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Abstract: In this paper, we propose a parallel one-dimensional non-recursive fast Fourier 
transform (FFT) program based on conventional Cooley-Tukey’s algorithm written in C using 
Cilk in single program multiple data (SPMD) style. As a highly compact designed code, this code 
is compared with a highly tuned parallel recursive fast Fourier transform (FFT) using Cilk, which 
is included in Cilk package of version 5.4.6. Both algorithms are executed on multicore servers, 
and experimental results show that the performance of the SPMD style of Cilk fast Fourier 
transform (FFT) parallel code is highly competitive and promising. 
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1 Introduction 

The fast Fourier transform (FFT) (Cooley and Tukey, 1965) 
has been one of the most frequently used and foremost 
important algorithms in many fields of science and 
engineering applications such as in partial differential 
equations, signal processing for spectral analysis of speech, 
image processing, fluid dynamics for solving partial 
differential equations (PDEs), seismic and vibration 
detection and other related fields applications. 

In this paper, we implemented parallel non-recursive 
version of FFT using single program multiple data (SPMD) 
style of Cilk. Cilk (Frigo et al., 1998; Frigo, 2007; The MIT 
Cilk Project, http://supertech.csail.mit.edu/cilk/) is a  
multi-threaded parallel programming language extension to 
standard C and C++, consisting of cilk, spawn, sync, inlet, 
and abort keywords, which are easier to use for parallel 
programmers to express task and data parallelism as well as 
enabling parallel programmers to parallelise the application 
written in recursive programs. Its runtime system supports 
dynamic workload balancing capability with efficient 
randomised work-stealing scheduler, synchronisation, and 
communication protocols, once also called as Cilk Art, 
founded by Charler E. Leiserson of Massachusetts Institute 
of Technology (MIT), and is moving to support industrial 
and commercial developer of parallel applications that can 

be executed on Linux, Windows, OS X operating systems 
and other platforms. In addition, Cilk’s runtime system also 
guarantees efficient and predictable performance such that 
provides better performance scalability for parallel 
applications that have irregular computations, and more 
robust performance for applications running in multi-
programmed environments. Cilkc is a source-to-source 
translator used to convert parallel Cilk code to standard C, 
and after that, it compiles the resulting C source into the 
executable. It was purchased by Intel in 2009 and turned 
one of its products named Intel® Cilk™ Plus (Intel Cilk 
Plus, https://www.cilkplus.org/). These extensions are now 
not only included in GCC 5.0 mainline and Intel’s 
commercial compiler, but also a set of patches to add Cilk 
to LLVM clang. However, only 32 and 64-bit Intel 
hardware is supported by any of compilers. Recently, it can 
also be used in Raspberry Pi in multicore ARM 
architectures. 

Cilk is practical and easy to understand, whereas the 
proposed implementation of the parallel code can be 
developed with less effort, and the newly designed code is 
fairly compact. The Cilk SPMD style of FFT code only 
takes about 0.3K line of code (LOC), which is shorter than 
the original parallel recursive Cilk FFT (3K LOC). The 
SPMD code can be easily ported to other well-known 
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programming models such as message passing interface 
(MPI), compute unified device architecture (CUDA), 
unified parallel C (UPC), OpenMP, Intel threading building 
blocks (ITBB), and OpenACC, which is one of major 
advantages. Ensuring data locality memory access has been 
another advantage of program written in SPMD style, where 
each private sub-array can be created and accessed locally 
within each thread to enable spreading the computation 
among threads in the manner to ensuring data locality. 

Cilk implementation of SPMD Style of FFT code has 
three main steps: 

1 bit-reversal operation 

2 pre-computation of nth roots 

3 the butterfly operations. 

Bit-reversal operation rearranges the input array by 
reversing the binary bits of the array indices. That is, a  
bit-reversal is an operation to swap the data between A[j] 
and A[Bit-reversal[j]], where the value of j is from 0 to the 
input size m and m is usually two to the power of b. The  
Bit-reversal[j] is obtained from reversing b bits from value 
of j. Bit-reversal must be designed properly since it takes 
about 30 percent of the total execution time in FFT (Karp, 
1996). 

