
778 Int. J. Embedded Systems, Vol. 11, No. 6, 2019

Copyright © 2019 Inderscience Enterprises Ltd.

Parallel fast Fourier transform in SPMD style of Cilk

Tien-Hsiung Weng, Teng-Xian Wang and
Meng-Yen Hsieh
Department of Computer Science and Information Engineering (CSIE),
Providence University,
Taichung 43301, Taiwan
Email: thweng@pu.edu.tw
Email: g1050302@pu.edu.tw
Email: mengyen@pu.edu.tw

Hai Jiang
Department of Computer Science,
Arkansas State University,
Jonesboro, Arkansas, USA
Email: hjiang@astate.edu

Jun Shen
School of Computing and Information Technology (SCIT),
University of Wollongong,
Wollongong, NSW, Australia
Email: jshen@uow.edu.au

Kuan-Ching Li*
Hubei Education Cloud Service Engineering Technology Research Center,
Hubei University of Education,
Wuhan, China
and
Department of Computer Science and Information Engineering (CSIE),
Providence University,
Taichung 43301, Taiwan
Email: kuancli@pu.edu.tw
*Corresponding author

Abstract: In this paper, we propose a parallel one-dimensional non-recursive fast Fourier
transform (FFT) program based on conventional Cooley-Tukey’s algorithm written in C using
Cilk in single program multiple data (SPMD) style. As a highly compact designed code, this code
is compared with a highly tuned parallel recursive fast Fourier transform (FFT) using Cilk, which
is included in Cilk package of version 5.4.6. Both algorithms are executed on multicore servers,
and experimental results show that the performance of the SPMD style of Cilk fast Fourier
transform (FFT) parallel code is highly competitive and promising.

Keywords: fast Fourier transform; FFT; single program multiple data; SPMD; Cilk; parallel
programming.

Reference to this paper should be made as follows: Weng, T-H., Wang, T-X., Hsieh, M-Y.,
Jiang, H., Shen, J. and Li, K-C. (2019) ‘Parallel fast Fourier transform in SPMD style of Cilk’,
Int. J. Embedded Systems, Vol. 11, No. 6, pp.778–787.

Biographical notes: Tien-Hsiung Weng is an Associate Professor in the Department of
Computer Science and Information Engineering at Providence University, Taiwan. He received
his PhD in Computer Science from the University of Houston, USA. His current research
interests include parallel programming model, performance measurement, compiler analysis for
code improvement, graph theory and algorithm design.

 Parallel fast Fourier transform in SPMD style of Cilk 779

Teng-Xian Wang is a Master student in the Department of Computer Science and Information
Engineering at Providence University, Taiwan.

Meng-Yen Hsieh received his PhD in Engineering Science from the National Cheng Kung
University, Taiwan, in 2007. He is currently an Associate Professor of Department of Computer
Science and Information Engineering, Providence University, Taiwan. He served on symposium
chairs and technical program committees for several international conferences. His research
interests include, wireless network applications, security applications, and web service.

Hai Jiang is a Professor in the Department of Computer Science at Arkansas State University,
USA. His current research interests include parallel and distributed systems, computer and
network security, high performance computing and communication, and modelling and
simulation. He is a professional member of ACM and IEEE Computer Society.

Jun Shen was awarded PhD degree in 2001 at the Southeast University, China. He is an
Associate Professor at the University of Wollongong in Wollongong, NSW, Australia. He has
published more than 160 papers in journals and conferences in computer science and information
system area. His expertise is on cloud computing and big data. He has been an Editor, PC Chair,
Guest Editor, PC member for numerous journals and conferences published by IEEE, ACM,
Elsevier and Springer.

Kuan-Ching Li is a Professor at the Providence University, Taiwan. He is a recipient of awards
and funding support from a number of agencies and industrial companies, as also received guest
and distinguished chair professorships from universities in China and other countries. He has
been actively involved in many major conferences and workshops in program/general/steering
conference chairman positions and as a program committee member, and has organised
numerous conferences related to high-performance computing and computational science and
engineering. Not only publications in technical journals and conferences, he is author/co-author
and Editor/Co-editor of several technical professional books published by CRC Press,
McGraw-Hill, IGI Global and Springer. His topics of interest include cloud and GPU computing
and big data. He is a senior member of the IEEE and a Fellow of the IET.

This paper is a revised and expanded version of a paper entitled ‘Performance of parallel
bit-reversal with Cilk and UPC for fast Fourier transform’ presented at Grid and Pervasive
Computing (GPC) 2010, Hualien, Taiwan, 10–13 May 2010.

