (z,y) of the target can be determined by

V(1 —2)? + (1 —y)? = Du,
V(@2 — )2+ (y2 — y)? = Do, (6)
V(s —2)2+ (y3 —y)2 = Dj.

Instead of using distances, the Triangulation method uses
the angles of the signal (from the AOA method) to deter-
mine the target’s position. As illustrated in Fig. 6, if the
coordinates of two references nodes and the corresponding
measured angles «y, as are known, the target’s position can
be geometrically determined [34].

To address the uncertainty in measurements, the Maximum
Likelihood Estimation (MLE) method is often employed. This
method utilizes the signal measurements from a number of
reference nodes (usually three or more) and apply some
statistical approaches such as the minimum variance estimation
method [36] to calculate the target’s position while minimizing
the impact of noises in the environment [34].

III. WIRELESS TECHNOLOGIES FOR SOCIAL DISTANCING

To enable social distancing, many wireless technologies
can be adopted such as Wi-Fi, Bluetooth, RFID, Zigbee,
Ultra-wideband, Cellular, and GNSS. In this section, we first
briefly provide the fundamentals of these technologies and
then explain how they can enable, encourage, and enforce
people to practice social distancing. After that, we discuss the
potential applications, advantages, limitations, and practical
feasibility of these technologies.

A. Wi-Fi

Due to the fact that Wi-Fi technology is widely deployed
in indoor environments, this technology can be considered to
be a promising solution to practice social distancing inside
multistory buildings, airports, alleys, parking garages, and
underground locations where GPS and other satellite technolo-
gies may not be available or provide low accuracy [38]. In
a Wi-Fi system, a wireless transmitter, known as a wireless
access point (AP), is required to transmit radio signals to
communicate with user devices in its coverage area. Currently
Wi-Fi enabled wireless devices are working on the IEEE
802.11 standards. Wi-Fi 6 (based on 802.11ax technology) is
the newest version of Wi-Fi standards which provides high-
throughput and reliable communications [39]. Thus, Wi-Fi
technology can be adopted to support social distancing in
many scenarios.

1) Crowd Detection: One potential application of Wi-Fi
technology in social distancing is positioning [41]- [58]. Based
on the location of users, the authority can detect crowds
inside a building and force them to maintain a safe distance.
This is an essential factor to practice social distancing during
a pandemic outbreak in indoor public places such as train
stations and airports. There are two main reasons making
Wi-Fi technology possible in social distancing. First, due
to the convenience of hardware facilities, we can quickly
deploy Wi-Fi systems for user positioning with very low
cost and efforts [40]. Second, with recent advances in Wi-
Fi based indoor positioning, Wi-Fi can provide reliable and

precise location services to enable social distancing. The most
common and easiest way for indoor positioning is calculating
the user’s location based on the RSSI of the received signals
from the user device [41], [42].

However, the accuracy of this solution much depends on the
propagation model. Thus, in [41], the authors present a new
method to dynamically estimate the channel model from the
user device to the access point. The key idea of this solution
is continuously determining the RSSI values in real-time to
obtain the estimated channel model that is close to the real
channel model. Once the propagation is estimated, the distance
between the access point and the user device can be accurately
determined. After that, the user’s location will be derived by
using the frilateration mechanism.

Differently, the authors in [42] propose to adopt the inertial
navigation system (INS) to significantly increase the accuracy
of conventional RSSI-based methods. The key idea of this
solution is using a Kalman filter to combine and fill the signal
database with the INS data. As such, the authors can obtain the
average distance error as small as 0.6m. The above RSSI-based
solutions can be easily adopted to detect crowds in indoor
environments. Then, the local authorities can take appropriate
actions to disperse the crowds or suggest other people to not
go to the place. For example, if there are too many people
in a supermarket, the authorities can notify and recommend
new coming customers to go to other supermarkets or come
in another time, so that they can avoid crowds and practice
social distancing.

2) Crowd Detection in Dynamic Environments: Although
the RSSI-based solution can detect the user’s location with
sufficient accuracy, they may not be effective to implement in
dynamic and complicated indoor environments such as airports
or train stations [43], [44], [45]. Specifically, the geometric
approach calculates the user device’s position through the
geometric relations between the device and the access point.
Although being simple and easy to implement, this solution
has low accuracy when detecting the user’s location. This
is due to the effects of nonline of sight (NLOS) on the
wireless signals between the user’s device and the access
point, especially in dynamic and complicated environments
in which the wireless signals are greatly affected by obstacle
shadows caused by activities of people (e.g., running and
walking) and infrastructures [43]. Another RSSI-based indoor
localization technique is the fingerprinting approach (or radio
map) that locates devices based on a previous built database.
In particular, this database contains the signal fingerprints
corresponding to several access points in a specific area.
Nevertheless, collecting fingerprint data is time-consuming and
laborious [46], especially in large areas such as airports or
train stations. In addition, it is infeasible to directly apply the
pre-obtained fingerprint database to new areas for localiza-
tion [47], [48]. The principle reason is that the adjustment
process to apply the fingerprint database of an area to other
areas is time-consuming and requires human intervention.

To address these problems, several solutions [43]-[48] are
proposed to enable indoor localization in dynamic and com-
plicated areas such as airports and train stations. With these
solutions, the authorities can detect crowds and force people
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to leave to enable social distancing in pandemic outbreaks.
Specifically, in [43], the authors study that when the envi-
ronment changes, e.g., the presence of people in the line
of sight between the user device and the access point, the
performance of conventional RSSI-based localization tech-
niques is greatly decreased. Thus, the authors propose an
adaptive signal model fingerprinting algorithm to adapt with
the dynamic of environment by detecting users’ positions and
updating the database simultaneously. In [47], the authors
propose a new localization technique to locate multiple users
in different areas by performing a fine-grained localization. In
addition, the authors introduce a transfer mechanism to adjust
the fingerprint database over multiple areas to minimize the
human intervention.

Differently, an interesting design is proposed in [49] to
locate and track people by using Wi-Fi technology, namely
Wi-Vi (stands for Wi-Fi Vision). This technology allows the
authorities to track people in indoor environments and detect
potential crowds, so that they can take appropriate actions
to enable social distancing, e.g., notify people to not go to
potential crowded places. In particular, Wi-Vi uses an MIMO
interference nulling to remove reflections from static objects
and only focuses on moving objects, e.g., a user. Moreover,
the authors propose to consider the movement of a user as
an antenna array and then track the user by observing its RF
beams. If there are many people having the same direction,
e.g., going to the same place, the authorities can notify them
to avoid forming crowds. Thus, Wi-Vi can be considered as a
promising technology to enable social distancing.

3) Public Place Monitoring and Access Scheduling: An-
other way to apply Wi-Fi technology in social distancing
is controlling the number of people inside a building, e.g.,
supermarket, shopping mall, and university. Specifically, with
various Wi-Fi access points implemented inside the building,
the number of people currently inside the building can be
estimated based on the number of connections from user
devices to the access points. Based on this information,
several actions can be made to practice social distancing such
as forcing people to queue before entering the building to
maintain a safe number of people inside the facilities at the
same time. Another application is notifying people who want
to go to the building. Specifically, based on the number of
people inside the building, the authority can encourage/force
them to stay home or come at a different time if the place is

too crowded. However, the accuracy of this approach depends
on many factors such as the number of smart devices one
person possesses and how many devices can be connected to
a network simultaneously.

4) Stay-at-home Encouragement: Wi-Fi technology can
also be used to encourage people to stay at home by detecting
the frequency of moving outside their houses for a particular
time, e.g., a day. Specifically, when user devices move far
away from the access point inside their houses, the connection
between them will be weak or lost. Based on this information,
the access points can estimate the frequency of moving out of
their house and then notify the users to encourage them to
stay at home as much as possible.

In summary, Wi-Fi technology is a prominent solution to
quickly and effectively enable, encourage, and force people to
practice social distancing. With the current advances of Wi-
Fi, the accuracy of localization systems can be significantly
improved, resulting in effective and precise applications for
social distancing. However, Wi-Fi based technology is mainly
used for indoor environments as this technology requires
several access points for localization which may not be feasible
for outdoor environments. For outdoor environments, other
wireless technologies, e.g., Bluetooth, GPS and cellular tech-
nologies, can be considered.

B. Cellular

Over the past four decades, cellular networks have seen
tremendous growth throughout four generations making it
the primary way of digital communications. The fifth gen-
eration (5G) of cellular networks is coming around 2020
with the first standard. According to the Cisco mobile traffic
forecast, there will be more than 13 billion mobile devices
connected to the Internet by 2023, up from 8.8 billion mobile
devices in 2018 [114], that enables deploying the cellular
technology to practice social distancing in many circumstances
including real-time monitoring, people density prediction and
encouraging stay-at-home by enabling 5G live broadcasting as
illustrated in Fig. 7.

1) Real-time Monitoring: Individual tracking and mobility
pattern monitoring are potential approaches using the cellular
technology to practice social distancing as shown in Fig. 7(a).
According to the 3GPP standard, the current cellular networks,
ie., LTE and LTE-A, are employing various localization
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methods such as Assisted-GNSS (A-GNSS), Enhanced Cell-
ID (E-CID), and Observed TDoA (O-TDoA) as specified
in the Release 9; Uplink-TDoA (U-TDoA) included in the
Release 11; and with the aids of other technologies like Wi-Fi,
Bluetooth, and Terrestrial Beacon System (TBS) as stated in
the Release 13 [115], [116]. Cellphone location data collected
by the current cellular network is normally used for network
operations and managers [116] such as network planning and
optimization to enhance the Quality of Service (QoS) rather
than user applications due to the low accuracy and resource
consumption. However, in the context of social distancing,
user tracking based on data of user movement history can
be considered to be an effective approach for quarantined
people detection, and infected people tracing. For instance,
the authorities can check whether infected people are violating
the quarantine requirements or not. In cases if they do not
follow the requirements, the authorities can send warning
messages or even perform some aggressive measures, e.g.,
fines and arrests, to force them self-isolation. Moreover, when
a user has been exposed to the virus, the user’s mobility
history can be extracted to investigate the spread of the virus.
In these cases, the cellular technology can outperform other
wireless technologies in term of availability and popularity. For
example, localization services relying on wireless technologies
such as GPS that always need to be run in the foreground
application (i.e., the availability), while this service is a part of
cellular network operations. In addition, Ultra-wideband and
Zigbee technologies require additional hardware [86], [103]
(i.e., the popularity). Incoming 5G networks with the presence
of key technologies such as mm-Wave communications, D2D
communications, and Ultra-dense networks (UDNs) [117] are
capable of performing a high precision localization. Two
positioning schemes exploiting the mm-Wave communications
are proposed in [118] based on validation of triangulation

measurements and angle of differences of arrival (ADoA).
The authors in [119] proposed a positioning scheme in UDN’s
using a cascaded Extended Kalman filter (EKF) structure to
fuse the DoA and ToA estimations from the reference nodes.
The proposed scheme can localize a moving target at speed
50 km/h with a sub-meter level accuracy. It can be used for
tracking vehicles and monitoring the traffic density.

Recently, some governments have required the telecom
companies to share cellphone location data to implement
social distancing to deal with COVID-19. For instance, Taiwan
deployed an “electronic fence” exploiting the cellular-based
triangulation methods to track who are quarantined stay in
their homes [120]. The local officials call them twice a day to
ensure they do not leave their phones at home, and visit them
within 15 minutes after their phones are turned off or they
move away from their home. Moscow government is also said
to be planning to use SIM card data for tracking foreigners
and residents who have close contacts with foreigners when
the border closure order is lifted [121]. However, individual
tracking using the cellular technology has risen concerns about
privacy [122], [123]. Instead, group/crowd detecting and mon-
itoring based on shared location data which is anonymous and
aggregated from carriers become the key approach utilized by
several governments such as Italy, Germany, Austria), the UK,
Korea, and Australia [124]-[127]. This approach is intended
to alleviate privacy concerns compared with individual-level
tracking (i.e., it satisfies the EU privacy rules [123]). The
metadata can be used to obtain the mobility patterns, thus the
governments can monitor whether people are complying with
the lock-down rules or not. It can be also employed to model
the spread of the virus to aid the governments to analyze and
evaluate the effectiveness of quarantine measures during the
outbreak.



2) People Density Prediction: In addition to the real-time
crowd monitoring and modeling the spread of the virus, the
movement historical data can be utilized to predict the network
traffic thanks to the large-scale location data provided by
carriers and the recent advances of machine learning. There are
many research works on network traffic prediction proposed
in [128]-[132] based on the history of users’ movements.
Furthermore, the number of users in a specific area can be also
estimated from the network traffic of that area as illustrated
in Fig. 7(b). Thus, the authorities can predict the crowd
gathering in public places (e.g., shopping malls, airports and
train stations) relying on the corresponding forecasted network
traffic. Then, appropriate actions can be performed by the
authorities to prevent crowd gathering in these places. For
example, if the predicted number of people entering a shopping
mall exceeds a threshold, the authorities can notify customers
to avoid coming to this place at this time or recommend
them to go to other shopping malls having lower densities. In
addition, this method can be also applied in residential areas
to study how often people stay home as well as predict when
they go out or the places they come to. This can provide
significant data input for network traffic forecast in public
places. In addition, if they regularly go to necessary places,
the authorities can warn or force them to stay at home as much
as possible.

3) Stay-at-home Encouragement: To implement social dis-
tancing, many people must do their daily activities remotely
from their home such as working, studying, and entertainment.
Therefore, some video conference applications used to work
from home or study online have witnessed an explosion of
downloads. For example, the Zoom application has achieved
an increase by 1,270% from 22 Feb to 22 Mar in 2020 [133]
and the number of newly registered users of Microsoft Teams
has also risen 775% monthly in Italy after the full lock-
down was started [134]. As a result, SG live broadcasting
technology can be used to encourage people to stay at home
as much as possible without any impacts on their work, or
study (Fig. 7(c)). There are many works to enhance the quality
of video multicast/broadcast applications by utilizing the ad-
vances of 5G networks [135]-[139]. Video multicast/broadcast
services are defined as an ultra high definition slice in an
MIMO system [135]. To improve the spectrum efficiency
for video multicast/broadcast in the proposed system, the
authors introduce a hybrid digital-analog scheme to tackle
channel condition and antenna heterogeneity. Another possible
solution that can significantly improve qualities for video
multicasting/broadcasting is data caching. A novel caching
paradigm proposed in [136] is applied for multicast services
in heterogeneous networks. With the awareness of multicast
files, the proposed caching policy can select files efficiently
for the caches. Studies in [137], [138] propose using NOMA
techniques to support multicast/broadcast by increasing the
spectrum efficiency in multi-user environments. Finally, the
authors in [139] propose a video multicast orchestration
scheme for 5G UDNs which can help to improve the spectrum
efficiency.

