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Abstract— This paper presents an adaptive neural network
(NN) control of a two-degree-of-freedom manipulator driven by
an electrohydraulic actuator. To restrict the system output in
a prescribed performance constraint, a weighted performance
function is designed to guarantee the dynamic and steady
tracking errors of joint angle in a required accuracy. Then,
a radial-basis-function NN is constructed to train the unknown
model dynamics of a manipulator by traditional backstepping
control (TBC) and obtain the preliminary estimated model, which
can replace the preknown dynamics in the backstepping iteration.
Furthermore, an adaptive estimation law is adopted to self-tune
every trained-node weight, and the estimated model is online
optimized to enhance the robustness of the NN controller. The
effectiveness of the proposed control is verified by comparative
simulation and experimental results with Proportional–integral-
derivative and TBC methods.

Index Terms— Adaptive estimation law, adaptive neural
network (NN) control, prescribed performance constraint (PPC),
two-degree-of-freedom (Two-DOF), manipulator, weighted
performance function.

I. INTRODUCTION

AMANIPULATOR is a typical robotic plant that is
widely used in industrial, aeronautics, and astronautics
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engineering, as it has a superior load-lifting capability and
can replace the human operation in high-risk environment.
Generally, a manipulator has two types of driven modes,
i.e., full-actuated joints [1], [2] and underactuated joints [3].
The latter is more difficult than the former, since both
kinematic and dynamic constraints are integrated in the under-
actuated motion system, which cannot directly adopt conven-
tional Euler–Lagrange method. Thus, model complexity [4]
and uncertainty degrade the controller robustness. To handle
model constraint and system uncertainty, neural network (NN)
control is popular to be used in discrete nonlinear systems [5],
hypersonic flight vehicle [6], mobile manipulators [7], and
fixed-base manipulators [8]. Karakaşoǧlu et al. [9] origi-
nated a supervised learning scheme that employs a simple
distributed updating rule for the online identification and
decentralized adaptive control. Subsequently, Man et al. [10]
proposed a robust adaptive sliding mode control with a radial-
basis-function neural network (RBFNN) for rigid robotic
manipulators to achieve the robustness and asymptotic error
convergence. Yang et al. [11] investigated the teleoperated
robot systems and presented many novel control techniques,
such as RBFNN, wave variable, and variable gain control
to eliminate the negative effects caused by communication
delays and dynamics uncertainties existing in robot systems
and human operators. Cao et al. [12] presented an approxi-
mate optimal control integrating with NN to realize the path
control of underactuated snake robots. Chen [13] proposed
a robust adaptive control based on a dynamic neural-fuzzy
structure in a fixed-base manipulator to avoid the problems
of overfitting and underfitting existed in the trained network.
Subsequently, Wai and Muthusamy [14] presented a fuzzy-NN
controller with backstepping and sliding mode to improve the
position tracking performance of a two-link robotic manipula-
tor driven by a dc servomotor. Patiño et al. [15] proposed
a feedback adaptive neurocontroller for PUMA-560 robot,
which combines feedforward NNs with adaptive and robust
control techniques. The advantage of this neurocontroller
is that the parameter adaptation is faster than that in the
case where the learning capability of the full NN is used
for the adaptation task. Yue et al. [16] presented an NN
with terminal sliding mode control used in wheeled mobile
robots. In this reference, the uncertain ground friction model
is identified according to the required performance. Then,
He et al. [17], [18] proposed an adaptive NN control to
estimate the unknown modeling uncertainty and environmental
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disturbance. Chen et al. [19] presented an adaptive neural
control strategy for multiple-input-multiple-output nonlinear
systems to handle the nonsymmetric input nonlinearity and
the constrained states. Meanwhile, Sun et al. [20] employed
an adaptive NN in a flexible robotic manipulator to suppress
vibrations. Yang and Liu [21] adopted adaptive RBFNN
control to improve the position tracking performance of the
coupled motor drives system. Dutta et al. [22] presented a
single-network adaptive critic-based controller for continuous-
time systems with unknown dynamics in a policy iteration
framework. This control algorithm is verified in a commercial
robotic manipulator experiment.

In order to constrain the state and output of nonlinear
systems, Tee et al. [23], [24] proposed barrier Lyapunov func-
tion (BLF) to restrict system states in a prescribed constraint
domain. Then, Ren et al. [25] adopted BLF integrated with an
adaptive neural controller to improve the dynamic behavior of
strict-feedback systems. Subsequently, He et al. [26] employed
BLF to restrict the tracking error in the arbitrary accuracy of
the robotic manipulator and improved the robustness of the NN
controller. Meanwhile, he also adopted adaptive neural control
and distributed parameter control in the robotic manipula-
tor [27]. He et al. [17], [27], [28] have successfully proposed
novel adaptive NN controllers (ANNCs) for the robots with
constraints, where the stability of the closed-loop system is
also proved. Then, Yang et al. [29] constructed a prescribed
tracking performance requirement function integrated with
BLF to guarantee both transient and steady-state tracking per-
formance of the dual-arm robot. Zhang [30] studied the mul-
tiloop integral controllability of a multiple-input-single-output
system to guarantee decentralized unconditional stability under
control-loop failure as well as to achieve offset-free tracking
performance. Guo et al. [31] derived an observer bandwidth
constraint to compromise between the dynamic performance
and the maximal load capability of the electro-hydraulic
system. However, the input constraint is not considered in
control design, which may result in larger control magnitude
than the traditional controller. In practice, perhaps the input
saturation is a serious problem, which should be avoided in
most physical systems. Thus, the designed controller has to
compromise between the dynamic response performance and
the input saturation, especially the initial dynamic response
with large state error.