Finding the discrete Fourier transform (DFT) of the 
individual value is the first stage, and it passes the values 
along. At each one of remaining stages, the computation for 
a polynomial of degree n at the n complex nth roots of unity 
is used to compute a new value depends on the values of the 
previous stage, which process is called butterfly operation. 
The proposed approach relies on performing parallel Cilk 
code in SPMD style. 

The rest of the paper is organised as follows. The related 
works is discussed in Section 2, while the design of the 
parallel algorithm in Section 3. Experimental results and 
evaluation of this parallel version of FFT on multicore 
servers in Section 4, and finally, we give our conclusions 
and future directions in Section 5. 

2 Related work 

In ordinary Cooley-Tukey’s algorithm, the bit-reversal and 
butterfly operations were performed separately. Bader and 
Agarwal (2007) proposed non-recursive FFT based on 
Cooley-Tukey’s, the novelty of their modified one is that 
the bit-reversal and butterfly operation are combined and 
performed at once, hence saving the bit-reversal stage 
computation. This algorithm has been designed well for cell 
processor. 

Data reordering in FFT program using bit-reverse of 
array index has been widely studied (Bollman et al., 1996; 
Karp, 1996; Lokhmotov and Mycroft, 2007; Rodriguez, 
1988; Rubio et al., 2002; Seguel et al., 2000; Zhang and 
Zhang, 2000). Most of algorithms proposed were designed 
to be executed on single processor platforms (Karp, 1996; 
Lokhmotov and Mycroft, 2007; Rodriguez, 1988; Rubio  
et al., 2002). Lokhmotov proposed the optimal Bit-reversal 

using vector permutations with experiments performed on 
single processor (Karp, 1996). They claimed that their 
sequential algorithm can be parallelised without any 
problem or extra effort. An algebraic framework for FFT 
permutation algorithm using functional language SISAL 
was implemented, and performance measurements were 
done on Cray C90 and SUN Sparc5 machines (Bollman  
et al., 1996; Seguel et al., 2000). Namneh (Karp, 1996) 
implemented and compared two versions of 1D FFT 
algorithms, implementation based on tree and transposition 
of one-dimensional FFT parallelised using MPI to run on 
symmetric multi-processing (SMP) servers. Experimental 
results are done on SMP SUN SPARC servers with total of 
eight processors and complex numbers data up to 4094 KB. 
The SMP SUN SPARC servers have a crossbar processor 
interconnection. Franchetti used spiral, an automatic 
program generation, and integrated it into their proposed 
framework to boost optimisations (Bollman et al., 1996). 
The users can formally specify a digital signal processing 
transforms such as DFT, then spiral will rewrite and 
transform the DFT in the form of mathematical formula into 
C program that computes the specified transform, optimised 
to achieve load balancing and avoiding false sharing to a 
given platform. Furthermore, they propose to extend spiral 
to generate parallel multithreaded code such as OpenMP 
and Pthread codes. 

An OpenMP implementation of a one-dimensional 
recursive algorithm written in Fortran 90 for parallel 
recursive FFT has been proposed by Takahashi et al. (2003) 
on shared memory parallel computers. Experiments are 
performed on 4-CPU DELL PowerEdge 7150 for 224 points 
FFT with double-precision complex data. Ouni and Mtibaa 
(2014) proposed a data flow graph approach with temporal 
partitioning algorithm for reconfiguration system, where 
FFT is one of the applications observed in their 
experiments. FFTW is a publicly available free-software 
written in C, developed at MIT by Frigo and Johnson 
(2005). It is concerned with machine architectures and 
adaptively tune by fully taking advantage of machine 
architectures to maximise the performance of FFT. It is 
highly tuned, hard-coded FFT that run on many machine 
architectures without any restrictions on input size as well 
as dimensionality of input array. Takahashi (2013) proposed 
an implementation of hybrid model 1D FFT on GPU 
clusters, where the algorithm is based on six-step FFT 
algorithm that consists of three transpositions and three  
all-to-all communications. Utilising the combination of MPI 
and cuFFT, the experimental results using large input size 
of 234 achieved a significant speedup of about 3x compared 
to FFTW. 