4) Infected Movement Data: Due to the omnipresence of
mobile phones and the near world-wide coverage of cellular

signals, cellular technology can be an effective tool to track
the movement of people. Unlike in the quarantined people
detection scenarios where these people may deliberately leave
their phone at home, people do not have any reason to
do so in the infected movement data scenario. Therefore,
cellular can be an effective technology in this scenario. The
authors of [257] summarized the methods to trace human
position in outdoor environment using base stations and indoor
environment using access points. However the accuracy of the
outdoor environment still needs to improved because small
errors of cellular network would lead to bigger errors in the
distance measurement.

Given aforementioned studies, cellular technology can be
considered to be one of most important approaches to assist
social distancing. It can be deployed on a large scale due to
its convenience and ubiquitousness compared to other wireless
technologies. It can be used to track quarantined or infected
individuals. Furthermore, it can provide a unique solution to
not only monitor crowds in real time, but also allow the local
authorities to predict the forming of crowds in public areas
(e.g., airports, train stations and shopping malls) based on the
forecasted network traffic. However, the use of subscriber’s
location data for social distancing measures has can cause
privacy concerns which will be discussed more details in
Section V. In addition, 5G live broadcasting support can be
used to encourage people to stay at home during pandemic.

C. Bluetooth

With the explosive growth of Bluetooth-enabled devices,
Bluetooth technology is another solution for social distanc-
ing in both indoor and outdoor environments. In particu-
lar, Bluetooth is a wireless technology used for short-range
wireless communications in the range from 2.4 to 2.485
GHz [59], [60]. Bluetooth devices can automatically detect
and connect to other devices nearby, forming a kind of ad-
hoc called piconet [60]. Recently, Bluetooth Low Energy
(BLE) has been introduced as an extended version of the
classic Bluetooth to reduce the energy usage of devices and
improve the communication performance [60]. Given above,
the BLE localization technology possesses several advantages
compared with those of the Wi-Fi localization. First, the BLE
signals have a higher sample rate than that of the Wi-Fi signals
(i.e., 0.25 Hz ~ 2 Hz) [61]. Second, the BLE technology
consumes less power than that of the Wi-Fi technology, and
thus can be implemented widely in handheld devices. Third,
the BLE signals can be obtained from most smart devices,
while Wi-Fi signals can be obtained from only access points.
Finally, BLE beacons are usually powered by battery, and
thereby they are more flexible and easier to deploy than Wi-Fi.

1) Contact Tracing: One application of Bluetooth in social
distancing is contact tracing [62], [63] as illustrated in Fig. 8.
The key idea is using Bluetooth to detect other users in close
proximity with their information (e.g., identifier) stored in a
person’s Bluetooth device, e.g., a mobile phone. When there is
an infected case, the authorities can ask people to share these
records as a part of a contact tracing investigation. Thereby,
the authorities can detect people who may have close contact
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Fig. 8: Contact tracing application based on Bluetooth technology [65].

with the infected one and notify them promptly to prevent the
spreading of diseases. Several attempts to use Bluetooth in
contact tracing have been reported. Apple and Google have
recently introduced an mobile application (running on both
iPhone and Android devices) that can detect other smartphones
nearby by using Bluetooth technology [64], [65]. If a person
is tested positive for a disease, he/she will enter the result
in the app to inform others about that. Then, people who
may have close contact with the positive case will be notified
and instructed about what to do next. Similar apps have
been recently launched in Singapore [66], Europe [68], and
India [69].

2) Crowd Detection: Bluetooth technology can be used
to detect crowds in indoor environments to practice social
distancing with the latest advances in Bluetooth localization
techniques [70], [72]. In particular, based on signals received
from users’ Bluetooth devices, a central controller can cal-
culate the positions of users and detect/predict crowds in
indoor environments. If a crowd is detected, the local manager
can force people to leave to practice social distancing. In
addition, they can advice people who want to go to the
place to come at different time if the place is too crowed
at the moment.. In [70], the authors point out that with
the development of Bluetooth Low Energy, Bluetooth-based
indoor localization can be considered as a practical method
to locate Bluetooth devices in indoor environments due to
its low battery cost and high communication performance.
The authors then propose indoor localization schemes that
collect RSSI measurements to detect the user’s location by
using the triangulation mechanism. In [71], the authors show
that the BLE technology is strongly affected by the fast
fading interference, resulting in a low accuracy when de-
tecting the user’s device. To improve the accuracy of the
BLE positioning, the authors run several experimental tests
to choose the optimal parameters to set up BLE localization
systems. The authors demonstrate that the BLE-based indoor
localization can achieve a better performance than that of Wi-
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Fig. 9: Distance between any two persons based on Bluetooth
technology.

Fi localization system. The authors in [73] point out that the
accuracy of BLE-based localization is strongly affected by
advertising channels, human movements, and human obstacles.
To address these problems, they propose a dynamic Al model
that can detect human obstacles on the channel by using
three BLE advertising channels. Then, the RSSI values will
be compensated accordingly. The experimental results then
demonstrate the effectiveness of the proposed solution in terms
of the RSSI-ranges and the localization accuracy.

3) Distance Between Two People: Another application of
Bluetooth in social distancing is determining the distance
between two persons by using their Bluetooth-enabled devices,
e.g., smartphone or smartwatch as shown in Fig. 9. Specifi-
cally, similar to the Wi-Fi technology, based on RSSI levels, a
device can calculate the distances between it and other nearby
devices [72]. It is worth noting that the Bluetooth technology
can allow a device to connect to multiple devices at the same
time [59]. Thus, the device can simultaneously detect distances
to multiple devices in its area. If the distance is too small, e.g.,
less than 1.5 meters [74], the devices can notify the users to
warn and encourage them to practice social distancing.

Given the above, Bluetooth technology is a very promising
solution to enable social distancing. However, the privacy
of users needs to be taken into account as the applications
require users to share information with the authorities and
third parties. As such, this can be a research direction to ensure



the privacy and encourage people to share their information
to prevent the spreading of diseases. In addition, several
drawbacks of Bluetooth technology in social distancing which
need to be considered such as the accuracy of localization
techniques when the users’ devices are located inside the
pockets or bags and their devices always need to turn on the
Bluetooth mode. Furthermore, combining Bluetooth and other
technologies (e.g., Wi-Fi [75]) to improve the localization
accuracy is also an open research direction.

D. Ultra-wideband

Ultra-WideBand (UWB) technology has been deemed to
be a promising candidate for precise Indoor Positioning Sys-
tems (IPSs) that can sustain an accuracy at the centimeter
level in the ranges from short to medium due to its unique
characteristics (e.g., high time-domain resolution, immunity
of multipath, low-cost implementation, low power consump-
tion and good penetration) [99]. Due to the wide bandwidth
nature of UWB signals (at least 500 MHz as specified by
FCC [100]), the impulse radio (IR) UWB technology has
the capability of generating a series of very short duration
Gaussian pulses in time domain which enables its advantages
compared with other RF technology. Pulse position modulation
with time hopping (TH-PPM) is the most popular modulation
scheme exploited in the impulse radio based UWB [101].
This pulse can directly propagate in the radio channel without
the need of an additional carrier modulation. The baseband-
like architecture of the IR-UWB facilitates extremely simple
and low-power transmitters. Thus, the advantages of the IR-
UWB technology can greatly support social distancing, even
better than other wireless technologies (e.g., higher accuracy in
indoor positioning applications) or provide exclusive solutions
(e.g., device-free tracking/counting) for some scenarios, as
discussed below.

1) Real-time Monitoring: In this section, we review some
social distancing scenarios using Ultra-wideband technology
for real-time monitoring such as crowd detection (e.g., tracking
users’ location), public place monitoring and access scheduling
(e.g., counting the number of people in a specific area).

a) Crowd Detection: One of the major solutions for
crowd detection is tracking locations of people in public areas.
There are many commercial products exploiting the IR-UWB
technology for real-time localization in both daily life and fac-
tories such as DecaWave [102], BeSpoon [103], Zebra [104],
Ubisense [105]. DecaWave and BeSpoon claim their products
based on ranging measurements can offer an accuracy under
10 cm [102], [103]. Furthermore, Ubisense and Zebra provide
industrial products which can obtain the high accuracy even
in cluttered, indoor factory environments [104], [105]. All
of them support real-time positioning for multiple mobile
tags by using the triangulation techniques based on the ab-
solute locations of reference nodes or anchors (e.g., UWB
transceivers). Especially, the Dimension4 sensor invented by
Ubisense can be integrated with a built-in GPS module for
outdoor tracking purposes. Experiments conducted to evaluate
holistically the performance of three commercial products (i.e.,
DecaWave, BeSpoon, and Ubisense) under indoor industrial

environment setting (with the presence of NLOS) can be found
in [106]. The availability of commercial UWB-based local-
ization systems enables real-time people tracking in public
places by localizing their UWB-supported phones, or personal
belongings equipped with tags (e.g., keys and shoes). Thus,
the authorities can detect the crowd to notify them and other
people in the area, disperse the crowd or even predict and
prevent the forming of the crowd by using Al/Deep learning
algorithms based on the previously collected data.

Recently, device-free localization (or passive positioning)
techniques have witnessed a significant increase of interests
since it can tackle problems of communication-based local-
ization approaches mentioned above, which are: (i) privacy
issues (e.g., tracking targets do not need to communicate
with an access point/network coordinator, thus it can protect
private information of the target), and (ii) physical obstacles
(e.g., LOS communications have significant influence by ob-
stacles) [107]. The high time-domain resolution feature of
the IR-UWB technology enables the device-free localization
methods relying on the changes of very short pulses properties
between two transceivers because of absorption, scattering,
diffraction, reflection, and refraction [108], [109]. In particular,
the authors in [108] use monostatic radar modules (i.e., P410
platform) equipped with one transmitter and one receiver for
multi-target tracking based on Gaussian mixture probability
hypothesis density (GM-PHD) filters. Information (including
raw signal, bandpass signal, motion filtered signal and detec-
tion list) extracted from the reflected signals is used to estimate
the locations of targets with an accuracy at the decimeter
level. To improve the accuracy, a multi-static is deployed
in [109] to track a person in real time by determining the
difference between the newly channel impulse response with
the presence of a new object with that of the previous one
without the object. The location of the object can be found
with the mean error of only 3 cm by applying a leading edge
detection algorithm on the difference of the two measurements.
However, the limitation of this work is that it can track only
one target at a time. Motivated by the above works, we can
easily deploy device-free localization techniques for crowd
detection in public areas such as airports, train stations, and
shopping malls without revealing any personal information and
hardware requirements on target objects. Thereby, the authori-
ties can locate exact locations of crowds and have appropriate
actions to disperse crowds or force them to practice social
distancing.

b) Public Place Monitoring and Access Scheduling:
A simple solution for public place monitoring is referred
to as device (or tag)-free counting techniques [110], [111].
Specifically, the authors in [110] propose an advanced people
counting algorithm with less computation based on the reve-
lation of the received signal pattern according to the number
of people illustrated in Fig. 10(a). This method enables people
counting even with the presence of dense multipath signals in
the environment which is not able to be performed by counting
techniques based on detecting single signals corresponding to
individual persons. For example, other counting approaches
using Wi-Fi and Zigbee rely on the number of connections
from users to an access points (i.e., Wi-Fi) or a network
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Fig. 10: Tag-less counting technique using the UWB technol-
ogy.

coordinator (i.e., Zigbee). Major clusters are picked up to find
main pulses having maximum amplitude. A joint probability
density function derived from these main pulses is utilized
to derive maximum likelihood (ML) equation. Then, the esti-
mated number of people is determined to be the figure having
the maximum likelihood as shown in Fig. 10(b). Similarly, the
solution in [111] also provides a counting approach without
positioning targets by using the crowd-centric method based
on energy detection. Without the need of hardware deployment
on counting objects like Wi-Fi and Zigbee, the approaches
proposed in [110], [111] can provide a low-cost and high-
privacy solution to detect the number of people in public
areas (e.g., shopping malls, airports, train stations, and offices).
Further actions can be conducted by the local manager to
maintain social distancing such as scheduling people to enter
the place based on the counting information or giving advice
to other people who are planning to go to the crowded place
to come at a different time.

2) Keeping Distance and Contact Tracing: Maintaining
distance between two people and between a person and crowd
is an important measure that individuals can do to practice
social distancing. Moreover, close physical contact tracing
based on information of the aforementioned solutions can be
also implemented when there is a new infected person. We
will discuss all these solutions in the following sections.

a) Keeping distance and contact tracing: Similar to
Bluetooth, the IR-UWB technology can also be applied to
maintain the distances between people as well as close phys-
ical contact tracing by using ranging methods with high pre-
cision in both indoor and outdoor environments [102], [112].
While DecaWave provides a ranging measurement using sen-
sors and tags [102], Apple has already brought this feature

to their phones (e.g., Iphone 11 series) for their primitive
location-based services (e.g., finding objects and improving
AirDrop) [112]. These approaches use time-based ranging
techniques like ToF, TDoA or combined ToF and AoA to
measure the distances to nearby sensors, tags or phones.
However, these products can be employed to detect close
proximity between users in public places. Thanks to the IR-
UWB technology, they can frequently broadcast pilot mes-
sages containing some information (e.g., their specific IDs,
timestamp, etc.) to nearby devices for ranging measurements
with extremely low energy consumption. Then, surrounding
devices can utilize the information of the received messages
to estimate the distance from the source device and warn the
users if they are too close to each other (e.g., less than 1.5m in
a pandemic situation [12]). In addition, these devices can also
store other information like who had close contacts with them
along with the distances and duration periods. This information
is very important because it can be used to trace close contacts
in the future (e.g., investigate the spread of the virus in a
pandemic) with minimal privacy violation.

b) Distance to/from crowds: In order to help people
to avoid crowds, especially vulnerable or at-risk groups, in
indoor environments such as shopping malls, hospitals, and
office buildings, BeSpoon introduces a commercial product
that allows moving targets to self-localize their positions
very accurately (i.e., less than 10 cm over 600 m in LOS
environments) in a short time by using the IR-UWB technol-
ogy [103]. This product provides both evaluation kits and an
ultra-compact UWB module which can be easily integrated
into off-the-shelf products (e.g., shopping trolleys or baskets)
for localization and navigation purposes. A SnapLoc platform
proposed in [113] allows an unlimited number of tags to self
estimate their locations at position update rates up to 2.3
KHz. It uses the TDoA technique based on all simultaneous
responded information from reference nodes integrated into
one single channel impulse response. By combining with the
positioning service (i.e., to provide locations of other people in
a specific area), a navigation application exploiting commer-
cial products like BeSpoon can be developed to assist people
(e.g., customers) for self-detecting their current locations as
well as crowds’ locations along the way, thereby assisting them
to plan their moves and navigate to stay away from crowds.