On the other hand, to guarantee the tracking error with
convergence rate no less than a prespecified value, Bechlioulis
and Rovithakis [32] proposed an adaptive control with pre-
scribed performance constraint (PPC) to overcome the loss
of controllability issue with input saturation. Subsequently,
Zhang et al. [33] adopted PPC to restrict the angle of attack of
hypersonic vehicle, which can be more easily applied to handle
both static and time-varying constraints than the BLF-based
methods. The advantage of PPC is that it converts the original
constrained system into an equivalent one without constraints
by a weighted performance function. All the system states in
the closed loop are uniformly ultimately bounded while the
prescribed output constraints are held. Hence, the differences
of two mentioned constraint holding techniques are summa-
rized as follows.

1) The PPC is constructed by an adjustable weighted per-
formance function [32], which is positive and monoton-
ically decreasing, while the BLF is a clear logarithm
function form [23].

2) Both techniques are suitable for both time-invariant
output/state constraint and the time-varying constraint
[23], [29]. The function derivation for the time-varying
constraint of PPC is more convenient than the logarithm
derivation of BLF. Nevertheless, for time-invariant con-
straint, the difference of structural complexity can be
neglected.

3) Considering the physical control saturation, the out-
put constraint of PPC needs low control magnitude
by the appropriate design of weighted performance
function.

4) The initial output error of PPC can be allowed in a larger
scope and the negative effect to the system stability is
not relatively sensitive.

Thanks to the research development of motion control of
NN-based manipulator control [34], [35], the study is supplied
valuable intention. In this paper, inspired by the adaptive
NN control proposed in [28] and the prescribed tracking
performance function in [29], an adaptive NN control is
used in the two-degree-of-freedom (Two-DOF) manipulator
driven by electrohydraulic actuators (EHAs). Different from
these references, the EHA model is considered in the robotic
systems, which implies that the model order is increased
from two to three. In this condition, model uncertainties
caused by the mechanical structure are more obvious than
that of without actuator model, which will decline the output
performance of a manipulator. Furthermore, to the best of
our knowledge, the robotic manipulator has not been driven
by an EHA with PPC technique until now. Simultaneously,
an RBFNN is adopted to train the unknown model dynamics
emerged in backstepping iteration. Furthermore, considering
the parametric uncertainty existed in the manipulator model,
an adaptive estimation law is designed to self-tune every
trained-node weights of the RBFNN to enhance the proposed
controller robustness. The comparison simulations and exper-
imental results with the other two common controllers have
verified the effectiveness of the proposed controller in terms of
the tracking angle performance and the control current output
by the servo valve of an EHA.

The remainder of this paper is organized as follows. The
manipulator plant is described in Section II. The adap-
tive NN control is designed in Section III, including PPC,
traditional backstepping control design, the model training by
RBFNN, and the adaptive estimation law of node weights.
The simulation and experimental results demonstrated on the
joint motion of the Two-DOF robotic manipulator are given
in Sections IV and V, respectively. Finally, the conclusion is
drawn in Section VI.

II. PLANT DESCRIPTION

A Two-DOF robotic manipulator is comprised of an upper
arm, a forearm, a disc load, and a fixed torso, as shown as
in Fig. 1. The shoulder and elbow joints can be driven to
rotation by two EHAs.
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Fig. 1. Single-rod EHA control mechanism.

In the pressure loop of this EHA, the load pressure pL of
the hydraulic cylinder is controlled by the spool position xv of
a servo valve. Since the cutoff frequency of a servo valve is far
greater than the control system bandwidth, the valve dynamics
can be neglected in model construction [36] as follows:

xv = Ksvu (1)

where Ksv and u are the gain and control current of the servo
valve, respectively.

Then, the load pressure pL output by the hydraulic
cylinder [37] is given by

pL

xv
= a1s + a0

s + b0
(2)

where a1, a0, and b0 are the hydraulic model parameters.
Additionally, the driven joint torque [38] can be

computed by

τi = pLi A pli (qi ), i = 1, 2 (3)

where li (qi ) (i = 1, 2) are the two dynamic force arms, and
A p is the cylinder ram areas.

According to triangle geometry rule, the corresponding
force arm li (qi ) is computed by{

ci (qi ) =
√

κ2
i + ς2

i − 2κiςi cos(qi + εi )

li (qi ) = κi sin
(

arccos
((

κ2
i + c2

i − ς2
i

)
/2κi ci

)) (4)

where ci (qi ) is the dynamic cylinder length, κi and ς are the
installing locations of two cylinders, and εi is the bias angle
of cylinder for i = 1, 2.

Definition 1: For convenient expression, two operators
“�” and “�” are defined as follows:

β � γ = [β1, β2, . . . , βn]T � [γ1, γ2, . . . , γn]T

= [β1γ1, β2γ2, . . . , βnγn]T

β � γ = [β1, β2, . . . , βn]T � [γ1, γ2, . . . , γn]T

= [β1/γ1, β2/γ2, . . . , βn/γn]T .