1 Introduction

The fast Fourier transform (FFT) (Cooley and Tukey, 1965)
has been one of the most frequently used and foremost
important algorithms in many fields of science and
engineering applications such as in partial differential
equations, signal processing for spectral analysis of speech,
image processing, fluid dynamics for solving partial
differential equations (PDEs), seismic and vibration
detection and other related fields applications.

In this paper, we implemented parallel non-recursive
version of FFT using single program multiple data (SPMD)
style of Cilk. Cilk (Frigo et al., 1998; Frigo, 2007; The MIT
Cilk Project, http://supertech.csail.mit.edu/cilk/) is a
multi-threaded parallel programming language extension to
standard C and C++, consisting of cilk, spawn, sync, inlet,
and abort keywords, which are easier to use for parallel
programmers to express task and data parallelism as well as
enabling parallel programmers to parallelise the application
written in recursive programs. Its runtime system supports
dynamic workload balancing capability with efficient
randomised work-stealing scheduler, synchronisation, and
communication protocols, once also called as Cilk Art,
founded by Charler E. Leiserson of Massachusetts Institute
of Technology (MIT), and is moving to support industrial
and commercial developer of parallel applications that can

be executed on Linux, Windows, OS X operating systems
and other platforms. In addition, Cilk’s runtime system also
guarantees efficient and predictable performance such that
provides better performance scalability for parallel
applications that have irregular computations, and more
robust performance for applications running in multi-
programmed environments. Cilkc is a source-to-source
translator used to convert parallel Cilk code to standard C,
and after that, it compiles the resulting C source into the
executable. It was purchased by Intel in 2009 and turned
one of its products named Intel® Cilk™ Plus (Intel Cilk
Plus, https://www.cilkplus.org/). These extensions are now
not only included in GCC 5.0 mainline and Intel’s
commercial compiler, but also a set of patches to add Cilk
to LLVM clang. However, only 32 and 64-bit Intel
hardware is supported by any of compilers. Recently, it can
also be used in Raspberry Pi in multicore ARM
architectures.

Cilk is practical and easy to understand, whereas the
proposed implementation of the parallel code can be
developed with less effort, and the newly designed code is
fairly compact. The Cilk SPMD style of FFT code only
takes about 0.3K line of code (LOC), which is shorter than
the original parallel recursive Cilk FFT (3K LOC). The
SPMD code can be easily ported to other well-known

780 T-H. Weng et al.

programming models such as message passing interface
(MPI), compute unified device architecture (CUDA),
unified parallel C (UPC), OpenMP, Intel threading building
blocks (ITBB), and OpenACC, which is one of major
advantages. Ensuring data locality memory access has been
another advantage of program written in SPMD style, where
each private sub-array can be created and accessed locally
within each thread to enable spreading the computation
among threads in the manner to ensuring data locality.

Cilk implementation of SPMD Style of FFT code has
three main steps:

1 bit-reversal operation

2 pre-computation of nth roots

3 the butterfly operations.

Bit-reversal operation rearranges the input array by
reversing the binary bits of the array indices. That is, a
bit-reversal is an operation to swap the data between A[j]
and A[Bit-reversal[j]], where the value of j is from 0 to the
input size m and m is usually two to the power of b. The
Bit-reversal[j] is obtained from reversing b bits from value
of j. Bit-reversal must be designed properly since it takes
about 30 percent of the total execution time in FFT (Karp,
1996).

Finding the discrete Fourier transform (DFT) of the
individual value is the first stage, and it passes the values
along. At each one of remaining stages, the computation for
a polynomial of degree n at the n complex nth roots of unity
is used to compute a new value depends on the values of the
previous stage, which process is called butterfly operation.
The proposed approach relies on performing parallel Cilk
code in SPMD style.

The rest of the paper is organised as follows. The related
works is discussed in Section 2, while the design of the
parallel algorithm in Section 3. Experimental results and
evaluation of this parallel version of FFT on multicore
servers in Section 4, and finally, we give our conclusions
and future directions in Section 5.

2 Related work

In ordinary Cooley-Tukey’s algorithm, the bit-reversal and
butterfly operations were performed separately. Bader and
Agarwal (2007) proposed non-recursive FFT based on
Cooley-Tukey’s, the novelty of their modified one is that
the bit-reversal and butterfly operation are combined and
performed at once, hence saving the bit-reversal stage
computation. This algorithm has been designed well for cell
processor.