3 Implementation 

The proposed implementation of Cilk FFT can be divided 
into three parts: the computation of Bit-reversal, the  
pre-computation of nth roots, and butterfly operations, as 
shown in Figure 1. The butterfly operations are divided into 
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two steps: Butterfly1 and Butterfly2. It is a non-recursive 
1D FFT using Cilk in SPMD style, and named as FFTC1. 

Figure 1 Main function of the FFTC1 

 

3.1 Bit-reversal computation 

The parallel implementation of the computational  
bit-reversal in SPMD style of Cilk is derived from the 
existing sequential code proposed by Rodriguez (1988). The 
sequential code is shown in Figure 2, which is an improved 
and optimised sequential code design for FFT. It takes the 
parameters N and p, where N is the size of an input array, 
then the bit-reversal permutation is performed with the total 
number of bits p. In their bit-reversal computation, array 
permutation of index for data reordering computes only the 
required bit-reversal of indices, which eliminates the 
number of unnecessary bit-reversal and swaps. The bit-

reversal is calculated as bit-reverse = 1
10 2 ;p k

p kk b
   where 

b is the binary value, p is the total number of bits, and k is 
kth position of the binary from the most significant digits. It 
uses solely an array A to store its input data and final results. 
Therefore, the data reordering must perform the exchange 
between elements of A. 

Figure 2 An improved bit-reversal code by Rodriguez 

 

Despite the swapping of an array is an exchange between 
two elements, it actually comprises of three assignment 
statements or copy actions. In the memory read and write 
accesses, the swap(A[i], A[bitreverse(i)]) performs the copy 
A[i] to Temp, then A[bitreverse(i)] to A[i], and Temp is 
copied to A[i]. The merit of their code is that there is no 
actual conversion from the binary representation to the 
decimal and vice versa. In line 2, the index upper bound for 
the variable is computed by last = (N – 1 – N2), where N2 is 

N  when the number of bits is even and 2N  when the 
number of bits is odd. As result, it eliminates the 
unnecessary computation of bit-reversal, which reduces 
number of swaps. Therefore, the total numbers of copies 

take about 3 * (N – N2) / 2 moves, which is equal to 1.5 * 
(N – N2). 

Figure 3 Data dependence graph of Figure 2 

  

 

Figure 4 FFT Cilk model 

 

In order to improve our parallel code, we utilised the 
performance-based parallel analysis toolkit proposed by Li 
et al. (2009), which is an effective toolkit for performance 
measurement and analysis for parallel application. It not 
only provides the measurement of the execution time, but 
also generates application data analysis graphs. This toolkit 
allows application developers to have a better understanding 
of the application’s behaviour among selected computing 
nodes purposed for that particular execution. Furthermore, 
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the results of multiple execution of a given application 
under development can be combined and overlapped, 
allowing the application developers to perform ‘what-if’ 
analysis, to deeper understand the utilisation of allocated 
computational resources. The effectiveness on the 
development and performance tuning of parallel 
applications is supported to execute on the shared memory 
model. 

Even though bit-reversal sequential code seemed to be 
the best, it is implemented as a loop that has loop-carried 
data dependences between iterations. Hence, it is not 
parallelisable without complete modification to the original 
sequential code, as shown in data dependence graph 
depicted in Figure 3. It has true and output data 
dependences between loop iterations of statements j = j – k, 
j = j + k, and if (i < j). There are also true, anti- and output 
dependences between the statements labelled on each edge 
as t, a and o respectively. For instance, there are true 
dependence between statements 3 and 7; true and output 
dependences between statements 5 and 6, 3 and 5, as well 3 
and 6; the loop on node 6 means there is true and output 
dependence between statement 6 itself on different iteration 
of the for loop. As result, the value of variable j is 
accumulated for the entire nested for loop, what means that 

the computation for value of j is dependent on the previous 
value of j. Hence, in order to parallelise this code, we need 
to modify its structure. 

In SPMD style of Cilk, reducing the number of cache 
misses and data locality are the main concerns in the design 
of the proposed code. The SPMD style of Cilk code is 
distinct from ordinary Cilk code. In most SPMD programs, 
shared arrays are declared and parallel for directives are 
used to distribute work among threads via explicit loop 
scheduling. We create private instances of sub-arrays to 
spread computation among threads to ensure the data 
locality, where this study has been discussed (Liu et al., 
2003). Programs written in SPMD style has also been 
shown to provide scalable performance, which is superior to 
a straightforward parallelisation of loop (Weng and 
Chapman, 2004). 