The dynamic model of a Two-DOF robotic manipulator [39]
is described as follows:

H (q)q̈ + C(q, q̇)q̇ + G(q) + fv (q) � l(q) = τ (5)

H (q) =
[

n1 + n2 + 2n3 cos q2 �
n2 + n3 cos q2 n2

]

C(q, q̇) =
[−n3q̇2 sin q2 −n3(q̇1 + q̇2) sin q2

n3q̇1 sin q2 0

]

G(q) =
[

n4g cos q1 + n5g cos(q1 + q2)
n5g cos(q1 + q2)

]
(6)⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n1 = m1Lc2 + m2 L1 + m f L2
1

n2 = m2L2
c2 + I2 + m f L2

2

n3 = m2L1 Lc2 + m f L2
2

n4 = m1Lc2 + m2 L1 + m f L1

n5 = m2Lc2 + m f L2

(7)

where q = [q1, q2]T , q̇, and q̈ are the angular position,
velocity, and acceleration, τ = [τ1, τ2]T are the joint torque
provided by two EHAs, fv (q) = μ[sgn(ċ1(q1)), sgn(ċ2(q2))]T

is the viscous resistance, μ is the viscous coefficient of
hydraulic oil, H (q) is the symmetric positive definite iner-
tia matrix, “�” denotes the same transpose element of H ,
C(q, q̇)q̇ is the Coriolis force element, G(q) is the gravita-
tional force, m1 is the upper arm mass, including cylinder,
m2 is the forearm mass, m f is the disc load mass, Li is the
corresponding link length, Lc1 is the distance from shoulder
joint to the center of mass of upper arm, Lc2 is the distance
from elbow joint to the center of mass of forearm, Ii is the
moment of inertia rotating respective center of mass of i link,
and g is the gravity constant.

From (1)–(5), if these states are defined as x1 =
[x11, x21]T = [q1, q2]T , x2 = [x12, x22]T = [q̇1, q̇2]T , and
x3 = [x13, x23]T = [pL1, pL2]T , then the state-space model
of this manipulator system is given by⎧⎪⎪⎨

⎪⎪⎩
ẋ1 = x2

ẋ2 = H −1(x1)(x3 � l(x1)A p − fv (x1, x2) � l(x1)
−C(x1, x2)x2 − G(x1))

ẋ3 = v − b0x3

(8)

where v = Ksv (a1u̇ + a0 u) is considered to be the indirect
control variable of this manipulator system.

Remark 1: Without loss of generality, some model para-
meters in (8), such as ni (i = 1, . . . , 5) and μ, are usually
uncertain or inaccurate, which can be handled by NN learning
in control design.

Property 1 [39]: Since H (q) is symmetric positive definite
matrix, the matrix Ḣ(q) − 2C(q, q̇) is skew symmetric.

Problem 1: Considering the dynamic model (8) of a manip-
ulator with parametric uncertainty mentioned in Remark 1,
an ANNC is designed to guarantee the output state x1 tracking
the demand input x1d . Furthermore, the tracking error x1−x1d

is restricted in a prescribed performance.

III. CONTROL DESIGN

The proposed controller is designed based on the TBC
method together with the output constraint holding technique

Authorized licensed use limited to: University of Technology Sydney. Downloaded on May 03,2020 at 22:54:01 UTC from IEEE Xplore.  Restrictions apply. 



GUO et al.: NEURAL ADAPTIVE BACKSTEPPING CONTROL OF A ROBOTIC MANIPULATOR WITH PPC 3575

and the node weights adaptive estimation law of the
RBFNN-trained model.

A. Prescribed Performance Constraint

Different from the BLF, the tracking error constraint is
realized by a designed weighted performance function ρ(t),
which can guarantee the control variable u not beyond required
saturation.

The two tracking errors of this manipulator are defined as

ei (t) = xi1(t) − xi1d(t), i = 1, 2. (9)

If xi1 is constrained in xi1(t) ∈ (xi1 min, xi1 max), and xi1d

has a definite boundary xi1d min ≤ xi1d ≤ xi1d max, then

ki < ei (t) < k̄i i = 1, 2 (10)

where ki = xi1 min − xi1d max < 0 and k̄i = xi1 max −
xi1d min > 0 are two constants.

Definition 2 [40]: A smooth function ρ(t) = (ρi (0) −
ρi (∞))e−λt+ρi (∞) is called a weighted performance function
if: 1) ρ(t) is positive and monotonically decreasing;

2) lim
x→∞ ρ (t) = ρ∞ > 0; and 3) ρ (∞) < ρ (0) < 1.

Lemma 1 [32]: If a weighted performance function ρ(t) is
designed such that

ki < ei (t)/ρi (t) < k̄i (11)

then ei (t) is constrained in (ki , k̄i ).
In fact, if ei (t) ≥ 0, then ei (t) ≤ ei (t)/ρi (t) < k̄i . On the

other hand, if ei (t) < 0, then ki < ei (t)/ρi (t) < ei (t).
Thus from Lemma 1, the PPC kiρi (t) < ei (t) < k̄iρi (t) can

be used to define the system state errors as follows:

zi1(t) = T −1
(

ei (t)

ρi (t)

)
= ln

(
k̄i (ki − ei/ρi )

ki (k̄i − ei/ρi )

)
, i = 1, 2

(12)

where T (·) is a smooth function and T −1(·) is its inverse
function.