To summarize, with the aforementioned potential appli-
cations, the IR-UWB systems can be considered to be an
outstanding solution to handle social distancing in both indoor
and outdoor environments. The IR-UWB based localization
systems discussed in [102]-[105] can be employed for de-
tecting and monitoring crowds in public places with a low-
cost deployment. Although this technology can also be used to
monitor the positions of self-isolated people to check whether
they break the quarantine requirements or not, it has less
attractive than other RF technologies like Wi-Fi or cellular
which do not require to install additional hardware for tracking
purposes. In addition, UWB-enabled phones like iPhone 11
series can assist users in practicing social distancing without
localization and navigation services. However, this solution
is only working for modern iPhone equipped with the UWB
chip. Last but not least, the device-free technology presented



in [108]-[111] is a great advantage of the IR-UWB technology
compared with other wireless technologies for the crowd
detecting and monitoring in public places with acceptable
accuracy at the decimeter level [108].

E. Global Navigation Satellite Systems (GNSS)

The GNSS (Global Navigation Satellite Systems) originally
developed the U.S. Department of Defense Global Positioning
System (GPS) has been being the most widely used for posi-
tioning purposes in the outdoor environment nowadays.GNSS
satellites orbit the Earth and continuously broadcast navigation
messages. When a receiver receives the navigation messages
from the satellites, it can calculate the distances from its
location to the satellites based on the transmitting time in the
messages. Basically, to calculate the current location of a user,
it requires at least three different navigation messages from
three different satellites (based on the Trilateration mechanism
presented in Section II). However, in practice, to achieve a
high accuracy in calculating the location of a user, at least
four different messages from four satellites are required (the
fourth one is to address the time synchronization problem
at the receiver) [140]. Currently, some GNSS systems (e.g.,
Galileo) can achieve the accuracy less than 1m [147]. As a
result, GNSS systems can be considered to be a very promising
solution to practice social distancing.

1) Applications for Real-time monitoring and automation:
Due to outstanding features of GNSS technology in locating
people, especially in outdoor environments, this technology is
very useful for tracking people to practice social distancing.
Specifically, most of smart phones now are equipped with GPS
devices which can be used to track locations of mobile users
when needed. In the context of a pandemic outbreak, e.g.,
COVID-19, many suspects, for example, returning from an
infected area, will be required to be self-isolated. Thus, to
monitor these people, the authorities can ask them to wear
GPS-based positioning devices to make sure that they do not
leave their residences during the quarantine [161], [162]. The
main advantage of using GNSS technology compared to Wi-
Fi or Infrared-based solutions for people tracking is that this
technology allows to monitor people anywhere and anytime
globally, and thus even the suspects move from one city to
another city, the authorities still can track and monitor them.
However, one of the major disadvantages of this technology
is that it much depends on the satellite signals. Thus, in some
areas with weak or high interference signals (e.g., inside a
building or in crowed areas), the location accuracy is very
low [151], [160], [163].

Another useful application of GNSS to practice social
distancing is automation. It comes from the fact that GNSS
is especially important for navigation in autonomous systems,
such as robots, UAVs and self-driving cars. Thus, in a pan-
demic outbreak when people are required to stay at home,
GNSS-based autonomous services play a key role to minimize
physical contact between people. For example, customers
can shop online and receive their items with drone delivery
services. Such kind of services have been introduced recently
by some large retail corporations such as Amazon and DHL.

Similarly, robotaxi services have been introduced recently in
some countries to deal with COVID-19 outbreak [159], [166].
It can be clearly seen that these GNSS-based autonomous
services can contribute a significant part in implementing
social distancing in practice by minimizing workforce for
delivery and transportation.

GNSS technology, a very well known technology in naviga-
tion with a lot of applications in civil and military, can provide
many useful applications to practice social distancing, e.g.,
people tracking, distance keeping and autonomous services.
However, there are some concerns related to privacy and
accuracy of using GNSS technology. For the privacy issues,
they will be discussed in Section V with several solutions
such as location information protection and personal identity
protection. For the accuracy issues, some recent advanced
GNSS technologies can be used such as Real-time Kinematic
which can provide an accuracy of less than a centimeter.
However, the implement cost for such services is still very
high which needs to be further investigated.

2) Keeping Distance and Crowd Detection: In [155], the
authors introduce a GNSS service which can be used to
determine the locations of users, thereby can warn them if
they violate the social distancing requirements. In particular,
in this service, mobile users are required to install a mobile
application which can track the location of the users based on
GPS technology. Then, the users’ locations will be updated
constantly to the service provider. Thus, based on the users’
locations, the service provider can determine whether the user
violates the social distancing requirements or not. For example,
if there are more than two users locating too close to each other
(e.g., less than two meters), the service provider can send
warning messages to remind the users. Furthermore, in the
cases if a user goes to restricted areas, e.g., isolated areas, they
will receive warning messages to be aware of using protection
measures.

3) Infected movement data: In the infected movement data
scenario, GNSS can be a very effective technology because of
its world-wide coverage and positioning accuracy is not a main
concern. For outdoor environment, using GNSS alone can be
sufficient for tracking the location of infected people. With
the omnipresence of smartphones with built-in GPS feature,
the movement path of the infected people can be easily deter-
mined. However, a main concern in this scenario is that people
have to turn on GPS service on their smartphones, which
necessitate mechanisms to incentivize people to share their
movement information. This issue will be further discussed in
Section V.

Although this GNSS-based service has many advantages in
practicing social distancing, e.g., tracking users, keeping dis-
tance, and group monitoring, it has some shortcomings which
limit its applications in practice. Specifically, this service
requires tracking locations of users based on GPS in a real-
time manner, which may cause some extra-implementation
costs and privacy issues for users. Furthermore, in terms of
determining the distance between two people, the accuracy of
GNSS services is not high in general, especially for distances
less than two meters. Thus, some recent advanced GNSS
technologies like [143], [149], [150] can be user to improve the



accuracy. However, these technologies are still very expensive
and have not been widely deployed for public services, and
thus more research in this direction can be further explored.

F. Zigbee

Zigbee is also a potential technology that can help to enable
social distancing. In particular, Zigbee is a standard-based
wireless communication technology for low-cost and low-
power wireless networks such as IoT networks and wireless
sensor networks. A Zigbee system consists of a central hub,
e.g., network coordinator, and Zigbee-enabled devices. Zigbee-
enabled devices can communicate with each other at the range
of up to 65 feet ( 20 meters) with an unlimited number
of hops. Compared with Wi-Fi and Bluetooth technologies,
Zigbee is designed to be cheaper and simpler, making it
possible for low-cost and low-power communications for smart
devices [84], [85]. Moreover, Zigbee can operate at several
frequencies, such as 2.4 GHz, 868 MHz, and 915 MHz. Given
the above, Zigbee is ideal for constructing mesh networks with
long battery life and reliable communications [85]. As a result,
Zigbee can be considered as a promising candidate in several
applications that enable social distancing during a pandemic
outbreak.

1) Crowd Detection: One promising application of Zigbee
is detecting and tracking users’ location in indoor environ-
ments. The key idea is that based on the RSSI level of the
received signals from the user’s Zigbee-enabled device, the
Zigbee control hub can determine the location of the user.
Several research works report that Zigbee localization systems
can achieve high accuracy with low-power and low-cost de-
vices [84]. Based on the location of users, the central hub can
detect crowds, i.e., many users at the same area, and notify the
local manager to ask people to practice social distancing dur-
ing a pandemic outbreak. With the state-of-the-art mechanisms
in the literature, the accuracy of Zigbee localization systems is
significantly improved, making it feasible for social distancing.
In [86], the authors propose a novel framework to enhance
the localization accuracy of Zigbee devices by considering
the effect of “drift phenomenon” when users move from a
place to other places in indoor environments. The authors
then demonstrate that the proposed framework can increase the
accuracy by up to 60% compared with conventional solutions.

Differently, in [87], the authors introduce an ensemble
mechanism to further improve the localization accuracy. In
particular, instead of using the RSSI level, the proposed
solution combines the gradient-based search, the linear least
square approximation, and multidimensional scaling methods
together with spatial dependent weights of the environment to
approximate the target’s location. In [88], the authors propose
an energy-efficient indoor localization system that can obtain
Wi-Fi fingerprints by using ZigBee interference signatures.
The key idea of this work is using ZigBee interfaces to
detect Wi-Fi access points which can significantly save en-
ergy compared with using Wi-Fi interfaces. Furthermore, a
K-nearest neighbor method with the Manhattan distance is
introduced to increase the accuracy of the localization system.
The experimental results show that the proposed solution can

save 68% of energy compared with the method using Wi-Fi
interfaces. The accuracy is also improved by 87% compared
to state-of-the-art WiFi fingerprint-based approaches.

2) Public Place Monitoring and Access Scheduling: In a
Zigbee system, there is a central hub, known as the network
coordinator, to control other connected devices in the net-
work. Thus, Zigbee can be used to control the number of
people in indoor environments, e.g., hospitals, supermarkets
and shopping malls.. Specifically, when a person equipped
with a Zigbee-enabled device (e.g., ID card or member card)
enters the place, the device will connect to the Zigbee central
hub. As such, the central hub is able to calculate the total
number of people inside the place at a given time. Based on
this information, the local manager can ask people to queue
before entering the place if it is too crowded.

In summary, Zigbee technology can play an important
role in enabling social distancing during pandemic outbreaks.
However, similar to RFID technology, Zigbee is a new
technology and has not been widely adopted in our daily
life, and thus limiting its practical applications. Nevertheless,
with the support from leading companies such as Amazon,
Google, Apple, and Texas Instruments [85], the number of
Zigbee-enable devices is expected to explosively increase in
the near future. Furthermore, combining Zigbee with other
technologies (e.g., Wi-Fi [88]) is also a promising research
direction to improve the performance of localization systems
in terms of the accuracy and robustness.

G. RFID

Radio frequency identification (RFID) plays a key role in
real-time object localizing and tracking [76]. Thus, RFID
technology is also a potential solution for social distancing.
An RFID localization system usually consists of three main
components: (i) RFID readers, (ii) RFID tags, and (iii) a
data processing system [77]. Typically, RFID tags can be
categorized into two types: (i) active tags and (ii) passive
tags. A passive RFID tag can operate without requiring any
power source, and it is powered by the electromagnetic field
generated by the RFID reader. In contrast, an active RFID tag
has its own power source, e.g., a battery, and continuously
broadcasts its own signals. Active RFID tags are usually
used in localization systems. Thus, RFID technology can
be considered as a potential technology to practice social
distancing.

1) Crowd Detection: One potential application of RFID
technology is locating users in indoor environments based on
recent RFID-based localization solutions [76]- [80]. To that
end, each user is equipped with an RFID tag, e.g., the staff
ID or member cards. Based on the backscattered signals from
the RFID tag, the RFID reader can determine the location of
the user. If there are too many people in the same area, the
system can notify the authorities to take appropriate actions,
e.g., force people to leave the area to practice social distancing.
Several recent mechanisms in the literature can be adopted
to make this application possible during pandemic outbreaks.
In [78], the authors propose an RFID-based localization system
for indoor environments with high localization granularity



and accuracy. The key idea of this solution is reducing the
RSST shifts, localization error, and computational complexity
by using Heron-bilateration estimation and Kalman-filter drift
removal. In [79], the authors propose to use a moving robot to
enhance the accuracy of a real-time RFID-based localization
system. In particular, the robot is able to perform Simultaneous
Localization and Mapping (SLAM), and thus it can continu-
ously interrogate all RFID tags in its area. Then, based on
passive RFID tags at known locations, we can estimate the
location of target tags by properly manipulating the measured
backscattered power. Alternatively, in [76], the authors propose
to equipped two RFID tags at the target instead of only
one as in conventional solutions to improve the accuracy of
localization techniques. Adding one more RFID tag possesses
several advantages: (i) easy to implement and adjust the RFID
reader’s antenna, (ii) enabling fine-grained calculation, and
(iii) enabling accurate calibration. The experimental results
then show that equipping two tags at the user can greatly
increase the localization accuracy of the system.

However, the RFID technology has several limitations due
to the fact that both the receiver and the RF source are in
the RFID reader. Specifically, the modulated signals back-
sacttered from the RFID tag are strongly affected by the
round-trip path loss from the receiver and the RF source.
In addition, the RFID system can also be affected by the
doubly near-far problem [81]. To address these problems,
a few recent works propose to use bistatic and ambient
backscatter communication technologies (extended version of
RFID) for localization [82], [83]. The key idea is separating
the RF source from the receiver. The RF source now can
be a dedicated carrier emitter or an ambient RF source. The
tag then can transmit data to the receiver by backscattering
the RF signals generated by the RF source. Based on the
received signals, the receiver can estimate the location of the
tag. In [83], the authors propose a localization system based
on backscatter communications to locate patients in a hospital.
In particular, each patient is equipped with a backscatter tag
which can backscatter signals broadcast by an RF source.
Then, the location of a patient can be detected by a localization
algorithm, namely Remix, based on the backscattered signals
from the backscatter tags. Remix consists of two processes.
First, the algorithm approximates the distance from the tag
to the receiver based on the backscattered signals. Second,
the signal paths are modeled with linear splines. Then, an
optimization problem is solved to find the effective distances
corresponding to the paths that close to the actual paths from
the tag to the receiver. As a result, Remix can accurately
estimate the position of the backscatter tag by modeling the
spline structure. Based on the users’ locations, Remix can
detect crowds in the hospital and advice the authorities to
take appropriate actions to practice social distancing. Note that
this solution can also be deployed to detect crowds in other
places such as workplaces, schools, and supermarkets where
backscatter tags can be easily attached to users/customers’
cards, e.g., staff cards, student cards, and member cards.