The main parallel Cilk SPMD FFT code is shown in  
Figure 4. When it is invoked, it starts a pre-computation of  
bit-reversal offset sequentially as depicted in line 6–15, after 
that the Bit_reverse() functions with keyword cilk as in line 
22–33 is spawn for parallel execution as shown in line 17, 
then this pre-computation of offset will be used for  
bit-reversal computation. This pre-calculation of offset is 
inspired by idea of divide and conquer. 

Figure 5 Bit-reversal by divide and conquer 
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In order to explain how the Bit_reverse() algorithm works, 
we use an input size of 16 using 4 threads as example, then 
the number of bits is equal to log216, which is equal to 4 
bits. Here, chunk size is equal to the input size divided by 
the number of threads. It is shown in Figure 5 the top level 1 
that represents the original input value of an array A. At 
each next level, it is further divided into two chunk size of 
same size recursively, where chunk one is obtained from the 
even indices, whereas the other is obtained from odd 
indices. At the end of the permutation as in last level (or 
level 5), M[0] = A[0], M[1] = A[8], M[2] = A[4], M[3] = 
A[12], …, M[14] = A[7], M[15] = A[15]. At each level, the 
first element of each chunk that is shaded in gray is derived 
from its parent’s first and second elements. The first 
element of each chunk, namely offset, it will be stored in 
array offset. At level 2, the value of offset[0] is 0 and 
offset[1] is 1. At level 3, offset[0: 3] is equal to {0, 2, 1, 3} 
and offset[0: 7] is {0, 4, 2, 6, 1, 5, 3, 7}. Even though the 
precomputation of offset shown here came from divide and 
conquer, we implemented it iteratively instead of 
recursively. Since we have four threads, the number of 
elements for array offset is 4. 

Figure 6 The pre-computation of the nth roots of unity 

  

 

3.2 Butterfly operation 

Since the bit-reversal computation takes array A as input 
and the result of permutations are stored in array M, as soon 
as this computation is completed, array A can then be reused 
to store the values of pre-computation of nth roots. 

As shown in Figure 7, the pre-computation of nth roots is 
executed serially by each process when the amount of work 
is small, taking only very small amount of execution time. It 

pre-computes twiddle factor (2 /2 )sπiω e  for each stage of 
the butterfly operations and the results are stored into array 
Nth as shown in Figure 6. In the Compute_nthroots() 
subprogram, there are b stages calls to nthroot(), where b = 
log2N and N is input data size. For each stage s, it computes 

(2 /2 )[ ,]
sπiNth k e   where k is an array index from 2s to 2s 

– 1, 12 ,sk   s =┌log2 k┐, and i is a complex number. 
Later in the butterfly operation, several threads at certain 
stage will read reference the pre-computed values, thus 
prevents threads from performing the same calculation, 
reducing the number of computations. After the pre-
computation of nth root is performed, each thread can access 
its own copy of the result as shown in Figure 7. 

Next, we present butterfly operation using SPMD style 
of Cilk, as depicted in Figure 8. There are three inputs from 
the left: a[i], a[i + twsize / 2], and on the middle left is the 
twiddle factor ωn

k. The cross of two arrows in the middle of 
the box can be seen as two read references of the array 
elements into their corresponding two outputs on the right. 
The down arrow can be seen as the differences of a[i] and 
the product of the twiddle factor and a[i + twsize / 2] is 
output into a[i + twsize / 2]. Similarly, the up arrow 
represents the sum of a[i] and the product of the twiddle 
factor and a[i + twsize / 2] is output into a[i]. 

The main butterfly operation starts by calling Trans1 
and Trans2 functions of step 3, as shown in Figure 1. Trans1 
performs the first stage up to b-log2(nthreads) stage, in 
which the computation is within chunk size boundary where 
b is number of bits and nthreads is the number of threads. 
The sum and different operation of each thread for each 
stage is done by accessing data within chunk size boundary, 
and controlled by condition (twsize <= chunksize) at line 2 
of Figure 10. On the other hand, Trans2 is used to perform 
the sum and different operation where accessing data is 
outside the chunk size boundary. 