Theorem 1 [33]: The smooth function T (·) is monotoni-
cally increasing and holds the following properties:

ki < T (zi1) < k̄i T (0) = 0

lim
zi1→−∞ T (zi1) = ki lim

zi1→+∞ T (zi1) = k̄i .

Proof: From (11), the inverse function of zi1 is
described as

T (zi1) = ei (t)

ρi (t)
= ki k̄i (ezi1 − 1)

ki e
zi1 − k̄i

. (13)

Then, the derivative of T (zi1) is given by

dT

dzi1
= ki (ki − k̄i)ezi1

k̄i

(
ki
k̄i

ezi1 − 1
)2 . (14)

Since ki < 0 and k̄i > 0, dT/dzi1 > 0. Hence, T (zi1)
is monotonically increasing. Furthermore, due to the PPC
kiρi (t) < ei (t) < k̄iρi (t), ki < T (zi1) < k̄i is held.
As zi1 → ±∞, T (zi1) approaches its up and down boundaries

k̄i and ki , respectively. If zi1 = 0 is substituted into (12), then
T (0) = 0.

Remark 2: From Theorem 1, the PPC kiρi (t) < ei (t) <
k̄iρi (t) of the tracking error ei (t) can be transformed
into the system state error arbitrarily varying on the scale
−∞ < zi1(t) < +∞.

B. Traditional Backstepping Controller

The other two state errors are defined as follows:
zi2 = xi2 − αi1

i = 1, 2 (15)
zi3 = xi3 − αi2

where αi j is the virtual control variable [41] emerged in the
backstepping control design.

For convenient derivation, many 2-D vectors are defined as
z j = [z1 j , z2 j ]T ( j = 1, 2, 3), α j = [α1 j , α2 j ]T ( j = 1, 2),
e = [e1, e2]T , and ρ = [ρ1, ρ2]T . Then, the candidate
Lyapunov functions of (8) are given by⎧⎪⎨

⎪⎩
V1 = zT

1 z1/2

V2 = V1 + zT
2 H (x1)z2/2

V3 = V2 + zT
3 z3/2.

(16)

Step 1: From (11), the derivative of z1 is given by

ż1 = R(x2 − ẋ1d − e � ρ̇ � ρ) (17)

where R = diag(r1, r2) ∈ R
2×2

ri = ∂T −1

∂ (ei/ρi )

1

ρi
= k̄i − ki

(k̄i − ei/ρi )(ei/ρi − ki )ρi
, i = 1, 2.

If the virtual control α1 is designed as

α1 = ẋ1d + e � ρ̇ � ρ − R−1C1z1 (18)

where C1 = diag(c11, c21) ∈ R
2×2 is a positive defi-

nite constant matrix, then the derivative of V1 in (16) is
given by

V̇1 = −zT
1 C1z1 + zT

1 Rz2. (19)

Step 2: Substituting Property 1 into the derivative of V2,
we obtain that

V̇2 = V̇1 + zT
2 H (x1)ż2 + zT

2 Ḣ(x1)z2/2

= −zT
1 C1z1 + zT

2 (Rz1 + z3 � l A p + α2 � l A p

−H α̇1 − fv � l − Cα1 − G). (20)

If the virtual control α2 is designed as

α2 = A−1
p (−Rz1 + H α̇1 + fv � l + Cα1 + G − C2z2) � l

(21)

where C2 = diag(c12, c22) is similar to C1, then

V̇2 = −zT
1 C1z1 − zT

2 C2z2 + zT
2 z3 � l A p. (22)

Step 3: The derivative of V3 is given by

V̇3 = V̇2 + zT
3 ż3

= −zT
1 C1z1 − zT

2 C2z2

+zT
3 (A pl � z2 + v − b0x3 − α̇2). (23)
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If the final control variable v is designed as

v = −C3z3 − A pl � z2 + b0x3 + α̇2 (24)

then

V̇3 ≤ −zT
1 C1z1 − zT

2 C2z2 − zT
3 C3z3 < 0. (25)

Remark 3: From (16) and (25), the control variable v (24)
integrated with the virtual controls α1 (18) and α2 (21) can not
only guarantee all the system errors zi j (i = 1, 2, j = 1, 2, 3)
asymptotic to zero but also restrict the dynamic errors e1 and
e2 in the PPC kiρi (t) < ei (t) < k̄iρi (t).

C. Adaptive Neural Network Controller

According to Remark 1, some parametric uncertainties exist
in the matrices H , C , G, and fv , which lead to negative
effect in the virtual control α2 (21) and the final control
variable v (24). Thus, an adaptive NN is adopted to handle
these unknown dynamics.

Definition 3 [28]: A class of RBFNN is usually used to
estimate an unknown continuous function fi (X) as follows:

fi (X) = W T
i Si (X) + εi (X), i = 1, 2 (26)

where X is the input vector, Wi is the weight vector with
the ki nodes of the RBFNN, Si (X) = [s1, s2, . . . , ski ]T is the
Gaussian basis function vector, and εi (X) is the estimation
error of the RBFNN, which is bounded by |εi (X)| < εmax for
i = 1, 2, and εmax is an unknown boundary.