2) Public Place Monitoring and Access Scheduling: An-
other application of RFID in social distancing is monitoring
the number of people inside a place, e.g., a building or

supermarket. In particular, an RFID reader will be deployed
at the main gate of a place, and users are equipped with RFID
tags (can be both active and passive tags). The users’ tags can
broadcast their ID (active) or send their ID upon receiving RF
signals from the RFID reader (passive). When a user enters the
place, the RFID reader can receive the user’s ID and increase
the counter. As such, the RFID reader can calculate the number
of people inside the place. If there are too many people, the
system can notify the local manager to force people to queue
before entering the place to practice social distancing. This
solution can be deployed in supermarkets or workplaces where
the customer/staff usually have member/staff ID cards which
can be equipped with RFID tags.

In summary, RFID technology is a potential solution to en-
able social distancing. However, different from other wireless
technologies, RFID technology has not been widely adopted in
practice due to its complexity in implementation. Specifically,
to be able to detect the location of people by using RFID tech-
nology, they need to be equipped with RFID tags. However,
RFID tags are not readily available likes Wi-Fi access points
or Bluetooth. Thus, applications of RFID technology for social
distancing are still limited in practice.

Table II summarizes the technologies discussed in this
Section.

IV. OTHER EMERGING TECHNOLOGIES FOR SOCIAL
DISTANCING

In addition to the wireless technologies, other emerging
technologies such as artificial intelligence, computer vision,
ultrasound, inertial sensors, visible lights and thermal also can
all contribute to facilitating social distancing. In this section,
we provide a brief overview of each technology, and discuss
how it can be applied for different social distancing scenarios.

A. Artificial Intelligence for Social Distancing

Over the last 10 years, we have witnessed numerous appli-
cations of Artificial Intelligence (AI) in many aspects of our
lives such as healthcare, automotive, economics and computer
networks [296]. The outstanding features of Al technologies
are the abilities to automatically “learn” useful information
from the obtained data. This leads to more intelligent automa-
tion, operating cost reduction as well as the great compatibility
to adapt with changing environments. For that, Al (and its
underlying machine learning algorithms) can also play a key
role in social distancing, especially in the modern lives, with
many practical applications, as discussed below.

1) Distance to/from Crowds and Contact Tracing: Appli-
cations of machine learning to users’ location data allow us
to effectively monitor the distance between people and trace
the close contacts of infected people. In [341], the authors
analyze the accuracy of a user’s location prediction based on
his/her friends’ location datasets. In this case, a temporal-
spatial Bayesian model is developed to select influential
friends considering their influence levels to the user. Thus, the
service provider can predict the exact location of a mobile user
by using the temporal-spatial Bayesian model. Then, when
the user is too close to other mobile users/people at crowded
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public places or his/her friends when they go in a group as
illustrated in Fig. 11(a), his/her smartphone can alert to keep
a safe distance. In addition, using the list of influential friends
based on their ranks, the service provider can utilize it for the
contact tracing purpose when the mobile user or one of his/her
influential friends in the list gets infected.

2) Infected Movement Prediction: Another application of
machine learning is to predict infected people movement from
one location to another one and hence can potentially predict
the geographic movement of the disease. The prediction is
particularly crucial as infected people may travel to various
places and can accidentally infect others before know that they
carry the disease. In [342], the authors introduce a smartphone-
based location recognition and prediction model to detect
current location and predict the destination of mobile users. In
particular, the location recognition is implemented using the
combination of k-nearest neighbor and decision tree learning
algorithms while the destination prediction is realized using
hidden Markov models. Given the history of infected people
movement, we can adopt the above model to recognize and
predict the potential geographic movement of the disease.
Using the information, people can be advised to stay away
from the possible infected locations through alerts from their
smartphones as illustrated in Fig. 11(b).

3) Quarantined/At-Risk People Location Prediction: The
current location prediction of quarantined people, e.g., infected
people, and at-risk people, e.g., sick and old people, is very

important to monitor whether they currently stay at the self-
quarantined and self-protection areas, e.g., their homes, or
not. To this end, machine learning-based location prediction
approach can help to detect the current position of those people
in a certain area. In [343], the authors apply the auto-encoder
neural networks and one-class support vector machines to
verify whether a user is within a specific area or not. Consid-
ering various channel models, i.e., path-loss, shadowing, and
fading, the proposed solutions can achieve Neyman-Pearson
optimal performance by observing the probability of miss-
detections and false-alarms. The authors in [344] propose a
novel localization system leveraging a federated learning to
allow mobile users to collaboratively provide accurate loca-
tion services without revealing mobile users’ private location.
As such, the authors utilize deep neural networks with the
Gaussian process to accurately predict the desired location
of the mobile users. As a result, we can apply the proposed
solutions to detect if infected people or at-risk people currently
move away from their homes as illustrated in Fig. 11(c).
Moreover, we can utilize the proposed solutions to determine
the movement frequency of the self-isolated people outside the
protection facility. Using the movement frequency history, the
authorities can enforce them to stay at the protection facility
for further infection prevention.

4) People/Traffic Density Prediction: Predicting the density
of people or the number of people in public places allows
us to efficiently schedule or guide people to stay away or
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Fig. 11: Application of artificial intelligence to social distancing.

refrain from coming to soon-to-be over-crowded places. For
example, when the predicted number of people in a certain
place almost reaches a pre-defined threshold (e.g., according
to the social distancing requirement), the service provider
can broadcast a local notification to incoming people via
cellular network, aiming at encouraging them move to other
less density areas. In [345], the authors adopt advanced ma-
chine learning-based approaches for edge networks to predict
the number of mobile users within base stations’ coverages.
Particularly, the framework first groups the base stations into
clusters according to their network data and deployment loca-
tions. Then, using various machine learning algorithms, e.g.,
the Bayesian ridge regressor, the Gaussian process regressor,
and the random forest regressor, we can predict the number
of mobile users within their network coverages. From the
preceding architecture, one can utilize Wi-Fi hotspots and
cluster them based on their locations. By doing so, we can
predict the number of people within each cluster’s coverage.
Using the same architecture, we can extend the application
to predict the traffic level on the roads. Specifically, upon
predicting the number of vehicular users on the roads, we
guide the drivers to choose particular routes to satisfy the
social distancing requriements, e.g., suggest alternative routes
to avoid crowded areas. In [346], the authors introduce a
UAV-enabled intelligent transportation system to predict road

traffic conditions using the combination of convolutional and
recurrent neural networks. In particular, sensor cameras on
the UAVs are utilized to capture the current road traffic.
By using this information, the UAVs can then predict the
road traffic conditions using the aforementioned deep learning
methods. Thus, from the traffic prediction, the UAVs can
work as mobile road side units to orchestrate road traffic
for over-crowding avoidance through informing the upcoming
road traffic conditions to vehicular users via cellular networks
accordingly (Fig. 11(d)).

5) Sickness Trend Prediction: Machine learning-based lo-
cation prediction method is also of importance to predict the
sickness trend in specific areas. This sickness trend prediction
can be used to inform people stay safe from possible infected
places. For example, the work in [347] designs a contactless
surveillance framework, i.e., FluSense, to predict the influenza-
like disease 7-14 days before the real disease occurs in the
hospital waiting areas. In particular, a set of real-time sensors
including a microphone array to detect normal speech/cough
sounds and a thermal camera to detect crowd density are
embedded into an edge computing platform. Considering
millions of non-speech audio samples and hundred thousands
of thermal images for audio and image recognition models,
the proposed framework can accurately predict the number of
daily influenza-like patients with Pearson correlation coeffi-



cient of 0.95. The prediction model from this work can be
correlated/combined with the localized medical/health infor-
mation (e.g., from local hospitals/clinics) to further improve
the prediction accuracy as shown in Fig. 11(e). We then
can inform the local mobile users about the sickness trend
prediction to avoid the potential areas where many influenza-
like patients exist.

B. Computer Vision

Computer vision technology trains computers to interpret
and understand visual data such as digital images or videos.
Thanks to recent breakthroughs in Al (e.g., in pattern recogni-
tion and deep learning), computer vision has enabled comput-
ers to accurately identify and classify objects [167]. Such ca-
pabilities can play an important role in enabling, encouraging,
and enforcing social distancing. For example, computer vision
can turn surveillance cameras into “smart” cameras which
can not only monitor people but also can detect, recognize,
and identify whether people comply with social distancing
requirements or not. In this section, we discuss several social
distancing scenarios where computer vision technology can
be leveraged, including public place monitoring, and high-
risk people (quarantined people and people with symptoms)
monitoring and detection.

1) Public Place Monitoring: Despite government restric-
tions and recommendations about social gathering, some peo-
ple still do not comply with, which can cause the virus infec-
tion to the community. In such context, human detection fea-
tures in object detection [168], a major sub-field of computer
vision, can help to detect crowds in public areas through real-
time images from surveillance cameras. An example scenario
is described in Fig. 12(a). If the number of people in an
area does not meet the social distancing requirement (e.g.,
gathering above 10 people), the authorities can be notified to
take appropriate actions.

There are two main approaches to detect humans from
images in object detection namely region-based and unified-
based techniques. The former detects humans from images in
two stages including the region proposal and the procession
according to the regions [169]. Based on this approach,
several frameworks including Fast-RCNN [175] and Faster-
RCNN [176] are developed in combination with Convolution
Neural Network (CNN) [173]. In [177], the authors improve
the Faster-RCNN by proposing the Mask Regions with CNN
features (Mask RCNN) method which masks the bounding
box to detect the object with high accuracy while adding a
minor overhead to the Faster-RCNN. Mask RCNN outper-
forms previous methods by simplifying the training process
and improving the accuracy in detecting humans in the images
for calculating the density of people in a particular area.

Although the above region-based approach has high recog-
nition accuracy [177], it has high complexity, which is un-
suitable for devices with limited computational capacity. To
address this, the unified approach is a suitable, which can
reduce the computational complexity by detecting humans
from images with only one step. This approach maps the pixels
from image to the bounding box grid and class probabilities to
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detect humans or objects in real-time. Following this direction,
the You Only Look Once (YOLO) method proposed in [178]
can detect/predict objects (even small ones) in real-time with
high accuracy. In addition, in [179], the authors propose the
Single Shot Multibox Detector (SSD) framework which uses
a convolution network on the image to calculate a feature
map and then predict the bounding box. Through experimental
results, they demonstrate that this method can detect objects
faster and more accurately than those of both YOLO and
Faster-RCNN. For public place monitoring, both YOLO [178§]
and SSD [179] can be used to detect fast and accurately hu-
mans from real-time images or videos of surveillance cameras.
After identifying people, we can use a real-time automatic
counter to count and identify whether the number of gathering
people complying with social distancing requirements or not.

2) Detecting and Monitoring Quarantined People: To pre-
vent the spread of the virus from an infected person to others,
the infected person or people who had physical contact with
them must be isolated at the restricted areas or at home.
For example, citizens who come back from highly infected
countries/regions of COVID-19 are often requested to be
quarantined or self-isolate for 14 days. Due to the lack of
facilities, most countries require these people to self-isolate at
home. In this case, the face recognition capability of computer
vision can help to enforce this requirement by analyzing the
images or videos from cameras to identify these people (i.e.,
to check whether they breach the self-isolation requirements
or not). If these people are detected in public, the authorities
can be notified to take appropriate actions.

Unlike object detection, the dataset including the full face
images of the isolated people needs to be built. The face recog-
nition system firstly learns from this dataset and then analyzes
the images from public surveillance cameras to identify their
appearances as in Fig. 12(b1). The authors in [180] propose
a framework named DeepFace using Deep Neutral Network
(DNN) which can detect with an accuracy of 97.35% and
91.4% in Labeled Faces in the Wild (LFW) and YouTube
Faces (YTF) dataset, respectively. To improve the accuracy
in detecting human from surveillance cameras, some advanced
techniques can be implemented such as [181], [182] and [183].

To prevent the spread of infectious diseases such as COVID-
19, people are often required to wear masks in public places,
which necessitates approaches to recognize or identify people
with masks as illustrated in Fig. 12(b2). For example, the
cameras in front of a public building can recognize and send
warning messages (e.g., a beep sound) to remind the person
who does not wear a mask when he/she intends to get into the
building. This idea is introduced in [192] by using the CNN to
detect people who do not wear the masks. However, this work
is justs at the first step, which still needs much more research
on it to demonstrate the effectiveness as well as improve the
accuracy.

3) Symptoms Detection and Monitoring: After a few days
of being infected with the virus, the infected person may have
some symptoms such as coughing or sneezing. To minimize
spreading the virus to others, it would be very helpful if
we can detect these symptoms from people in public and
inform them or the authorities. The idea here is similar as



(a) Human Detection

(b) Face Recognition
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(b2)
(c) Pose Estimation

Fig. 12: Computer vision technologies for social distancing (a) human detection to identify the number of people in the public
place, (b) face recognition to identify (b1) the full face of isolated person, (b2) person with mask or person behind the mask

and (c) pose estimation to detect one with coughing symptom.

that of using thermal imaging cameras at airports or train
stations. Specifically, detecting human behaviors, motion, and
pose in computer vision can play a pivotal role [187]. Pose
estimation captures a person with different parts (as illustrated
in Fig. 12(c)) then detects human behaviors by studying
the parts’ movements and their correlation. For example, a
coughing person in Fig. 12(c) usually moves his hand near
his head and his head would have a vibration.