Data reordering in FFT program using bit-reverse of
array index has been widely studied (Bollman et al., 1996;
Karp, 1996; Lokhmotov and Mycroft, 2007; Rodriguez,
1988; Rubio et al., 2002; Seguel et al., 2000; Zhang and
Zhang, 2000). Most of algorithms proposed were designed
to be executed on single processor platforms (Karp, 1996;
Lokhmotov and Mycroft, 2007; Rodriguez, 1988; Rubio
et al., 2002). Lokhmotov proposed the optimal Bit-reversal

using vector permutations with experiments performed on
single processor (Karp, 1996). They claimed that their
sequential algorithm can be parallelised without any
problem or extra effort. An algebraic framework for FFT
permutation algorithm using functional language SISAL
was implemented, and performance measurements were
done on Cray C90 and SUN Sparc5 machines (Bollman
et al., 1996; Seguel et al., 2000). Namneh (Karp, 1996)
implemented and compared two versions of 1D FFT
algorithms, implementation based on tree and transposition
of one-dimensional FFT parallelised using MPI to run on
symmetric multi-processing (SMP) servers. Experimental
results are done on SMP SUN SPARC servers with total of
eight processors and complex numbers data up to 4094 KB.
The SMP SUN SPARC servers have a crossbar processor
interconnection. Franchetti used spiral, an automatic
program generation, and integrated it into their proposed
framework to boost optimisations (Bollman et al., 1996).
The users can formally specify a digital signal processing
transforms such as DFT, then spiral will rewrite and
transform the DFT in the form of mathematical formula into
C program that computes the specified transform, optimised
to achieve load balancing and avoiding false sharing to a
given platform. Furthermore, they propose to extend spiral
to generate parallel multithreaded code such as OpenMP
and Pthread codes.

An OpenMP implementation of a one-dimensional
recursive algorithm written in Fortran 90 for parallel
recursive FFT has been proposed by Takahashi et al. (2003)
on shared memory parallel computers. Experiments are
performed on 4-CPU DELL PowerEdge 7150 for 224 points
FFT with double-precision complex data. Ouni and Mtibaa
(2014) proposed a data flow graph approach with temporal
partitioning algorithm for reconfiguration system, where
FFT is one of the applications observed in their
experiments. FFTW is a publicly available free-software
written in C, developed at MIT by Frigo and Johnson
(2005). It is concerned with machine architectures and
adaptively tune by fully taking advantage of machine
architectures to maximise the performance of FFT. It is
highly tuned, hard-coded FFT that run on many machine
architectures without any restrictions on input size as well
as dimensionality of input array. Takahashi (2013) proposed
an implementation of hybrid model 1D FFT on GPU
clusters, where the algorithm is based on six-step FFT
algorithm that consists of three transpositions and three
all-to-all communications. Utilising the combination of MPI
and cuFFT, the experimental results using large input size
of 234 achieved a significant speedup of about 3x compared
to FFTW.

3 Implementation

The proposed implementation of Cilk FFT can be divided
into three parts: the computation of Bit-reversal, the
pre-computation of nth roots, and butterfly operations, as
shown in Figure 1. The butterfly operations are divided into

 Parallel fast Fourier transform in SPMD style of Cilk 781

two steps: Butterfly1 and Butterfly2. It is a non-recursive
1D FFT using Cilk in SPMD style, and named as FFTC1.

Figure 1 Main function of the FFTC1

3.1 Bit-reversal computation

The parallel implementation of the computational
bit-reversal in SPMD style of Cilk is derived from the
existing sequential code proposed by Rodriguez (1988). The
sequential code is shown in Figure 2, which is an improved
and optimised sequential code design for FFT. It takes the
parameters N and p, where N is the size of an input array,
then the bit-reversal permutation is performed with the total
number of bits p. In their bit-reversal computation, array
permutation of index for data reordering computes only the
required bit-reversal of indices, which eliminates the
number of unnecessary bit-reversal and swaps. The bit-

reversal is calculated as bit-reverse = 1
10 2 ;p k

p kk b
  where

b is the binary value, p is the total number of bits, and k is
kth position of the binary from the most significant digits. It
uses solely an array A to store its input data and final results.
Therefore, the data reordering must perform the exchange
between elements of A.

Figure 2 An improved bit-reversal code by Rodriguez

Despite the swapping of an array is an exchange between
two elements, it actually comprises of three assignment
statements or copy actions. In the memory read and write
accesses, the swap(A[i], A[bitreverse(i)]) performs the copy
A[i] to Temp, then A[bitreverse(i)] to A[i], and Temp is
copied to A[i]. The merit of their code is that there is no
actual conversion from the binary representation to the
decimal and vice versa. In line 2, the index upper bound for
the variable is computed by last = (N – 1 – N2), where N2 is

N when the number of bits is even and 2N when the
number of bits is odd. As result, it eliminates the
unnecessary computation of bit-reversal, which reduces
number of swaps. Therefore, the total numbers of copies

take about 3 * (N – N2) / 2 moves, which is equal to 1.5 *
(N – N2).