The radial basis element s j of Si (X) is given by

s j (X) = exp

(
−(X − μ j )

T (X − μ j )

σ 2
j

)
, j = 1, . . . , ki (27)

where μ j is the center of the receptive field and σ j is the
width of the Gaussian function [42].

If the input vector X of the RBFNN is defined as
X = [x1, x2, α1, α̇1]T , then the RBFNN estimation W T S(X)
can be trained by sufficient sample data to approximate the
following uncertain dynamic model:

W T S(X) + ε(X) = H (x1)α̇1 + C(x1, x2)α1

+G(x1) + fv (x1) � l(x1)

= F(X, δni , δμ) (28)

where F is the model uncertainty by model parameters ni

(i = 1, . . . , 5) and μ is mentioned in Remark 1.
Simultaneously, to enhance the robustness of the RBFNN

controller, an adaptive estimation law for the weight vector Wi

is designed as follows:

˙̂Wi = −�i (Si (X)z2i + ηi Ŵi ), i = 1, 2 (29)

where Ŵi is the adaptive estimated value of the ideal
weight Wi , and �i > 0 and ηi > 0 are the diagonal matrix
and constant gains of the adaptive estimation law.

Remark 4: The weight estimation Ŵi is online self-tuning
by (29) based on a preliminary training value Wi (0) of the
designed RBFNN, which can eliminate the negative effect of
parametric uncertainties existed in H , C , G, and fv .

If the adaptive weight estimation law (29) is considered
in backstepping iteration, then the virtual control α2 (21) is
revised as follows:

α2 = A−1
p

(
−Rz1 +

2∑
i=1

Ŵ T
i Si (X) − C2z2

)
� l. (30)

Theorem 2: Considering the manipulator model (8), if the
RBFNN controller is designed as (18), (24), (28), and (30),
together with the adaptive weight estimation law (29), then the
system state errors (12) and (15) are all ultimate boundary [43]
and the error convergence domain is an hypersphere Hr , i.e.,

Hr ∈
⎧⎨
⎩ zT

1 z1 +zT
2 H z2 + zT

3 z3 +
2∑

i=1
W̃ T

i �−1
i W̃i

= 2V3(0)e−λ∗t f + 2δ/λ∗

⎫⎬
⎭ (31)

where λ∗ and δ are the positive constants, and V3(0) is the
initial system state error, ∀t > t f (t f is a finite time).

Proof: Consider the candidate Lyapunov functions of (8)
as follows:⎧⎪⎪⎨

⎪⎪⎩
V1 = zT

1 z1/2

V2 = V1 + zT
2 H (x1)z2/2 +

2∑
i=1

W̃ T
i �−1

i W̃i/2

V3 = V2 + zT
3 z3/2

(32)

where W̃i = Wi − Ŵi is the self-tuning weight error of Wi .
Then, the virtual control αi (i = 1, 2) and the final

control variable v can also be derived by the derivatives
of Vi (i = 1, 2, 3).

Different from the backstepping iteration in Section III-B,
substituting (28) into (20), the derivative V̇2 is given by

V̇2 = V̇1 + zT
2 H (x1)ż2 + zT

2 Ḣ(x1)z2/2 −
2∑

i=1

W̃ T
i �−1

i
˙̂Wi

= −zT
1 C1z1 + zT

2

(
Rz1 + z3 � l A p + α2 � l A p

−
2∑

i=1

Ŵ T
i Si −

2∑
i=1

W̃ T
i Si − ε

)
−

2∑
i=1

W̃ T
i �−1

i
˙̂Wi . (33)

By Young’s inequality, we can obtain

zT
2 ε ≤ (

zT
2 z2 + ‖ε‖2)/2

W̃ T
i Wi ≤ (

W̃ T
i W̃i + W T

i Wi
)
/2. (34)

Substituting the revised virtual control α2 (30), the adaptive
weight estimation law (29), and Young’s inequalities (34)
into (33), the derivative V̇2 is given by

V̇2 ≤ −zT
1 C1z1 − zT

2

(
C2 − 1

2
I2×2

)
z2 −

2∑
i=1

γi

2
‖W̃i ‖2

+1

2
‖ε‖2 +

2∑
i=1

γi

2
‖Wi‖2 + zT

2 z3 � l A p. (35)
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Fig. 2. Block diagram of the adaptive NN control scheme.

Similar to Step 3, if the control variable v (24) is substituted
into the derivative of V3 in (32), then

V̇3 ≤ −zT
1 C1z1 − zT

2

(
C2 − 1

2
I2×2

)
z2 − zT

3 C3z3

−
2∑

i=1

γi

2
‖W̃i ‖2 + 1

2
‖ε‖2 +

2∑
i=1

γi

2
‖Wi‖2. (36)

If a positive constant λ∗ is defined as

λ∗ = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2λmin(C1),
2λmax(C2 − 1

2 I2×2)

λmin(H )

2λmin(C3), min
i=1,2

(
σi

λmax(�
−1
i )

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(37)

then (36) becomes

V̇3 ≤ −λ∗V3 + δ (38)

where the positive constant δ = ‖ε‖2/2 + ∑2
i=1 σi‖Wi ‖2/2.