Recognition of human behaviors from surveillance cameras
is a challenging problem because the same behaviors may
have different implications, depending on the relationship
with the context and other movements [188]. The recent
advances in AI/ML are instrumentals in correlating different
movements/parts to interpret the associated behavior. In [189]
the authors propose to use CNN [173] to enhance the accuracy
of the model of the interaction between different body parts.
In addition, the authors in [190] introduce several methods
to detect body parts of multiple person in 2D images, and
the authors in [191] propose methods to estimate 3D poses
from matching of 2D pose estimation with a 3D pose library.
These works can be further developed for future studies to
detect people with symptoms of the virus like coughing or
sneezing in real-time. To improve the accuracy of the symptom
detection in social distancing, computer vision-based behavior
detection methods can be combined with other technologies,
e.g., thermal imaging.

4) Infected Movement Data: To prevent the spread of the
virus, tracing the path of an infected person plays an important
role to find out the people who were in the same place with the
infected person. For this purpose, computer vision technology
can not only detect the infected people by facial recognition,
but also contribute in the positioning process. In [249], the
movement of people is determined by analyzing the key
point of transition frames captured from smartphone cameras.
This method can draw the trajectory of movements and the
location with the accuracy around 2 meters. In [250], the
authors propose to combine the human detection techniques
of computer vision with digital map information to improve
the accuracy. In this study, the user path from cameras is
mapped to the digital map which has the GPS coordinates.
This method gave can achieve a very high accuracy within
two meters. In another approach, the authors in [251] propose

to use both smartphones’ cameras and inertial-sensor-based
systems to accurately localize targets (with only 6.9 cm error).
This approach uses fusion of keypoints and squared planar
markers to enhance the accuracy for cameras to compensate
the errors of inertial sensors.

5) Keeping Distance: Keeping a suitable distance, espe-
cially from crowds, to prevent infection with the virus is one
of the key factors of practicing social distancing. To support
people in keeping distance to/from the crowds, computer
vision can be utilized. In [248], the authors develop an on-
device machine learning-based system leveraging radar sensors
and cameras of a smartphone. When the radar sensor detects
the surrounding moving objects, the smartphone camera can
be utilized to capture its surrounding environment. Taking into
account the recorded data, the smartphone can train the data
using machine learning algorithms to determine the existence
of nearby people and its distance from those people with
respect to the social distancing requirements. We can also use
a smartphone to estimate the distance between the mobile user
and other people using radar sensors and cameras along with
machine learning algorithms.

In summary, computer vision can be utilized in several
social distancing scenarios, especially the ones that require
people monitoring and detection. Particularly, computer vision
is the only method that can differentiate between people and
identify complex feature such as mask and symptoms. Thus,
computer vision technology can play a vital role in the social
distancing scenarios. To further improve the effectiveness
of computer vision in the social distancing context, future
research should focus on increasing the accuracy and reducing
the complexity of computer vision methods, so that they can
be integrated to existing systems such as surveillance cameras.

C. Ultrasound

The ultrasound or ultrasonic positioning system (UPS) is
usually used in the indoor environment with the accuracy
of centimeters [193]. The system includes ultrasonic beacons
(UBs) as tags or nodes attached on users and transceivers.
Beacon units broadcast periodically ultrasonic pulses and radio
frequency (RF) messages simultaneously with their unique ID
numbers. Based on these pulses and messages, the receiver’s



position can be determined by position calculation methods
such as trilateration or triangulation [194]. In comparison with
other RF-based ranging methods, the UPS does not require a
line of sight between the transmitter and the receiver, and it
also does not interfere with electromagnetic waves. However,
since the propagation of the ultrasound wave is limited, most
UPS applications for social distancing are only applicable for
the indoor environment.

1) Keeping Distance: Keeping distance in social distancing
aims to maintain a safe distance between people to prevent
the spread of the disease. For this purpose, UPS can be used
to position and notify people. One of the first well known
UPS systems is Active Bat (AB) [195] based on the time-of-
flight of the ultrasonic pulse. Typically, an AB system consists
of an ultrasonic receiver matrix located on the ceiling or
wall, a transmitter attached to each target, and a centralized
computation system to calculate the objects’ positions. As
presented in [195], by using a receiver matrix with 16 sensors,
the AB system can achieve very high positioning accuracy,
i.e., less than 14 centimeters. However, a limitation of this
system 1is its high complexity, especially if a large number of
ultrasonic sensors are deployed.

Another limitation of the AB system is the privacy risk
for users, since the location of users under the AB system
is calculated at the central server. To address that, the Criket
(CK) system is proposed in [199], [200] wherein the position
calculation is executed at the receivers. Specifically, a receiver
in the CK system passively receives RF and ultrasound sig-
nals from UBs located on the wall or ceiling, and then the
receiver calculates its position by itself based on UBs’ ID and
coordinates. Since the receivers do not transmit any signals,
the privacy of users will not be compromised. Fig. 13 demon-
strates the two systems in the keeping distance application.

2) Real-time Monitoring: In the context of social distanc-
ing, UPS can be an effective solution for real-time monitoring
scenarios, especially gauging the number of people in public
buildings. In particular, a main characteristic that differs UPS
from other positioning technologies is confinement, i.e, the
ultrasound signal is confined within the same room as the
UBs [194]. Among the other positioning technologies, only
the infrared technology shares the same characteristic. Nev-
ertheless, infrared signals prone to interference from sunlight
and other thermal sources, and they also suffer from line-of-
sight loss [194]. As a result, ultrasound is the most efficient
technology for binary positioning [194], i.e., determine if the
object is in the same room as the UBs or not. Thus, UPS can be
particularly useful in the social distancing scenarios where the
exact positions of people are not as necessary as the number of
people inside a room (e.g., to limit the number of people). This
technology is more efficient because it needs a few reference
nodes (e.g., UBs) to determine the binary positions of people,
which can significantly reduce implementation costs.

3) Automation: Ultrasound can also be applied in the social
distancing scenarios that utilize medical robots or unmanned
aerial vehicle (UAV). Mobile robots, especially medical robots,
can play a key role in reducing the physical contact rates
between the healthcare staffs (e.g., doctors and nurses) and the
patients inside a hospital, thereby maintaining a suitable social
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distancing level. In such scenarios, UPS can help to improve
the navigation of medical robots. In [211], a navigation system
based on Wi-Fi and ultrasound is proposed for indoor robot
navigation. To deal with the uncertainties which are very
common in crowded places like hospitals, the system employs
a Partially Observable Markov Decision Process, and a novel
algorithm is also introduced to minimize the calibration efforts.

In the social distancing context, beside their outdoor appli-
cations, UAVs can also be employed to reduce the necessity
of human physical presence. For example, UAVs can be used
to deliver goods inside a building or to manage warehouse
inventory. However, most of existing studies focus on UAV
navigation in the outdoor environnment, which often relies on
GNSS for UAV positioning. Since GNSS’s accuracy is low
for the indoor environment, these methods cannot be applied
directly for UAV navigation inside a building. To address that
limitation, a navigation system is proposed in [207], which
utilize ultrasound, inertial sensors, GNSS, and cameras to
provide precise (less than 10cm) indoor navigation for multiple
UAVs.

In summary, ultrasound can be applied in several social
distancing scenarios. In the keeping distance scenarios, UPS
systems such as AB and CK can be applied directly to position
and notify people to keep a safe distance. Moreover, due
to its confinement characteristic, ultrasound is one of the
most efficient technology for binary positioning, which is
particularly useful for monitoring and gauging the number
of people inside the same room. In the automation scenarios,
ultrasound can facilitate UAVs and medical robots navigations,
especially for the indoor environment.

D. Inertial Sensors

In the context of social distancing, inertial-sensors-based
systems can be applied in distance keeping and automation
scenarios as illustrated in Fig. 14. For example, positioning
applications utilizing built-in inertial sensors can be developed
for smartphone which can alert the users when they get close
to each other or a crowd. Moreover, inertial sensors can
be integrated into robot and vehicles positioning, which can
facilitate autonomous delivery services and medical robots
navigation. All of these scenarios can contribute to reduce the
physical contact rate between people.

Inertial sensors consist of two special types of sensors,
namely gyroscopes and accelerometers, attached to an ob-
ject to measure its rotation and acceleration. Based on the
measured rotation and acceleration data, the orientation and
position displacements of the object can be determined [285].
Because inertial sensors do not require any external refer-
ence system to function, they have been one of the most
common sensors for dead reckoning, i.e., calculation of the
current position is based on a previously determined position,
navigation systems. Such navigation systems can provide
accurate positioning within a short time frame. However, since
the current position is determined based on the previously
calculated positions, the errors accumulate over time, i.e.,
integration drift. Therefore, Inertial-Navigation-System (INS)
is often used in combination with other positioning systems,
e.g., GPS, to periodically reset the base position [285].
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Fig. 14: Inertial-sensors-based systems for several social dis-
tancing scenarios.

1) Keeping Distance: Traditionally, INS have been widely
used for aviation, marine, and land vehicles navigation. Re-
cently, the ever-increase presence of smartphones has enabled
many INS applications for pedestrian positioning and naviga-
tion, which can support social distancing scenarios. Moreover,
INS is one of the few technologies that can enable accurate
pedestrian positioning for outdoor environment, especially
when combined with other outdoor positioning technique such
as GPS. In [286], a smartphone-based positioning system is
proposed. The system makes use of a smartphone’s built-
in sensors, including gyroscopes, accelerometers, and mag-
netometers (sensors that measure magnetism), to calculate
the smartphone’s position. In particular, magnetometers are
combined with gyroscopes to improve the accuracy in rotation
measurements. This is done by correlating their measurements
via a novel algorithm which uses four different thresholds to
determine the weights of the gyroscope and magnetometers
measurements in the correlation function.

In [287], a novel indoor positioning system is developed
using Wi-Fi and INS technologies. In this system, INS is
utilized for the area where Wi-Fi coverage is limited, while
Wi-Fi positioning is used to compensate INS’s integration

drift. Another positioning system using inertial sensors and
Wi-Fi is presented in [288], where Wi-Fi fingerprinting tech-
nique is used to improve the accuracy of the dead reckoning
navigation. Because of the integration drift, a dead reckoning
navigation system needs to frequently update its position by
referencing to an external node. In the proposed system, a
Wi-Fi fingerprinting map is set up in advance and the dead
reckoning system can use the map to update its position.
Moreover, in [252], the authors proposed using Kalman filter
to combine the measurement data from Wi-Fi and INS, which
can reduce the error to 1.53 meter.

Beside Wi-Fi, INS can be used in combination with other
positioning technologies. In [289] and [290], INS has been
combined with the UWB technology for pedestrian positioning
and tracking. Generally, INS helps to reduce UWB’s high
implementation cost and complexity, while INS’s integration
drift can be compensated. Particularly, INS is employed to
compensate for the UWB’s low dynamic range and proneness
to external radio disturbances in [289]. To enable the com-
bination, an information fusion technique using the extended
Kalman filter is proposed to fuse the measurement data coming
from both the INS and UWB sensors. The result shows that the
hybrid system can achieve better performance than both the
individual systems. In [290], the information fusion problem
between the INS and UWB is optimized to minimize the
uncertainties in the measurements. As a result, the positioning
accuracy can be significantly improved.

2) Automation: Besides pedestrian positioning, INS can
also be applied for social distancing scenarios involving au-
tonomous vehicles, e.g., medical robots and drone delivery.
Generally, INS has been commonly used for medical robots
applications, including surgeon assists, patient motion assists,
and delivery robots. In this section, we will only focus on
the medical and delivery robots applications for social dis-
tancing purposes. In [291], a novel INS system is developed



specifically for mobile robot navigation. In addition, an error
model is proposed to increase the accuracy of the involved
inertial measurements. A Kalman filter is also proposed to
precisely estimate the velocity and orientation of the robot
in the presence of noises. A novel data fusion algorithm,
leveraging an adaptive Kalman filter is presented in [292] for
indoor robot positioning based on a INS/UWB hybrid system.

Unlike INS for mobile robots that are mostly developed for
indoor environment, INS for UAV focuses on outdoor applica-
tions. Note that UAV navigation must also consider its altitude,
which adds more complexity. The authors of [293] leverage
inertial sensors and cameras to determine the UAV’s position,
velocity, and altitude. Particularly, the cameras attached to
the UAV capture the images of the surrounding environment
and send to a control station. This station will then process
the images to determine the UAV’s pose in regards to the
surroundings. The pose’s data is then combined with the
inertial sensors data via a Kalman filter to determine the UAV’s
position and velocity. Similarly, a system combining inertial
and vision sensors is developed in [294] for UAV positioning
and navigation. The system utilizes two observers which have
inertial and vision sensors. The first observer calculates the
orientation based on gyroscope and vision sensors, while the
second observer determines the position and velocity based on
data from the accelerometers and vision sensors.

Summary: The omnipresence of smartphones with built-in
inertial sensors has opened many opportunities for developing
positioning systems based on INS. For the distance keeping
scenarios, INS positioning systems, especially for pedestrians,
can play a vital role as they are readily available. In the other
scenarios such as medical robot and UAV delivery, INS-based
techniques can help to increase the efficiency (better path,
lower traveling time) of the existing navigation systems.

E. Visible Light

The recent development in the light emitting diodes (LEDs)
technology has enabled the use of existing light infrastructures
for communication and localization purposes due to attractive
features of visible lights such as reliability, robustness, and
security [215]-[217]. Visible light communication (VLC) sys-
tems usually comprise two major components, i.e., LED lights
corresponding to transmitters to send necessary information
(e.g., user data and positioning information) via visible lights
and photo detectors (e.g., photodiodes) or imaging sensors
(e.g., camera) playing the role of receivers [17]. Due to the
ubiquitous presence of LED lights, VLC can be leveraged in
many social distancing scenarios as discussed below.