Figure 3 Data dependence graph of Figure 2

Figure 4 FFT Cilk model

In order to improve our parallel code, we utilised the
performance-based parallel analysis toolkit proposed by Li
et al. (2009), which is an effective toolkit for performance
measurement and analysis for parallel application. It not
only provides the measurement of the execution time, but
also generates application data analysis graphs. This toolkit
allows application developers to have a better understanding
of the application’s behaviour among selected computing
nodes purposed for that particular execution. Furthermore,

782 T-H. Weng et al.

the results of multiple execution of a given application
under development can be combined and overlapped,
allowing the application developers to perform ‘what-if’
analysis, to deeper understand the utilisation of allocated
computational resources. The effectiveness on the
development and performance tuning of parallel
applications is supported to execute on the shared memory
model.

Even though bit-reversal sequential code seemed to be
the best, it is implemented as a loop that has loop-carried
data dependences between iterations. Hence, it is not
parallelisable without complete modification to the original
sequential code, as shown in data dependence graph
depicted in Figure 3. It has true and output data
dependences between loop iterations of statements j = j – k,
j = j + k, and if (i < j). There are also true, anti- and output
dependences between the statements labelled on each edge
as t, a and o respectively. For instance, there are true
dependence between statements 3 and 7; true and output
dependences between statements 5 and 6, 3 and 5, as well 3
and 6; the loop on node 6 means there is true and output
dependence between statement 6 itself on different iteration
of the for loop. As result, the value of variable j is
accumulated for the entire nested for loop, what means that

the computation for value of j is dependent on the previous
value of j. Hence, in order to parallelise this code, we need
to modify its structure.

In SPMD style of Cilk, reducing the number of cache
misses and data locality are the main concerns in the design
of the proposed code. The SPMD style of Cilk code is
distinct from ordinary Cilk code. In most SPMD programs,
shared arrays are declared and parallel for directives are
used to distribute work among threads via explicit loop
scheduling. We create private instances of sub-arrays to
spread computation among threads to ensure the data
locality, where this study has been discussed (Liu et al.,
2003). Programs written in SPMD style has also been
shown to provide scalable performance, which is superior to
a straightforward parallelisation of loop (Weng and
Chapman, 2004).

The main parallel Cilk SPMD FFT code is shown in
Figure 4. When it is invoked, it starts a pre-computation of
bit-reversal offset sequentially as depicted in line 6–15, after
that the Bit_reverse() functions with keyword cilk as in line
22–33 is spawn for parallel execution as shown in line 17,
then this pre-computation of offset will be used for
bit-reversal computation. This pre-calculation of offset is
inspired by idea of divide and conquer.

Figure 5 Bit-reversal by divide and conquer

 Parallel fast Fourier transform in SPMD style of Cilk 783

In order to explain how the Bit_reverse() algorithm works,
we use an input size of 16 using 4 threads as example, then
the number of bits is equal to log216, which is equal to 4
bits. Here, chunk size is equal to the input size divided by
the number of threads. It is shown in Figure 5 the top level 1
that represents the original input value of an array A. At
each next level, it is further divided into two chunk size of
same size recursively, where chunk one is obtained from the
even indices, whereas the other is obtained from odd
indices. At the end of the permutation as in last level (or
level 5), M[0] = A[0], M[1] = A[8], M[2] = A[4], M[3] =
A[12], …, M[14] = A[7], M[15] = A[15]. At each level, the
first element of each chunk that is shaded in gray is derived
from its parent’s first and second elements. The first
element of each chunk, namely offset, it will be stored in
array offset. At level 2, the value of offset[0] is 0 and
offset[1] is 1. At level 3, offset[0: 3] is equal to {0, 2, 1, 3}
and offset[0: 7] is {0, 4, 2, 6, 1, 5, 3, 7}. Even though the
precomputation of offset shown here came from divide and
conquer, we implemented it iteratively instead of
recursively. Since we have four threads, the number of
elements for array offset is 4.

Figure 6 The pre-computation of the nth roots of unity

3.2 Butterfly operation

Since the bit-reversal computation takes array A as input
and the result of permutations are stored in array M, as soon
as this computation is completed, array A can then be reused
to store the values of pre-computation of nth roots.