When premultiply and postmultiply the inequality (38)
by eλ∗t , the following equality holds:

d(V3eλ∗t )

dt
= δeλ∗t . (39)

Integrating (39), the following inequality holds:

V3(t) ≤
(

V3(0) − δ

λ∗

)
e−λ∗t + δ

λ∗ ≤ V3(0)e−λ∗t + δ

λ∗ .

(40)

Now substituting (32) into (40), and let t > t f , the error
convergence domain Hr in (31) is obtained. Furthermore,
the size of Hr mainly depends on the element δ/λ∗. Thus,
the increased control gains Ci (i = 1, 2, 3) and the parametric
estimation gains �i (i = 1, 2) can arbitrarily shrink the size of
Hr as t → ∞.

From (1), (2), and the indirect control variable v in (8),
the actual control current u of the servo valve is given by

u = v

Ksv (a1s + a0)
. (41)

Fig. 2 shows the block diagram of the proposed adaptive
NN control scheme. The RBFNN (28) is trained by the system
states x1 and x2, the virtual control α1, and its derivative α̇1 in
the traditional backstepping iteration from (18), (21), and (24),

TABLE I

SOME MECHANICAL AND HYDRAULIC PARAMETERS

which can obtain the preliminary weight value Wi0 and the
RBF Si (X) for i = 1, 2. Then, the actual weights Ŵi (i = 1, 2)
are online self-tuning by the adaptive weight estimation
law (29), which compensates the inaccurate dynamic model
in (8). According to the PPC (11), the ANNC u (41) is
constructed by (18), (24), and (30) to guarantee the dynamic
performance of the manipulator system (8).

IV. SIMULATION

To verify the proposed ANNC in simulation, some nominal
mechanical and hydraulic parameters of this robotic manipu-
lator are shown in Table I. The hydraulic parameters a1, a0,
and b0 are simplified from the linear load pressure model pL

controlled by the valve spool position xv [44].
The motion ranges of two joint angles are 29.84◦ ≤

q1 ≤ 115.76◦ and 47.85◦ ≤ q2 ≤ 135.92◦. The prescribed
performance boundaries of two tracking errors k1 = k2 =
−100◦ and k̄1 = k̄2 = 100◦. Three parameters of the
weighted performance function are ρ(0) = [0.95, 0.95]T ,
ρ(∞) = [0.02, 0.02]T , and λ = 0.5. The control gains are
designed as C1 = diag{1, 1}, C2 = diag{10, 10}, and C3 =
diag{2000, 2000}. The approximate order of magnitude for
these control gains is determined by the virtual controls (18)
and (21) and the final control (24). For the RBFNN estimation,
68 and 57 nodes are used for each Si (X) with centers selected
in the area of [−1, 1] with 8-D grids. The variances of centers
are σ 2

j = 1, ( j = 1, . . . , ki ). Two diagonal matrix gains of the
adaptive estimation law are �1 = 20 × I68 and �2 = 20 × I57,
where In denotes the n × n identity matrix, η1 = η2 = 0.02.
These matrix gains are well tuned, considering both the fast
convergent weights and the desirable tracking performance.

To illustrate the problem, the proposed ANNC based
on (18), (24), (30), and (41) is compared with the following
two controllers as follows.

1) Proportional–integral-derivative (PID) controller u =
kp (yd −x1)+ki

∫
(yd − x1)dt +kd (ẏd −x2), where the

control gains kp = 140, ki = 17, and kd = 7 have been
well tuned to guarantee fast responses of two robotic
joint angles.

2) The traditional backstepping controller (TBC) based
on (18), (21), (24), and (41).

A. Comparison With PID Control
Two sinusoidal demands of the joint angles are q1d =

33 sin(1π t)+ 72.8◦ and q2d = 34 sin(2π t)+ 91.9◦. The com-
parison results of the two controllers are shown in Figs. 3–5.
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Fig. 3. Comparison results with PID controller. q1 is the shoulder joint angle
and �q1 = q1d − q1 is the tracking angle error.

Fig. 4. Comparison results with the PID controller. q2 is the elbow joint
angle and �q2 = q2d − q2 is the tracking angle error.

Fig. 5. Comparison results with the PID controller. u1 and u2 are the control
currents of the two joint EHAs.

As the time t < 5 s, the dynamic tracking performances
�qi (i = 1, 2) of PID are better than ANNC. However, the two
control currents ui (i = 1, 2) of the PID controller are more
consumed than that of ANNC, which surpass 100 mA near
the initial zero time. Since the weighted performance function
ρ(t) is exponentially attenuated, the dynamic tracking error
of ANNC is restricted in kiρi (t) < ei (t) < k̄iρi (t) mentioned
in (11). As two joint angles approach their steady states,

Fig. 6. Train results of two NNs by (28).

Fig. 7. Comparison results with traditional backstepping controller. q1 is the
shoulder joint angle. �q1 = q1d − q1 is the tracking angle error.

Fig. 8. Comparison results with traditional backstepping controller. q2 is the
elbow joint angle. �q2 = q2d − q2 is the tracking angle error.

the steady-state errors of ANNC |ei | < 2◦ [i.e., kiρi (∞) <
ei < k̄iρi (∞)], which has better performances than PID,
as shown in Fig. 5. Certainly, the steady tracking error of
PID can be further reduced by increasing PID gains. However,
the system stability margin may be degraded.