1) Real-time Monitoring: Communication systems using
visible light (e.g., LED-based communications) can provide
precise navigation and localization solutions in indoor envi-
ronments. Utilizing this technology, some applications can be
implemented to support social distancing such as tracking in-
dividuals who are being quarantined, detecting and monitoring
crowds in public places (e.g., shopping malls, airports, train
stations and workplaces) as shown in Fig. 15(a).

a) Photodiode-based VLC systems: Due to many ad-
vantages such as low cost and easy to implement, the VLC
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receiver using photodiodes can be employed as a “tag” that is
integrated into mobile targets such as trolleys/shopping carts,
autonomous robots, etc. People attached with these tags can
perform self-positioning based on the triangulation method,
so that they can avoid crowed areas. Furthermore, the tags’
locations can be collected by the authorities to monitor people
in the public areas. Based on this location data, further actions
can be carried out such as warning people by varying the
color temperature of the lights in the crowded areas. It is
worth noting that this solution can not reveal any personal
information of users (e.g., customers) since it only requires
communications between VLC-based tags and light fixtures.
However, most VLC systems only provide a half-duplex
communications due to the fact that LED lights operate as the
role of transmitters. Therefore, they should be combined with
other wireless technologies like Bluetooth [218], [219], In-
frared [220] to enable an uplink communication with the server
for location information exchange. Moreover, to improve the
accuracy of positioning people in indoor environments using
photodiodes, some advanced techniques can be used such as
data fusion of AOA and RSS methods proposed in [221] and
the AOA method using a multi-LED element lighting fixture
introduced in [222]. One main disadvantage of the photodiode-
based VLC systems is the need of additional hardware (i.e.,
the photodiode receiver) mounted on smart trolleys/shopping
carts to receive light signals. Consequently, the system might
fail to detect the locations of people who do not carry them.
Nevertheless, pureLiFi company has recently invented a tiny
optical front end which can be integrated into smartphones
to take benefits of the photodiode receiver in high accuracy
VLC-based localization services [223].

b) Camera-based VLC systems: The rapid development
of smartphones has enabled VLC-based applications on hand-
held devices such as indoor localization and navigation ap-
plications (e.g., smart retail systems [218], [219], [224]).
These system use front-facing cameras of mobile phones to
receive visible light signals contained positioning information
(e.g., the LED light’s ID or location) from visible light
beacons [225]. The captured photos collected regularly by
the front-facing camera are sent to a cloud/fog server for
image processing to alleviate the computation on the phone.
Then, the beacon’s ID and coordinates can be extracted and
sent back to the phone. After that, the AoA algorithm is
implemented to estimate the location and orientation of the
phone. An attractive use case of the camera-based VLC
systems [218], [219], [224] is to assist users to quickly find
specific products in shopping malls, or supermarkets. Thus, we
can adopt this function to implement tracking and monitoring
crowds in public places (e.g., shopping malls, airports and
train stations) as well as assisting people to avoid crowds in a
proactive manner. It is worth noting that this solution is more
convenient than using photodiodes since it uses front-facing
cameras of smartphones as the VLC receivers, thus everyone
using smartphones can be tracked. However, due to continuous
photo shooting, these positioning applications are very energy-
consuming, which is a major drawback of camera-based VLC
systems when they are used for tracking people.



a) Real-time monitoring and assistance systems.
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¢) Outdoor VLC traffic controlling system.

Fig. 15: Visible light communications supporting social distancing.

2) Automation: In public places, there is always a need
for assistance in specific circumstances (e.g., information or
physical supports for customers, older and disabled people).
For instance, supporting staffs in supermarkets can assist
customers to find products or help older/disabled people to
carry their goods. Similar assistance scenarios can be seen
in hospitals, banks, and libraries. This results in an increase
of close physical contacts between customers and assistants.
Therefore, autonomous assistance systems using VLC tech-
nology can be employed to minimize the physical contacts as
shown in Fig. 15(a) and (b).

a) Information assistance: Besides the navigation pur-
pose, the smart retail systems [218], [219] can also provide
information assistance services for shoppers. For example,
the product description, sale information or other necessary
information can be displayed on screen when the phone
is under a certain LED light. Another example system is
information assistance services in museum [226], [227]. This
can help to reduce the number of close physical contacts in
these places.

b) Autonomous robot: Similar to the information as-
sistance systems for reducing close physical contacts, au-
tonomous robots using the VLC technology for communica-
tion and localization can also be deployed to assist people
in certain circumstances, for example, elderly-assistant robots,
walking-assistant robots, shopping-assistant robots, etc., [228],
[229]. Moreover, visible light signals do not cause any inter-
ference to RF signals, and thus they can effectively deployed
in diverse indoor environments such as hospitals, schools and
workplaces.

3) Traffic Control: In the context of social distancing, high
demand traffic can cause a large concentration of people in a
certain area (e.g., city centre). By adopting smart traffic light
systems in [230], [231], we can deploy an intelligent traffic
controlling system using the VLC technology to control large
traffic flows as illustrated in Fig. 15(c). That can help to avoid
high density of vehicles in public areas. The VLC technology
provides a communication method between vehicles and the
light infrastructure (e.g., traffic lights, street lights). First,
vehicles can send its information (e.g., their IDs) to the light
infrastructure by using its headlights as transmitters, thus the
system can detect and monitor the traffic flow. However,
in this case, it is required that the light infrastructure must
be equipped with VLC receivers (e.g., traffic cameras or
photodiodes). Second, based on the awareness of the traffic,
the system can control the vehicles by sending instructions to
guide them. In this case, the system uses traffic lights, or street
lights as transmitters to send information and the vehicles
use dash cameras to receive the information. For example,
the system will notify them about hot zones that have a high
density of vehicles and do not allow them to enter, so that
they can avoid these zones.

In conclusion, the availability of smart retail systems is
proof of the superior performance and convenience of VLC
technology compared to other RF technologies in high precise
indoor localization and navigation. By leveraging such com-
mercial approaches, we can deploy the cost-effective crowd
monitoring system on a large scale, not only in shopping
malls or hypermarkets, but also in other public places such
as airports, train stations and hospitals based on the existing
illuminating infrastructures. Building/facilities managers can



immediately alert or notify the users if they are in the middle
of a crowd (e.g., varying the color temperature of the lights
in the high-density zones). People can also take the initiative
in planning their move to the desired locations without en-
countering the crowds. On the other hand, assistance systems
help to reduce the number of staffs/volunteers, nurses inside
public buildings; or limit the close contacts between them and
customers, patients. Moreover, the combination with other RF
technologies such as Bluetooth and Infrared also ensures the
location-based services are not interrupted when the smart-
phone is not being actively used by the user (e.g., the phone is
in the pocket). Last but not least, the VLC technology can be a
potential communication method between the intelligent traffic
controlling system and vehicles in the outdoor environment.
However, the main disadvantage of the VLC technology is
that interference from ambient and sun lights have significant
impacts on the visible light communication channels [215],
[217]. It results in poor performance of the RSS-based posi-
tioning approaches and outdoor communications.

FE. Thermal

Thermal based positioning systems can be briefly classify
into two main categories which are infrared positioning (IRP)
systems and thermal imaging camera (THC). Typical IRP
systems such as [232], [235], [236] are low-cost, short-range
(up to 10 meters) systems that use infrared (IR) signals to de-
termine the position of targets via AOA or TOA measurement
method. On the other hand, the THC which constructs images
from the object’s heat emission, can operate at a larger range
(up to a few kilometers) [240]. Because of this difference,
IRP and THC can be applied in different social distancing
scenarios as discussed below.

1) Keeping Distance: In keeping distance scenarios, IRP
systems such as Active Badge [235], Firefly [237], and OP-
TOTRAK [236] can be utilized. In the Active Badge, badges
that periodically emits unique IR signals are attached to the
targets. Based on the distances from the fixed infrared sensors
to the badges, the target’s position can be calculated. As a
result, this application can be useful to determine the distance
between two people as well as to identify crowds in the indoor
environments. One of main advantages of this solution is low
cost and easy implementation. However, it requires user to
wear tag devices to track their locations.

To achieve a higher positioning accuracy, the Firefly [237]
and OPTOTRAK [236] systems can be implemented. These
systems contain infrared camera arrays and infrared transmitter
called markers. Due to the difference in setups (one target
is attached with one tag in Firefly and multiple tags in
OPTOTRAK), the Firefly system can accurately determine
the target’s 3D position, whereas the OPTOTRAK system
can capture the target’s movement. The main disadvantage of
these systems is that they are prone to interference from other
radiation sources such as sunlight and light bulbs. Combined
with their short-range, IRP is mostly applicable in small rooms
with poor-light conditions.

2) Contact Tracing: Since the Firefly and OPTOTRAK
systems can accurately capture movements, they can be useful
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Fig. 16: Contact tracing by infrared system [237].

for contact tracing scenarios in social distancing. For example,
markers can be attached to the target’s body parts which are
usually used in physical contacts, e.g., hands for handshakes
and body for hugs. The movement of these body parts can
then be captured by the IR camera as illustrated in Fig. 16,
and the recorded data can be analyzed later to determine if
there is close contacts between the target and other people.
Based on this information, the contacts that the target made
can be traced later if necessary.

3) Real-time Monitoring: For traffic monitoring in social
distancing contexts, both IRP and THC can be utilized, espe-
cially in poor-light conditions. The authors in [239] propose a
robust vehicle detector based on the IRP under the condition to
quantify traffic level and flow. The collected data can be sent to
help the authorities in social distancing monitoring. However,
since IRP has a short range, THC systems such as [242] can be
a better choice in a larger area with high density of vehicles,.

Due to its very high observation range (a few kilome-
ters) [241]-[243], THC is particularly effective for real-time
monitoring scenarios, such as public building monitoring,
detecting closure violation, and non-essential travel detection,
which does not requires high positioning accuracy. THC
systems such as those proposed in [232], [233] are efficient
in these scenarios since they are light-weight and can cover
wide area with a medium accuracy.

4) Susceptible Group Detection: Another application of
thermal technology is to detect susceptible groups. Since the
THCs measure heat emitted from people or other objects,
they can be used for checking people’s temperature quickly
from a far distance [244], [245]. Further, the THC system
has the ability to detect slight differences in heat with a
resolution of 0.01 degree [246]. Thus, it can be a good means
to check health conditions and sickness trends of patients.
Moreover, the system can be deployed in shopping centers
to measure customers’ temperature remotely. This can help to
detect infection symptoms early and also the prevent disease
spreading.

In summary, thermal based positioning systems are helpful
in some social distancing scenarios, especially in poor-light
conditions. For short-range communication applications, the
IRP is cost effective and can be used for positioning and
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Fig. 17: Thermal camera used in susceptible group detection and traffic monitoring.

tracing purposes. Whereas, some light-weight THC systems
can be leverage for monitoring over large distances due to
their high range. can be used in real-time monitoring in large
areas with larger vision and resolution. However, the high cost
of THC should be considered when implementing in practice.

Table III provides a summary of the technologies presented
in this Section.

V. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

In this section, we discuss the open issues of social dis-
tancing implementation such as security and privacy concerns,
social distancing encouragement, work-from-home, and the
increased demands in healthcare appointment, home health-
care services and online services. To addressed these issues,
potential solutions are also presented.

A. Security and Privacy-Preserving in Social Distancing

Most aforementioned social distancing scenarios (see Ta-
ble IIT for more details) call for people’s private information,
to a different extent, ranging from their face/appearance to
location, travel records, or health condition/data. These data,
if not protected properly, attract cyber attackers and can
turn users into victims of financial, criminal frauds [316].
Users’ data like health conditions can also adversely impact
people’s employment opportunity or insurance policy. Given
that, to enable technology-based social distancing, it is critical
to develop privacy-preserving and cybersecurity solutions to
ensure that users’ private data are properly used and protected.

The general principle of users’ privacy-preserving is to keep
each individual user’s sensitive information private when the
available data are being accessed by public. To do so, data
privacy-preserving mechanisms including data anonymization,
randomization, and aggregation can be utilized [306]. For
example, Apple, Google, and Facebook have developed peo-
ple mobility trend reports while preserving users’ privacy
during the COVID-19 outbreak. In particular, Apple utilizes
random and rotating identifiers to preserve mobile users’
movements privacy [309]. Meanwhile, Google aggregates and
uses anonymized dataset from mobile users who turn on their
location history settings in their Android smartphones. In this
case, a differential privacy approach is applied by adding

random noise to the location dataset with the aim to mask
individual identification of a mobile user [307]. Similar to
Google, Facebook utilizes aggregated and anonymized user
mobility datasets and maps to determine the mobility trend
in certain areas including the social connectedness intensity
among nearby locations [308]. In addition to the Apple’s,
Google’s, and Facebook’s latest privacy-preserving implemen-
tation, in the following, we will thoroughly discuss how the
latest advances in security and privacy-preserving techiques
can help to facilitate social distancing without compromising
users’ interest/privacy.

1) Location Information Protection: To protect the exact
location/trajectory information of participating mobile users
in social distancing, some advanced location-based privacy
protection methods can be adopted. Specifically, we can
anonymize/randomize/obfuscate/perturb the exact location of
each mobile user to avoid malicious attacks from the attackers
using the following mechanisms. For example, the authors
in [317] develop a privacy-preserving location-based frame-
work to anonymize spatio-temporal trajectory datasets utilizing
machine learning-based anonymization (MLA). In this case,
the framework applies the K-means machine learning algo-
rithm to cluster the trajectories from real-world GPS datasets
and ensure the K -anonymity for high-sensitive datasets. Using
the K-anonymity [318], [319], the framework can collect
location information from K mobile users within a cloak-
ing region, i.e., the region where the mobile users’ exact
locations are hidden [320], [321]. In [322], the use of K-
anonymity is extended into a continuous network location
privacy anonymity, i.e., K DT-anonymity, which not only
considers the average anonymity size K, but also takes the
average distance deviation D and the anonymity duration T’
into account. Leveraging those three metrics, the mobile users
under realistic vehicle mobility conditions can control the
changes of anonymity and distance deviation magnitudes over
time.

The authors in [323] propose a mutually obfuscating paths
method which allows the vehicles to securely update accurate
real-time location to a location-based service server in the ve-
hicular network. In this case, the vehicles first hide their IP ad-
dresses due to the default network address translation operated
by mobile internet service providers. Then, they generate fake



28

TABLE III: Summary of Other Emerging Technologies
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Fig. 18: Location-based privacy preserving for social distancing scenarios.

path segments that separate from the vehicles’ actual paths
to prevent the location-based service server from tracking
the vehicles. Exploiting dedicated short range communications
(DSRC) among vehicles and road navigation information from
the GPS, the vehicles can mutually generate made-up location
updates with each other when they communicate with the
location-based service server (to obtain spatio-temporal-related
information). In [324], vehicles which use location-based
services can dynamically update virtual locations in a real-
time with respect to the relative locations of current nearby
vehicles. This aims to provide deceptive information about the
driving routes to attackers, thereby enhancing location privacy
protection.