As shown in Figure 7, the pre-computation of nth roots is
executed serially by each process when the amount of work
is small, taking only very small amount of execution time. It

pre-computes twiddle factor (2 /2)sπiω e for each stage of
the butterfly operations and the results are stored into array
Nth as shown in Figure 6. In the Compute_nthroots()
subprogram, there are b stages calls to nthroot(), where b =
log2N and N is input data size. For each stage s, it computes

(2 /2)[,]
sπiNth k e  where k is an array index from 2s to 2s

– 1, 12 ,sk   s =┌log2 k┐, and i is a complex number.
Later in the butterfly operation, several threads at certain
stage will read reference the pre-computed values, thus
prevents threads from performing the same calculation,
reducing the number of computations. After the pre-
computation of nth root is performed, each thread can access
its own copy of the result as shown in Figure 7.

Next, we present butterfly operation using SPMD style
of Cilk, as depicted in Figure 8. There are three inputs from
the left: a[i], a[i + twsize / 2], and on the middle left is the
twiddle factor ωn

k. The cross of two arrows in the middle of
the box can be seen as two read references of the array
elements into their corresponding two outputs on the right.
The down arrow can be seen as the differences of a[i] and
the product of the twiddle factor and a[i + twsize / 2] is
output into a[i + twsize / 2]. Similarly, the up arrow
represents the sum of a[i] and the product of the twiddle
factor and a[i + twsize / 2] is output into a[i].

The main butterfly operation starts by calling Trans1
and Trans2 functions of step 3, as shown in Figure 1. Trans1
performs the first stage up to b-log2(nthreads) stage, in
which the computation is within chunk size boundary where
b is number of bits and nthreads is the number of threads.
The sum and different operation of each thread for each
stage is done by accessing data within chunk size boundary,
and controlled by condition (twsize <= chunksize) at line 2
of Figure 10. On the other hand, Trans2 is used to perform
the sum and different operation where accessing data is
outside the chunk size boundary.

By calling FFTC1(A, 16, 4), where the size of input
m = 16, the number of bits b = log2(16) is 4, and nthreads is
4. Trans1 in Figure 6 performs SPMD style Cilk where
Butterfly1 function is spawned for each thread to work on
different chunks of data, in which result of both sum and
difference are stored within the chunk size boundary, this is
shown in shaded box of stages 1 and 2 in Figure 9.

Figure 7 The result of pre-computation of nth root

w0

0 w1
0 w2

0 w2
1 w4

0 w4
1 w4

2 w4
3 w8

0 w8
1 w8

2 w8
3 w8

4 w8
5 w8

6 w8
7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

stage1 stage2 stage3 stage4

784 T-H. Weng et al.

Each shaded box represents each thread’s chunk boundary.
Ti represents Thread i, and line 2 of Figure 10 is the loop to
iterate from stage 1 up to stage log2(chunk size). The first
calls to Trans1 with the parameter twiddle size equal to 2 in
stage 1. The parameter of each next consecutive call is the
double twiddle size, and the iteration is controlled so that
each thread will work on the elements of array access are
within the boundary of each chunk size of each thread.
During the pre-computation of nth roots, the twiddle factor
ω0

n is computed and stored in A[0], ω1
n in A[1], ω2

n in A[2]
and so on.

Figure 8 Simplified drawing of a butterfly operation

Figure 9 Butterfly operation of FFTC1 with m = 16 and 4

In Butterfly1, each thread performs sum and different
twiddle size of sub-arrays, and each thread executes line 8 of
Figure 10 (chunksize / twsize) times. Here, M[j] is stored in
temp1. The product of twiddle factor and M[j + twiszie / 2]
is stored in temp2 temporarily in order to reduce from re-
accessing the array M and re-calculating the product. Then,
M[j] = temp1 + temp2 for the sum operation and M[j +
twsize / 2] = temp1 – temp2 for the difference.

The Trans1 function iteratively spawns Butterfly1
function in SPMD style by (b-log2(nthreads)) times, where
the loop index i is iterated from 1 to (b-log2(nthreads)) such
that it can be executed asynchronously. When i is equal to 1,
it performs butterfly operation of stage 1, and when i is
equal to 2, then it performs butterfly operation of stage 2,
and so on as shown in Figure 9. A sync statement in Line 5

is used to ensure that the execution of the current function
cannot proceed until all previously spawned function calls
have completed, which is similar to OpenMP barrier.