B. Comparison With TBC

The two joint angle demands are the same as Section IV-A.
To realize the ANNC algorithm, the model (28) is trained
by two RBFNNs W T

i Si (X) (i = 1, 2). If two performance
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Fig. 9. ANN estimation for model uncertainty, where Fi (X, δ) is the model
uncertainty and Ŵ T

i Si is the corresponding estimation of ANN.

Fig. 10. Comparison results with a traditional backstepping controller. u1
and u2 are the control currents of two joint EHAs.

goals are selected as 0.1 and 0.15, the model-trained errors
are asymptotic convergence by the selected 68 and 57 network
nodes, respectively, as shown in Fig. 6. Then, the well-
trained weights of the two RBFNNs are obtained and used
as the initial value of the adaptive weight estimation law (29).
Figs. 7–10 show the comparison results of ANNC with TBC.
Since the PPC is considered by both the two controllers,
the dynamic and steady tracking errors of ANNC are similar to
TBC, which indicates the favorable optimal performance of the
model (28) by the RBFNN. After 5 s, the tracking errors of two
joint angles are restricted in 1◦. However, the control current
magnitude of TBC is still larger than ANNC, which surpasses
20 mA, as shown in Fig. 10. Thus, the PPC (11) consumes
obvious control capability by TBC without adaptive weight
estimation law. The model estimation results by adaptive
NN (28) and (29) are shown in Fig. 9. The model estimation
error about H α̇1 + Cα1 + G + fv � l includes two elements,
i.e., the RBFNN estimation error εi (X) and the self-tuning
weight error W̃i . From Fig. 9, the model estimation error can
be constrained in a satisfactory neighborhood by ANNC.

C. Comparative Results With Parametric Uncertainty

To verify the robustness of ANNC, two sinusoidal demands
of the joint angles are chosen as q1d = 33 sin(1.3π t) + 72.8◦

Fig. 11. Comparison results with the traditional backstepping controller,
q1 is the shoulder joint angle, �q1 = q1d − q1 is the tracking angle error.

Fig. 12. Comparison results with traditional backstepping controller. q2 is
the elbow joint angle and �q2 = q2d − q2 is the tracking angle error.

Fig. 13. Comparison results with the traditional backstepping controller. u1
and u2 are the control currents of two joint EHAs.

and q2d = 34 sin(1.5π t) + 91.9◦. Some parametric uncertain-
ties are assumed as m′

1 = 1.5 m1, m′
2 = 1.5 m2, m′

f = 1.5 m f ,
L ′

1 = 1.3 L1, L ′
2 = 0.7 L2, I ′

1 = 0.7 I1, I ′
2 = 1.3 I2, and

μ′ = 1.5μ. The control current saturation is umax = ±20 mA.
Then, the comparison results are shown in Figs. 11–13. The
dynamic and steady tracking errors can also be restricted in the
PPC (11) by TBC and ANNC. However, the control saturation
emerges in the shoulder joint motion by TBC, as shown
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Fig. 14. Weight estimations by (29). Ŵ1 j ( j = 1, . . . , 68) and Ŵ2 j
( j = 1, . . . , 57) are the respective estimation of two numbers of nodes.

Fig. 15. Experimental bench of the robotic manipulator driven by the EHA.

in Fig. 13. Two control currents of TBC u1 and u2 are
larger than that of ANNC. Due to the parametric uncertainties
injected in the manipulator system (8), TBC consumed obvious
control cost to compensate the model error and to guarantee
two tracking angle errors in the PPC. However, it is necessary
for ANNC to adopt the adaptive NN estimation model (30)
rather than the uncertain model (21) by TBC. Even though
there exists modeling uncertainties, the dynamic and steady
tracking errors of two joint angles can be still restricted in
the PPC [kiρi (t) < ei (t) < k̄iρi (t)]. Furthermore, the control
current output by the two servo valves of EHAs is satisfactory,
as the adaptive weight estimation law is adopted to self-tune
every node weight, as shown in Fig. 14.

V. EXPERIMENT

The experimental bench of a Two-DOF robotic manipulator
is set up as shown in Fig. 15 to verify the effectiveness of
the proposed ANNC. Two EHAs are composed of two servo
valves (FF-102/03021T240), two cylinders (UG1511R25/
16-80), a pump station (HY-36CC-01/11kw), and two
accumulators (NXQ1-L1.0/31.5H). Four cylinder pressures are
measured by the pressure transducer (BD-Sensors-DMP-331).
Two joint angles are measured by the incremental
encoder (HENGSILL ALN722R7LSDN13188).

The control implementation of this experiment is shown
in Fig. 16. The encoder and the pressure transducer data
are sampled by National Instruments (NI) card as the

Fig. 16. Control implementation diagram of the robotic manipulator.

Fig. 17. Experimental results of ANNC. q1 is the shoulder joint angle and
�q1 = q1d − q1 is the tracking angle error.

feedback information. The control algorithm is realized by
MATLAB/Simulink tool in the host PC computer and the
control demand is returned to NI card, which drives the servo
valve to regulate the cylinder pressure supplied by the pump
station. The interval of the whole algorithm execution is 5 ms.
Due to the variable load pressure, the joint motion control of
the robotic manipulator is driven by this EHA. The screen
display shows the measurement and computed signals in real
time.