In addition to the anonymization and obfuscating meth-
ods, the use of randomization and perturbation to preserve
the users’ locations have been investigated in the following
works. In [325], a location privacy-preserving method lever-
aging spatio-temporal events of mobile users in continuous
location-based services, e.g., office visitation, is investigated.
Specifically, an e-differential privacy is designed to protect
spatio-temporal event against attackers through adding random

noise to the event data [328]-[330]. In [331], the authors
present a location privacy protection mechanism using data
perturbation for smart health system in a hospital. In particular,
instead of reporting the patient’s real locations directly, a
main processing unit attached to a patient’s body can adap-
tively produce perturbed locations, i.e., the relative change
between different locations of the patient. In this case, the
system considers the patient’s travel directions and computes
the distance between the patient’s current locations and the
patient’s sensitive locations (i.e., patient’s pre-defined locations
which he/she does not want to reveal to anyone, e.g., patient’s
treating room). Using this dynamic location perturbation, the
need of a trusted third party to store real locations can be
removed. Leveraging the aforementioned methods, we can
also prevent the service provider to access mobile users’ and
vehicles’ exact locations/trajectories/paths when they imple-
ment social distancing for crowd/traffic density and movement
detection. Specifically, a platoon of mobile users/vehicles in
a certain area can collaborate together to mix their real
locations/trajectories/paths anonymously (Fig. 18(a)). In this
way, the service provider will only obtain the aggregated



location/trajectory/path information of the platoon instead of
each individual’s exact location/trajectory/path for its location
privacy.

2) Personal Identity Protection: In addition to protecting
mobile users’ location-related information, preserving their
personal identities is of importance to improve users’ accep-
tance of latest technologies to social distancing. Specifically,
we can exchange or anonymize personal identities among
trusted mobile users to avoid the attackers identifying the
actual identity of each individual user. In [332], the authors de-
velop a pseudo-identity exchanging protocol to swap/exchange
identity information among mobile users when they are at the
same sensitive locations, e.g., hospital and residential areas. In
particular, when a mobile user receives another trusted user’s
identity and private key, the mobile user will verify if the
encryption of another user’s identity hash function and public
key is equal to the encryption of the received private key.
If that condition holds, the mobile user will change his/her
identity with that user’s identity and vice versa.

In another work, the authors in [333] introduce an individual
information privacy protection through indirect- or proxy-
request. In particular, instead of directly submitting a request
to the server, a mobile user can have his/her social friends
through the available social network resources, i.e., trusted
social medias, to distribute his/her request anonymously to
the server. The request result can be returned to his/her social
friends and then forwarded to the requested mobile user,
thereby preserving the requested mobile user’s identity. In
fact, there may exist some malicious friends which expose
the identity of the mobile user. Therefore, the authors in [334]
investigate a user-defined privacy-sharing framework on social
network to choose his/her particular friends who are trusted to
obtain the mobile user’s identity information. In this case, the
mobile user only shares his/her identity information with the
particular friends whose pseudonyms match the mobile user’s
identity through authorized access control. Using the same
approaches from the above works, we can use local wireless
connections, e.g., Bluetooth and Wi-Fi Direct, to anonymously
exchange actual location information in a mobile user group,
i.e., between a mobile user and his/her trusted nearby mobile
users, in an ad hoc way. As shown in Fig. 18(b), when the ser-
vice provider requires to collect location-related information
for the current crowd density detection, a representative mobile
user from the group can send the group’s anonymous location
information to the service provider, aiming at preserving
personal identity of each mobile user in the group.

Moreover, Apple and Google have recently introduced a key
schedule for contact tracing to ensure the privacy of users [65].
Specifically, there are three types of key: (i) tracing key, (ii)
daily tracing key, and (iii) rolling proximity identifier. The
tracing key is a 32-byte string that is generated by using
a cryptographic random number generator when the app is
enabled on the device. The tracing key is securely stored on
the device. The daily tracing key is generated for every 24-hour
window by using the SHA-256 hash function with the tracing
key. The rolling proximity identifier is a privacy-preserving
identifier which is sent in Bluetooth advertisements. This
identifier is generated by using the SHA-256 hash function
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with the daily tracing key. Each time the Bluetooth MAC
address change, the app can derive a new identifier. When a
positive case is diagnosed, their daily tracing keys are uploaded
to a server. This server then distributes them to the clients
who use the app. Based on this information, each of the
clients will be able to derive the sequence of the rolling
proximity identifiers that were broadcasted from the user who
tested positive. In this way, the privacy of the users can be
ensured because without the daily tracing key, one cannot
obtain the user’s rolling proximity identifier. In addition, the
server operator also cannot track the user’s location or who
users have been in proximity.

Similarly, several solutions have been proposed in [67], [68].
The key idea of these solutions is generating a unique identifier
and broadcasting it to nearby devices. In particular, PACT [67]
regularly (every few seconds) emits a data string, called chirps
generated by cryptographic techniques based on the current
time and the current seed of the user to ensure the privacy.
Similarly, in [68], the identifier EphlD (called ephemeral ID)
is created as follows:

EphID = PRG(PRF(SK;,broadcast key)), (1)

where PRF is a pseudo-random function (e.g., SHA-256),
broadcast key is a fixed and public string, and PRG is a
stream cipher (e.g., AES in counter mode). SKj; is the secret
key of each user during day ¢ which is computed as follows:

SK, = H(SK,_), ®)

where H is a cryptographic hash function. Upon receiving
the identifier, other nearby devices will keep it as a log. If a
user is diagnosed with the disease, other users who may have
encountered with the infected person will receive a warning
of a potential contact.

3) Health-Related Information Protection: To monitor the
sickness trend in a certain place, e.g., the hospital, for so-
cial distancing purpose (i.e., to inform the upcoming mobile
users not to enter a high-risk area/building), the health-related
condition information of visiting mobile users require to be
shared to provide reliable learning dataset. To protect this
highly sensitive information, the authors in [335] proposes a
differential privacy-based protection approach to preserve the
electrocardiogram big data through utilizing body sensor net-
works. In particular, non-static noises are applied to produce
sufficient interference along with the electrocardiogram data,
thereby preventing the malicious attackers to point out the real
electrocardiogram data.

To provide secure health-related information access for
authenticated users, a dynamic privacy-preserving approach
leveraging biometric authentication process is introduced
in [336]. Specifically, when a user wants to access the medical
server containing his/her health condition, a secure biometric
identification at the server for the user’s validity is employed
where the exact value of his/her biometric template remains
unknown to the server. In this way, the personal identity of
the authenticated user can be preserved. To further enhance
the anonymity of his/her medical information, the random
number that is used to protect the biometric template is
updated after every successful login. Then, the authors in [337]



propose a secure anonymous authentication model for wireless
body area networks (WBANSs). Specifically, this framework
enables both patients and authorized medical professionals
securely and anonymously examine their legitimacies prior to
exchanging biomedical information in the WBAN systems.
Motivated from the above works, we can utilize IoT and
mobile devices, secure service provider, and the aforemen-
tioned privacy preserving approaches to anonymously collect
people’s health condition information for illness monitoring in
the hospital/medical centre (Fig. 18(c)). In this way, the social
distancing through monitoring the sickness trend can be imple-
mented efficiently while preserving the sensitive information
of the people in the illness areas.

B. Real-time Scheduling and Optimization

In the context of social distancing, real-time scheduling
and optimization techniques can play a key role in prevent-
ing too many people at the same place (e.g., supermarkets,
hospitals) while maintaining a reasonable Quality-of-Service
level. Fig 19 illustrates several social distancing scenarios
where scheduling and optimization techniques can be applied.
In particular, scheduling techniques can be applied to reduce
the number of necessary employees at the workplace and the
number of patients coming to the hospital, thereby reducing
the unnecessary contacts among people. Moreover, traffic
scheduling can help to reduce the peak number of vehicles
and pedestrians, and optimization techniques can help to deal
with the extra pressures on the online services when there are
more people staying at home.

1) Workforce Scheduling: Workforce scheduling can help
to limit the number of people at the workplaces, while ensuring
the necessary work is done. While working from home is
encouraged in social distancing, sometimes employees must
be present at the workplace for certain tasks (e.g., machine
operators). Moreover, different types of tasks impose different
constraints such as due date (time constraints), dependence
among tasks (precedence constraints), skill requirements (skill
constraints), and limited resources usage (resource constraints)
which further complicates the scheduling problem. For such
scenarios, workforce scheduling techniques can be utilized
to optimally align and reduce the number of required em-
ployees to practice social distancing. In [263], a novel three-
phase algorithm is proposed for workforce scheduling to
optimize the operational cost and service level simultane-
ously. Another Genetic-Algorithm-based hybrid approach is
presented in [264], which optimizes the schedules of work-
force according to multiple objectives including urgency, skill
considerations, and workload balance. Similarly, in [265],
a Mixed-Integer-Programming-based approach is developed
to minimize the operational cost with consideration of skill
constraints. It is worth noting that the main objective of these
approaches is to minimize cost, which is not the highest
priority in the context of social distancing. In [266], [267],
and [268], several methods are proposed to optimize the
workforce schedules with consideration of rotating shifts,
which indirectly reduce the number of employees to a certain
extent. Nevertheless, the main objective of these approaches
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Fig. 19: Scheduling and optimization for several social dis-
tancing scenarios.

is also reducing cost. Therefore, developing techniques which
account for the physical contacts or distance among employees
at the workplace is critical for workforce scheduling in social
distancing scenarios.

2) Medical/Health Appointment Scheduling: Beside work-
force planning, scheduling techniques can also help to opti-
mize healthcare services, especially healthcare appointments
and home healthcare services, thereby decreasing unnecessary
traffic and the number of patients coming to hospitals. Several
approaches have been proposed to effectively schedule ap-
pointments. In particular, a local search algorithm is proposed
in [269] to minimize the patient waiting times, doctor idle
times, and tardiness (lateness). Moreover, a two-stage bound-
ing approach and a heuristic is presented in [270] and [272],
respectively. However, a common limitation of these tech-
niques is that they do not take into account the uncertainties
in the duration of the appointments and the possibility that the
patient will not come to the scheduled appointment. To address
that, the uncertainty in the processing times (e.g., of surgeries)
is considered by a conic optimization approach in [271].
Similarly, a multistage stochastic linear program is developed
in [273] to minimize patient waiting times and overtime, which
takes into account the unpredictable appointment duration and
unplanned cancellations. Although there are many effective
approaches to optimize appointment scheduling, the open issue
is to develop techniques that specifically minimize or control
the number of patients simultaneously coming to the hospitals



to maintain a suitable level of social distancing, similar to that
of the workforce scheduling scenario.

3) Home Healthcare Scheduling: Similar to appointment
scheduling, home healthcare services (HHS) can help to reduce
the pressure on hospitals and traffic in the social distancing
context. In [274], a multi-heuristics approach is proposed for
HHS scheduling to minimize the total traveling times of HHS
staff. An extended problem is presented in [275], where the
objective also includes minimizing the tardiness and additional
skills and time constraints are considered. For this problem,
local search-based heuristics are proposed in the paper. An-
other local search-based heuristic is proposed in [276] for
HHS scheduling with the objective to minimize traveling times
and optimize Quality-of-Service, while considering workload
and time constraints. In [277], a Genetic-Algorithm-based
hybrid approach is proposed for HHS scheduling with uncer-
tainty in patient’s demands to minimize transportation cost.
Also addressing uncertainties, a branch-and-price algorithm
is proposed in [278] to minimize the traveling costs and
delay of services while considering stochastic service times.
Unlike in workforce planning and appointment scheduling,
HHS scheduling techniques can be directly applied in the
related social distancing scenario because they already aimed
to minimize the traveling distances while ensuring Quality-of-
Service.

4) Traffic Control: Furthermore, scheduling techniques
have also been applied for traffic control. In social distancing
scenarios, scheduling techniques can help to regulate the traffic
level, especially the number of pedestrians. In [279], a novel
scheduling algorithm is developed for traffic control, consid-
ering both vehicles and pedestrians, to minimize the delays.
Similarly, a macroscopic model and a scheduling algorithm
is proposed for traffic control that jointly minimize both the
pedestrians and vehicle delays in [280]. Another scheduling
approach is proposed in [281] that considers both pedestrians
and vehicles. Different from the previously mentioned ap-
proaches, this approach only focuses on minimizing pedestrian
delay. Although there is a vast literature on traffic scheduling
techniques, the social distancing implications have not been
taken into account. For example, to maintain social distancing,
a more meaningful objective would be to reduce/constrain the
peak number of pedestrians on the street at the same time.

5) Online Services Optimization: When social distancing
measures are implemented, more people will be staying at
home e.g., working from home. Physical meetings/gatherings
will move to virtual platforms, e.g., webinars. That results in
much higher internet traffic and corresponding virtual service
demands (e.g., video streaming, broadcasting, and contents
delivery). Therefore, optimizing online services delivery is a
challenging issue in the social distancing context. Fortunately,
online services optimization is a well-studied topic with a
substantial body of supporting literature.

For example, in [282], a novel algorithm is proposed to op-
timize the contents delivery process in a CDN semi-federation
system. In particular, the algorithm optimally allocate the con-
tent provider’s demand to multiple Content Delivery Networks
(CDN:s) in the federation. The results show that the latency can
be reduced by 20% during the peak hours. Another technique
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to reduce the delay and network congestion is edge-caching,
which brings the contents closer to the network users. In [283],
the performance of two edge-caching strategies, i.e., coded and
uncoded caching, are analyzed. Moreover, two optimization
algorithms are developed to minimize the content delivery
times for the two caching strategies.

Beside the contents delivery, the demands on video stream-
ing traffic is also much higher during social distancing im-
plementation because there are many people who work from
home. In that context, emerging networking technologies can
be an effective solution. For example, an architecture utilizing
HTTP adaptive streaming [284] and software defined network-
ing is proposed to enable video streaming over HTTP. More-
over, a novel algorithm is developed to optimally allocates
users into groups, thereby reducing communication overhead
and leveraging network resources. The results show that the
proposed framework can increase video stability, Quality-of-
Service, and resource utilization.