Figure 10 Trans1 function for butterfly operation of FFT1

Figure 11 Butterfly2 function of FFT1

Trans2 is invoked to perform the stage (b-log2(nthreads) +
1) up to stage b (final stage) of butterfly operation, for
which stage’s computation are obtained by accessing form
out of the chunk size boundary, as shown in stages 3 and 4
in Figure 9. Therefore, Trans2 function spawns Butterfly2
log2(nthreads) times for asynchronous execution. It is
shown in lines 4 to 8 of Figure 11 that, if i%2 = 0, the
execution result of Butterfly2 is writing to Tmp array form
array M. If i%2 = 1, the execution result of Butterfly2 is
writing to array M form array Tmp.

 Parallel fast Fourier transform in SPMD style of Cilk 785

In Trans2 function at lines 4 and 5 of Figure 11, it
spawns Butterfly2 function with parameter swapping
between M and Tmp, when stage number is even (as shown
in line 4). It computes from accessing array M and output
the results the butterfly computation into array Tmp. On the
other hand, when the stage number is odd as shown in line
5, it computes from accessing array Tmp and write the
output to M. In this way, we remove the race condition of
the original sequential code.

There are several key points in Butterfly2 computation.
First, each thread’s chunk size remains the same in each
stage; second, the calculation is twice as much as the
previous stage; third, the read access for the calculation is
twice distant from the previous stage; fourth, each thread
may either perform only sum or difference in a stage, and
fifth, the results in each stage of butterfly2 computation is
alternately stored in array Tmp and M. Otherwise, there will
be race condition.

The merits of the proposed algorithm in SPMD style is
the ability to control, so that each thread computes the exact
location of read accesses and the result is stored within the
chunk size boundary. At the butterfly2 operation, the read
accesses are from array A, where the pre-computation of nth
root is stored. The read accesses index of pre-computation
of nth root for each thread of a stage is computed in lines 11
to 13 of Figure 11. The indices are stored in array nth_add.
Even though the sum and different are performed by
separate thread, they may share the same element array of
nth root.

In each stage of butterfly2, the twiddle size is divided by
chunk size into t, which is used to determine whether a
thread performing the sum or a different, and to control a
thread’s accesses to the correct array elements of nth root.
Since the sum and difference operation may use the same
elements of nth root in butterfly operation, each thread read
accesses to the array nth root starting from mid +
nth_add[thread id %(t / 2)] up to a chunk size as shown in
line 21–23 of Figure 11, where mid is half of twiddle size
shown in line 14 of Figure 11.

The butterfly2 spawn twiddle function to compute sum
or difference operation in line 15 of Figure 11. In twiddle
function, if thread id % t is less or equal to t / 2, the thread
does sum operation, otherwise a thread does difference
operation. The parameter t for each next consecutive call is
twice the size.

Using examples, the butterfly2 operation start its
computation at stage 3 in Figure 9, thread 0 (T0) correspond
to shaded box, it computes the sum operation, they are
Tmp[0] = a0 + (a2 * A[4]), Tmp[1] = a8 + (a10 * A[5]),
Tmp[2] = a4+ (a6 * A[6]), Tmp[3] = a12 + (a14 * A[7]),
where array A is the value are of twiddle factors pre-
computed during computation of nth_roots. This sum is
represented as up arrow in Figure 8. Thread 1 computes the
difference, they are Tmp[4] = a0 – (a2 * A[4]), Tmp[5] = a8 –
(a10 * A[5]), Tmp[6] = a4 – (a6 *A[6]), Tmp[7] = a12 – (a14 *
A[7]). The difference is represented as down arrow. Thread
2 and 3 applies the same way. In the next stage, the result of
the sum and difference are stored back to array M. When the

next stage is even then we stored the result in Tmp,
otherwise it stored in M.

4 Experimental results

Experiments are performed with two versions of FFT
running on a four dual-core CPU 2.8 GHz AMD-
OpteronTM 8200/Dell 6950 server with 8G memory, 64KB
L1 cache, 1MB L2 cache. The parallel application codes are
compiled with cilkc, a Cilk compiler with gcc version
3.4.65 and running Linux Cent OS 4.7. We name the
proposed version of a non-recursive 1-D FFT using Cilk in
SPMD style, FFTC-1, whereas the recursive Cilk FFT
implemented by Frigo is named as FFTC-2. Two
application programs with input size of 226 and 227 are
executed in this server, each executed in parallel using 1, 2,
4, 8 threads. With input data size of 227, the proposed code
allocates approximately more than 3G main memory.