A. Experimental Results of ANNC

Two joint angle demands are chosen as q1d = 33
sin(0.5π t) + 72.8◦ and q2d = 34 sin(π t) + 91.9◦. The
experimental results of ANNC are shown in Figs. 17–20. The
dynamic and steady tracking errors of two joint angles are
restricted in the PPC [kiρi (t) < ei (t) < k̄iρi (t)]. The steady
tracking errors �qi (i = 1, 2) are less than 4◦, as shown
in Figs. 17 and 18. From Fig. 20, since the load pressure
of shoulder EHA pL1 is larger than that of elbow actuator
pL2, the dynamic response of shoulder angle is slower than
that of the elbow angle. Thus, two hydraulic accumulators
are used to store energy and improve the flow velocity in
the hydraulic control loop. However, the duration of energy
storage integrated with pressure preparation is approximately

Authorized licensed use limited to: University of Technology Sydney. Downloaded on May 03,2020 at 22:54:01 UTC from IEEE Xplore.  Restrictions apply. 



GUO et al.: NEURAL ADAPTIVE BACKSTEPPING CONTROL OF A ROBOTIC MANIPULATOR WITH PPC 3581

Fig. 18. Experimental results of ANNC. q2 is the elbow joint angle and
�q2 = q2d − q2 is the tracking angle error.

Fig. 19. Experimental results of ANNC. u1 and u2 are the control currents
of two joint EHAs.

2–5 s, as shown in Fig. 20, which results in the control current
saturation of ±20 mA in the initial response time of ANNC,
as shown in Fig. 19. After 10 s, two joint angles approach
the steady state and the control current magnitudes of two
servo valves are periodically regulated to guarantee two joint
angles qi (i = 1, 2) that track the corresponding demands
qid (i = 1, 2). Meanwhile, the cylinder chamber pressures pai

and pbi (i = 1, 2) of two EHAs are less than 50 bar, which
are constrained by the supply pressure ps of the pump station.

B. Comparison Results

Then, two joint demands are chosen as q1d = 33 sin
(0.8π t) + 72.8◦ and q2d = 34 sin(π t) + 91.9◦. The exper-
imental results of three controllers are shown in Figs. 21–
24. Although the steady tracking errors of PID are less than
the other two controllers, some angle chatters emerge in two
joint responses, as shown in Figs. 21 and 22. Of course,
the control gains of PID can be reduced to eliminate these
angle chatters, which may degrade the dynamic and steady
performance. Two steady errors of ANNC are less than 4◦,
which has more favorable performances than TBC. From
Fig. 23, the control current of elbow actuator approaches the
control saturation, since the elbow motion frequency is larger

Fig. 20. Experimental results of ANNC. pai and pbi are the two cylinder
chamber pressures. pLi = pai − pbi is the load pressure of the corresponding
EHA for i = 1, 2.

Fig. 21. Experimental results of three controllers. q1 is the shoulder joint
angle and �q1 = q1d − q1 is the tracking angle error.

Fig. 22. Experimental results of three controllers. q2 is the elbow joint angle
and �q2 = q2d − q2 is the tracking angle error.

than the shoulder. Furthermore, some control chatters also
emerges in PID rather than the other two controllers. The
model estimation results Ŵ T

i Si (X) (i = 1, 2) by the ANN (28)
and (29) are shown in Fig. 24, which indicates the robustness
of ANNC when two joint demands vary with different motion
frequencies.
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Fig. 23. Experimental results of three controllers. u1 and u2 are the control
currents of two joint EHAs.

Fig. 24. ANN estimation for model uncertainty, where Fi (X, δ) is the model
uncertainty and Ŵ T

i Si is the corresponding estimation of ANN.

VI. CONCLUSION

In this paper, an adaptive NN control with backstepping
was proposed for the Two-DOF manipulator driven by the
EHA. Considering the output constrained problem, a weighted
performance function was designed to restrict the tracking
angle errors of two joints in a PPC. To avoid the unknown
dynamics in the model-based control design, an RBFNN
was constructed to train the unknown model dynamics.
Although the network-estimated model depended on different
training samples, the node weights of RBFNN can be self-
tuned by an adaptive estimation law according to the system
state errors. The comparison results with PID and traditional
backstepping controller indicated that the proposed ANNC had
three advantages as follows.

1) The unknown dynamic model parameters need not to
be preknown. By the RBFNN learning, the complicated
nonlinear model can be well identified.

2) The control sensitivity will be relaxed and the robustness
is improved when some model dynamics and parametric
uncertainty exit in the robotic manipulator.

3) The RBFNN-based controller will not be easy to emerge
chatters when the demand frequency and magnitude
increased and guarantee the desirable tracking perfor-
mance by PPC, which indicates the adaptation capability

of the RBFNN to address uncertain parameters and
disturbance.

To be honest, due to the control saturation of the hydraulic
actuator and the load pressure delay caused by hydraulic
pipe transmission, the control gains cannot be big enough
and the experimental dynamic response of the proposed con-
troller is certainly lower than the corresponding simulation
results. To further improve the performance of this manipu-
lator, the controller should consider the time-delay model of
the EHA, and the hydraulic elements configuration may be
optimized in the future.
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