Summary: Scheduling and optimization are well-studied
topics with a vast literature available, which can be utilized
for different social distancing scenarios such as workforce ,
healthcare appointment, home healthcare, and traffic schedul-
ing, and optimization of online services delivery. Nevertheless,
except for the home healthcare service scenario, the existing
techniques’ objectives do not align with the objectives of social
distancing. Moreover, scheduling algorithms often are devel-
oped such that they are only efficient for their specific prob-
lems. Therefore, developing novel optimization/scheduling al-
gorithms in operations research and adopting social distancing
as a new performance metric or design parameter is very
much desirable. Furthermore, the optimization of internet-
based services such as content delivery can help to encourage
people to stay at home during social distancing periods by
ensuring the service levels.

C. Incentive Mechanism to Encourage Social Distancing

Due to the people’s self-interested/selfish nature character-
istics in their daily life [348] (especially during the pandemic
outbreak), incentive mechanisms can be very helpful in en-
couraging people to accept or share relevant information to
enable new social distancing methods. These mechanisms have
been thoroughly discussed in crowdsourcing as implemented
in [326], [353]-[356]. In this case, the service providers can
provide incentives to a large number of people to attract their
contributions in data collection for crowdsourcing process. For
example, the contract theory-based incentive mechanism for
crowsourcing is discussed in [353], [354]. In particular, this
approach is considered as an efficient mechanism to leverage
common agreements between the participating enttities, e.g.,
a service provider and its mobile users, in a certain area
under complete and incomplete information from the partici-
pants [349]. The use of game theory-based incentive mecha-
nism to encourage a set of mobile users form a crowsourcing
community network is investigated in [326], [355]. Then,
in [356], the authors utilize an auction theory-based approach
incentive mechanism to stimulate mobile user participating
in the crowsourcing tasks including traffic monitoring. In the



following, we also highlight the existing incentive mechanisms
and how they can be further adopted to encourage the social
distancing applications.

1) Distance Between Any Two People and Distance to/from
Crowds: To motivate people to keep distance from themselves
to others, contract theory-based incentive model via D2D com-
munications, e.g., Bluetooth, Wi-Fi Direct, can be employed.
In [350], the authors propose a contract theory-based mech-
anism to provide a higher reward for D2D-capable mobile
users if they send the information to a requesting mobile user
with a higher transmission data rate. Taking into account the
number of potential nearby mobile users in proximity, the
authors in [351] introduce the same mechanism such that a
mobile user will receive a higher payment if they can share the
information to more nearby mobile users. Likewise, the same
approach considering a higher reward for a mobile user who
has shorter distances in sharing its information to nearby D2D
pairs is presented in [352]. Inspired by the aforementioned
works, we can consider the contract theory-based method
along with D2D communications to encourage people to
keep distances from other people/crowds. Specifically, mobile
service providers can be subsidized/funded or requested by
the government to provide incentives to their users to keep
distance from others when they are in public. Specifically,
a service provider can offer contracts to mobile users, as
illustrated in Fig. 20(a). Considering the current distances
from the nearby mobile users and capability to inform them
through D2D communications, those mobile users can obtain
more rewards when they successfully keep a sufficient distance
(e.g., at least 1.5 meters) from other people/users. A violation
(e.g., getting closer than 1.5 meters to someone) can lead to
“penalty” (e.g., losing part of the previous rewards).

2) Contact Tracing: In a pandemic outbreak, contact trac-
ing is considered as one of the most important actions to
contain the spread of the disease. To trigger each mobile user
for information sharing, e.g., mobile user’s public identity, the
network operator requires to offer incentives to those who
contribute such information (beside privacy-preserving solu-
tions). In [353], the authors introduce a contract theory-based
incentive mechanism in a crowdsourced wireless community
network. In particular, the network operator offers contracts to
network-sharing mobile users containing a Wi-Fi access price
(for their nearby mobile users accessing the network sharing)
and a subscription fee (for the network-sharing mobile users).
Motivated from this work, we can also develop a contact-
tracing framework which allows a mobile user to broadcast
his/her public identity to the nearby mobile users as long as
their distances are within 1.5 meters. Then, the nearby mobile
users can store this public identity in their close-contact log
files including the time and location when they receive that
public identity as shown in Fig. 20(b). As a compensation for
this information sharing, they need to pay a certain payment to
the sharing mobile user correspondingly. In this way, when at
least one of the mobile users in the log files is infected by the
contagious disease, the mobile service provider can alert the
mobile users with the log files to implement social distancing.

3) Crowd Detection: High density of people in specific
areas can help contagious diseases to spread the infection
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more quickly due to people’s close proximity. To support the
social distancing, an incentive mechanism approach can also
be applied to detect the people density in public areas or the
number of people in a building. In [354], the authors present
a tournament model-based incentive mechanism to encourage
mobile users (with various performance ranks) connected to
the local wireless networks, e.g., Wi-Fi hotspots, to send the
location and unique identifier of the networks to the service
provider (Fig. 20(c)). From the hotspots’ location information,
the service provider can then determine the people density in
each hotspot area or the number of people in a building (which
may have several hotspot areas). Using the above method, we
can also encourage the mobile users to avoid non-essential
public places, e.g., restaurants and shopping malls. In this
case, the reward can be adapted according to the locations
and essential level of the services (e.g., cinemas, restaurants,
grocery stores, schools, and hospital).

In addition to the people density detection, we can adopt
an incentive mechanism to monitor the density of vehicles on
the city roads for traffic crowd avoidance purpose. In fact,
the contagious diseases, e.g., coronavirus, can remain on the
surfaces for 4 hours up to several days [357]. Thus, avoiding
traffic jam on the roads can reduce the possibility of the
disease infection. In [358], the authors propose a reward-based
smartphone collaboration method to support data acquisition
for location-based services. Specifically, a client will attract
surrounding smartphone users, e.g., vehicular users on a
highway, to collaborate together with the aim to build a big
database containing location information as implemented in
Google’s Android smarphones and Apple’s iPhone [359]. The
joining smartphone users then receive shared rewards from
the client considering their collaboration costs. Based on this
database, the client can determine the traffic levels according
to the vehicles’ density on the roads dynamically. Then, the
client can sell these information to a service provider which are
further used to inform upcoming vehicular users avoid crowds
on the roads for social distancing implementation.

4) Location/Movement Sharing Stay-at-home Encourage-
ment: To further drive people away from high density public
places, we can also consider incentive mechanisms for better
social distancing efficiency (especially for the people with their
mobile devices). In particular, the authors in [360] study the
uneven distribution of the crowdsourcing participants when
maximizing the social welfare of the network. To address this
problem, a movement-based incentive mechanism to stimulate
the participants move from popular areas to unpopular ones
was introduced. This approach guarantees that the participants
will announce their actual costs for further reward process.
Likewise, an incentive mechanism in spatial crowdsourcing
considering budget constraints to reduce imbalanced data col-
lection is discussed in [361]. Particularly, the service provider
will provide a higher reward when the mobile users are willing
to participate at the remote locations instead of nearby loca-
tions where they belong to (based on their daily routines). A
similar work utilizing a redistribution algorithm to incentivize
crowdsourced service providers from oversupplied areas to
undersupplied ones is also investigated in [327]. The above
works are then extended in [362]. Instead of encouraging
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Fig. 20: Contract-based incentive design scenarios to encourage social distancing.

mobile users to completely move to faraway locations, the
service provider will offer a task-bundling containing the
nearby and remote tasks for each participating mobile user. All
of these works show that the proposed incentive mechanisms
can efficiently balance the various location popularity such that
we can encourage people move to less density places.

In a narrow-down scenario, we can also utilize an incentive
mechanism to encourage family-isolation/group-isolation for
the possible vulnerable/at-risk people, e.g., sick people and
older people. For example, the authors in [363] propose a
spatio-temporal-based incentive mechanism using both smart-
phone and human intelligence in an ad hoc social network.
This framework allows a very large crowd to work together
in providing information sharing, i.e., geo-tagged multimedia
resources, while receiving incentives from the system. Based
on this method, we can also engage the vulnerable/at-risk
groups to isolate themselves and deliver incentives for them
at a certain location during a particular period (Fig. 20(d)).
The larger number of vulnerable/at-risk members in a group,
the higher incentives will be given. Furthermore, we can
design a real-time incentive mechanism to encourage people
to implement self-isolation through providing more rewards
for those who spend more time at a given location, e.g., at
home. In this case, the reward can be negative, i.e., penalty,
to discourage people from going to crowded places.

D. Pandemic Mode for Social Distancing Implementation

An occasional pandemic outbreak in a particular period can
drive the mobile service providers, e.g., Google and Apple,
to build up a pandemic mode application for current users’
mobile devices, e.g. smartphones. This application represents
a comprehensive framework utilizing the current pandemic
situation, i.e., infected movement data, to help the mobile users
stay aware of the contagious diseases and perform cautious
actions to slow down the spread of the diseases through
implementing social distancing. To this end, the use of users’
smartphones is very crucial to realize this pandemic mode
application as similarly implemented for smartphone-based
disaster mode application in [297]-[303]. When a contagious
disease outbreak is imminent, the government can first broad-
cast an urgent notification for mobile users to install/deploy
the official pandemic mode application in their smartphones.

Then, based on the current infected movement data, e.g., cur-
rent reported number of infected people and current infected
areas, from the government officials, the service providers
can determine the risk levels of the pandemic and activate
a certain level in the smartphones. Considering the risk level,
the smartphones can leverage the existing sensors and wireless
connections to perform effective contact tracing activity for
contagious disease containment.

1) Infected Movement Data: To determine the risk levels
of pandemic mode, the service providers first need to monitor
the current infected movement information, i.e., infected areas
and number of infected people. Based on this observation,
the service providers then can orchestrate the pandemic mode
risk levels and notify mobile users such that they can avoid
the areas where the highly-likely infection exists according
to the current risk level. In [304], the authors introduce an
identification framework to observe the spatial infection spread
based on the arrival records of infectious cases in subpop-
ulation areas. Considering susceptible and infectious people
movement in metapopulation networks, the framework first
splits the whole infection spread into disjoint subpopulation
areas. Then, a maximum likelihood estimation is applied to
predict the most likely invasion pathways at each subpopu-
lation area. Using a dynamic programming-based algorithm,
the framework can finally reconstruct the whole spread by
iteratively assembling the invasion pathways for each subpopu-
lation to produce the final invasion pathways. Then, the authors
in [305] present a spatial-temporal technique to locate real-
time influenza epidemics utilizing heterogeneous data from the
Internet. In particular, the technique constructs a multivariate
hidden Markov model through aggregating influenza morbidity
data, influenza-related data from Google, and international
air transportation data. This aims to identify the spatial-
temporal relationship of influenza transmission which will
be used for surveillance application. Through experimental
results, the technique can predict an influenza epidemic ahead
of the actual event with high accuracy. Recently, Google and
Apple also create a framework to demonstrate the community
mobility trend with respect to the COVID-19 outbreak [307],
[309]. In particular, this framework is generated based on the
regions of mobile users and change in visits monitoring at
various public places, e.g., groceries, pharmacies, parks, transit
stations, workplaces, and residential areas.
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Fig. 21: Pandemic mode in future infrastructures to support social distancing.

Motivated by the above works, we can utilize the service
providers to first collect the spatio-temporal infectious disease-
related information from the internet and official reports.
Using the aforementioned methods, the service providers can
then extract meaningful information about the spread loca-
tions/pathways and time of the infectious diseases, which leads
to various spatio-temporal disease spread levels. Based on
these disease spread levels, the service providers can customize
the pandemic mode risk level for different regions, e.g., states,
cities, and provinces, at different times. For example, if the
disease spread level, e.g., the density of infected people, at
a particular city is high, the service providers can set the
pandemic mode into high-risk level for a week (as shown in
Fig. 21). Otherwise, the pandemic mode level can be set at
low-risk level.

2) Contact Tracing: After determining the risk levels of
pandemic mode based on the infected movement data, the
service providers can broadcast the risk level notification
through smartphones’ pandemic mode application. Afterwards,
the smartphones can perform contact tracing to help quickly
discovering infected people for efficient outbreak contain-
ment [310], [311]. Based on the risk level of the pandemic
mode, the smartphones can automatically trace contacts using
certain sensors and wireless connections. For example, Google
and Apple currently collaborate together to develop a contact
tracing application utilizing Bluetooth technology, aiming to
quickly detect the past contacts among mobile users in a
close proximity [312]. In this case, the Bluetooth is used to
exchange beacon signals containing unique keys between two
smartphones prior to storing these keys to the cloud server
for infected people notification. Similarly, the work in [313]

develops a wireless sensor system to exchange beacon signals
between a mobile device with other nearby mobile devices
as its contact information. In another work, an epidemiolog-
ical data collection scheme utilizing users’ smartphones is
described in [314]. Specifically, a user’s smartphone can be
used as a sensor platform to collect high accurate information
including user’s location, activity level, and contact history
between the user and certain locations. Then, a smartphone-
based contact detection system leveraging the smartphone’s
magnetometer history is investigated in [315]. To determine
the close contact, the system measures the linear correlation
between two smartphones’ magnetometer records.

Inspired by the aforementioned works, the smartphones
can be utilized as crucial tools to implement contact tracing
considering the current risk level of the pandemic mode
activated by the service providers (as illustrated in Fig. 21). In
particular, if the service providers activate low-risk level, i.e.,
the current number of infected people and areas are small, the
smartphones can trace close contacts using cellular networks
only. In this case, the pandemic mode application will disable
certain sensors, Bluetooth, and Wi-Fi by default. However, if
high-risk level pandemic mode, i.e., the current number of
infected people and areas are big, is activated, the pandemic
mode application will enable all of the wireless connections
including Bluetooth, Wi-Fi, and cellular network, as well as
relevant sensors automatically to trace contacts faster.

VI. CONCLUSION

Social distancing has been considered to be a crucial
measure to prevent the spread of contagious diseases such
as COVID-19. In this article, we have presented a compre-
hensive survey on how technologies can enable, encourage,



and enforce social distancing. Firstly, we have provided an
overview of the social distancing, discussed its effectiveness,
and proposed various practical social distancing scenarios
where the technologies can be leveraged. We have then pre-
sented and reviewed various technologies to encourage and
facilitate social distancing measures. For each technology, we
have provided an overview, examined the state-of-the-art, and
discussed how it can be utilized in different social distancing
scenarios. Finally, we have discussed open issues in social
distancing implementations and potential solutions to address
these issues.
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