Tables 1 and 2 show the performance of FFTC-1 with
input size of 226 and 227 respectively. We measure the
execution time of the bit-reversal computation, computation
of nth roots, and the butterfly (Butterfly1 and Butterfly2),
adding up all these items into the total execution of FFTC-1.
The proposed code in SPMD style of Cilk for the
Bit-reversal shows to be scalable as the number of
processors increases, except a little degradation on using all
cores of the server. The pre-computation of nth roots is done
serially, which only take 0.3 seconds for input size 226 and
0.6 seconds for input size 227. The performance of
bit-reversal operation scale well up to 4 threads with
speedup of 2.28x for input 226 and up to 2.25x for input size
227, but slightly degraded using 8 threads, it has speedup
2.96x for input size of 226 and 3.04x for input size 227. The
performance of butterfly operation which consisted of
Butterfly1 and Butterfly2 have a very similar performance,
from which we obtained 2.81x using 8 threads for input size
226 and 2.83x for input size 227. The performance of the full
program only achieves up to 2.82x and 2.86x for input size
of 226 and 227 respectively. Despite this, the execution time
for the proposed sequential code is one half shorter than that
of FFTC-2 as shown in Figure 12 and, even for each thread,
the execution time of FFTC-1 is one half shorter than that of
FFTC-2.

Butterfly1 is used to perform the sum and difference
computation for which each thread accesses their data is
within its chunk size boundary; this is determined by
twiddle size less or equal to chunk size of a thread.
Therefore, when the number of thread is one, the twiddle
size will be within the chunk size boundary for all stages,
hence, butterfly2 is not performed for one thread of
execution. When the number of threads is 4, there will be
four stages of the butterfly operation. As we observed, our
algorithm obtained the best performance for input size 226
when there are 4 threads, there will be 4 stages: first two
stages (obtained from b-log2(threads)) are performed by
butterfly1 and the remaining two stages (obtained from
log2(threads)) are done by butterfly2.

786 T-H. Weng et al.

Table 1 The execution time of FFTC-1 with 226

Size = 226

of thread Bit-reversal Nth-roots Butterfly Total

1 10.906423 0.413586 11.312422 22.632432

2 6.526568 0.296749 8.053472 14.87679

4 4.763673 0.317307 4.258173 9.339153

8 3.684177 0.319891 4.014965 8.019033

Table 2 The execution time of FFTC-1 with 227

Size = 227

of thread Bit-reversal Nth-roots Butterfly Total

1 22.46298 0.822327 24.126726 47.412030

2 13.69277 0.604429 16.932400 31.229597

4 9.941122 0.609798 8.917085 19.468004

8 7.371065 0.629462 8.524797 16.525323

Table 3 The execution time of FFTC-2

Input
size

Total execution

Number of threads

n 1 2 4 8

226 49.385168 23.761773 14.196570 7.947805

227 118.686967 55.894257 31.365389 17.305458

Figure 12 The execution of time FFT codes (see online version
for colours)

With eight threads, Butterfly1 performs 20 stages, then
Butterfly2 process 4 stages. For the input data size 2b, there
are b stages. The first stage all read reference to data of the
computation is next to each other. At each next stage, the
read reference will be twice distant apart as the previous
stage. Hence, when b is large, the stage i will have a
distance of 2i – 1 for their read reference to data stored in an
array, causing huge number of cache misses. Due to this
reason, more improvement is possible for Butterfly2
operation.

Table 3 presents the result of execution time of FFTC-2,
a parallel recursive Cilk FFT implemented by Frigo that is
included in Cilk 5.4.6. It is well written, highly hand-tune
recursive parallel Cilk FFT code. Even though the execution
time of FFTC2 on each thread is twice as much compared to
those of FFTC1, the performance of FFTC-2 achieves
nearly perfect linear speed up as shown in Figure 13,
obtaining nearly 7x using eight threads.

Figure 13 The speedup of FFTC1 and FFTC2

5 Conclusions and future work

We have developed two versions of non-recursive SPMD
style of Cilk FFT written in C. It can be easily ported to
other parallel programming languages such as UPC,
OpenMP, CUDA and MPI. FFTC1 performs Bit-reversal
and its computed result is an input to butterfly operation,
hence they operate as separate phases.

The advantage of FFTC1 is the first log2(chunksize)
stages the data accesses are within the chunksize of each
thread and the remaining b-log2(chunksize) stages access
data are outside size chunk size boundary of each thread.
The FFTC1 accesses the memory element outside chunk
size boundary and far apart even in the early stage of
butterfly operation. FFTC1 has significant overhead of
cache misses compared to FFTC2. Experimental results of
FFTC1 showed promise although more memory spaces are
used, and has better performance compared to FFTC2.
Nevertheless, more improvements are possible. The future
work includes implementing FFT using CUDA for GPU on
Hadoop clusters to enable massive data computation (Jiang
et al., 2015; Chen et al., 2016) taking into consideration the
scheduling via orchestrating the distributed servers,
providing fault tolerance and redundancy.

Acknowledgements

We are grateful to National Center for High Performance
Computing (NCHC), Taiwan, where the computing
resources were approved for experimentations.

 Parallel fast Fourier transform in SPMD style of Cilk 787

References

Bader, D.A. and Agarwal, V. (2007) ‘FFTC: fastest Fourier
transform for the IBM cell broadband engine’, The 14th
International Conference on High Performance Computing
(HiPC 2007), LNCS 4873, pp.172–184.

Bollman, D., Seguel, J., and Feo, J. (1996) ‘Fast digit-index
permutations’, Scientific Progress, Vol. 5, No. 2, pp.137–146.

Chen, W., Xu, S., Jiang, H., Weng, T.H., Marino, M.D.,
Chen, Y.S. and Li, K.C. (2016) ‘GPU computations on
Hadoop clusters for massive data processing’, Lecture Notes
in Electrical Engineering, Vol. 345, pp.515–521.

Cooley, J.W. and Tukey, J.W. (1965) ‘An algorithm for the
machine calculation of complex Fourier series’, in Math.
Comput., Vol. 19, No. 90, pp.297–301.

Frigo, M. (2007) ‘Multithreaded programming in Cilk’,
Proceedings of the 2007 International Workshop on Parallel
Symbolic Computation.

Frigo, M. and Johnson, S.G. (2005) ‘The design and
implementation of fftw3’, Proceeding of the IEEE, Vol. 93,
No. 2, pp.216–231.

Frigo, M., Leiserson, C.E. and Randall, K.H. (1998) ‘The
implementation of the Cilk-5 multithreaded language’, in
ACM SIGPLAN 1998 Conference on Programming Language
Design and Implementation, pp. 212–223.

Jiang, H., Chen, Y., Qiao, Z., Weng, T.H. and Li, K.C. (2015)
‘Scaling up MapReduce-based big data processing on
multi-GPU systems’, Cluster Computing, Vol. 18, No. 1,
pp.369–383,.

Karp, A.H. (1996) ‘Bit reversal on uniprocessors’, SIAM Review,
Vol. 38, No. 1, pp.289–307.

Li, K.C. and Weng, T.H. (2009) ‘Performance-based parallel
application toolkit for high-performance clusters’, The
Journal of Supercomputing, Vol. 48, No. 1, pp.43–65.

Liu, Z., Chapman, B., Wen, Y., Huang, L., Weng, T.H.,
Hernandez, O. (2003) ‘Analyses for the translation of
OpenMP codes into SPMD style with array’, Voss, M.J.
(Ed.): WOMPAT 2003, LNCS, Vol. 2716, pp.26–41.

Lokhmotov, A. and Mycroft, A. (2007) ‘Optimal bit-reversal using
vector permutations’, ACM Symposium on the 19th Parallel
Algorithms and Architectures, pp.198–199.

Ouni, B. and Mtibaa, A. (2014) ‘Emporal partitioning of data flow
graphs for reconfigurable architectures’, International
Journal of Computational Science and Engineering (IJCSE),
Vol. 9, Nos. 1–2, pp.21–33.

Rodriguez, J.J. (1988) ‘Improved bit-reversal algorithm for the fast
Fourier transform’, in ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing –
Proceedings, IEEE, pp.1407–1410.

Rubio, M., Gómez, P. and Drouiche, K. (2002) ‘A new superfast
bit reversal algorithm’, International Journal of Adaptive
Control and Signal Processing, Vol. 16, No. 10, pp.703–707.

Seguel, J., Bollman, D. and Feo, J. (2000) ‘A framework for the
design and implementation of FFT permutation algorithms’,
IEEE Transactions on Parallel and Distributed Systems,
Vol. 11, No. 7, pp.625–635.

Takahashi, D. (2013) ‘Implementation of parallel 1-D FFT on
GPU clusters’, 2013 IEEE 16th International Conference on
Computational Science and Engineering, pp.174–180.

Takahashi, D., Sato, M., and Boku, T. (2003) ‘An OpenMP
implementation of parallel FFT and its performance on IA-64
processors’, WOMPAT 2003, LNCS 2716, pp.99–108.

Weng, T.H. and Chapman, B.M. (2004) ‘Towards optimisation of
openMP codes for synchronisation and data reuse’, IJHPCN,
Vol. 1, Nos. 1/2/3, pp.43–54.

Zhang, Z. and Zhang, X. (2000) ‘Fast bit-reversals on
uniprocessors and shared-memory multi-processors’,
SIAM Journal on Scientific Computing, Vol. 22, No. 6,
pp.2113–2134.