By calling FFTC1(A, 16, 4), where the size of input  
m = 16, the number of bits b = log2(16) is 4, and nthreads is 
4. Trans1 in Figure 6 performs SPMD style Cilk where 
Butterfly1 function is spawned for each thread to work on 
different chunks of data, in which result of both sum and 
difference are stored within the chunk size boundary, this is 
shown in shaded box of stages 1 and 2 in Figure 9. 

Figure 7 The result of pre-computation of nth root 
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Each shaded box represents each thread’s chunk boundary. 
Ti represents Thread i, and line 2 of Figure 10 is the loop to 
iterate from stage 1 up to stage log2(chunk size). The first 
calls to Trans1 with the parameter twiddle size equal to 2 in 
stage 1. The parameter of each next consecutive call is the 
double twiddle size, and the iteration is controlled so that 
each thread will work on the elements of array access are 
within the boundary of each chunk size of each thread. 
During the pre-computation of nth roots, the twiddle factor 
ω0

n is computed and stored in A[0], ω1
n in A[1], ω2

n in A[2] 
and so on. 

Figure 8 Simplified drawing of a butterfly operation 

 

 

Figure 9 Butterfly operation of FFTC1 with m = 16 and 4 

 

In Butterfly1, each thread performs sum and different 
twiddle size of sub-arrays, and each thread executes line 8 of 
Figure 10 (chunksize / twsize) times. Here, M[j] is stored in 
temp1. The product of twiddle factor and M[j + twiszie / 2] 
is stored in temp2 temporarily in order to reduce from re-
accessing the array M and re-calculating the product. Then, 
M[j] = temp1 + temp2 for the sum operation and M[j + 
twsize / 2] = temp1 – temp2 for the difference. 

The Trans1 function iteratively spawns Butterfly1 
function in SPMD style by (b-log2(nthreads)) times, where 
the loop index i is iterated from 1 to (b-log2(nthreads)) such 
that it can be executed asynchronously. When i is equal to 1, 
it performs butterfly operation of stage 1, and when i is 
equal to 2, then it performs butterfly operation of stage 2, 
and so on as shown in Figure 9. A sync statement in Line 5 

is used to ensure that the execution of the current function 
cannot proceed until all previously spawned function calls 
have completed, which is similar to OpenMP barrier. 

Figure 10 Trans1 function for butterfly operation of FFT1 

 

Figure 11 Butterfly2 function of FFT1 

  

 

Trans2 is invoked to perform the stage (b-log2(nthreads) + 
1) up to stage b (final stage) of butterfly operation, for 
which stage’s computation are obtained by accessing form 
out of the chunk size boundary, as shown in stages 3 and 4 
in Figure 9. Therefore, Trans2 function spawns Butterfly2 
log2(nthreads) times for asynchronous execution. It is 
shown in lines 4 to 8 of Figure 11 that, if i%2 = 0, the 
execution result of Butterfly2 is writing to Tmp array form 
array M. If i%2 = 1, the execution result of Butterfly2 is 
writing to array M form array Tmp. 



 Parallel fast Fourier transform in SPMD style of Cilk 785 

In Trans2 function at lines 4 and 5 of Figure 11, it 
spawns Butterfly2 function with parameter swapping 
between M and Tmp, when stage number is even (as shown 
in line 4). It computes from accessing array M and output 
the results the butterfly computation into array Tmp. On the 
other hand, when the stage number is odd as shown in line 
5, it computes from accessing array Tmp and write the 
output to M. In this way, we remove the race condition of 
the original sequential code. 

There are several key points in Butterfly2 computation. 
First, each thread’s chunk size remains the same in each 
stage; second, the calculation is twice as much as the 
previous stage; third, the read access for the calculation is 
twice distant from the previous stage; fourth, each thread 
may either perform only sum or difference in a stage, and 
fifth, the results in each stage of butterfly2 computation is 
alternately stored in array Tmp and M. Otherwise, there will 
be race condition. 

The merits of the proposed algorithm in SPMD style is 
the ability to control, so that each thread computes the exact 
location of read accesses and the result is stored within the 
chunk size boundary. At the butterfly2 operation, the read 
accesses are from array A, where the pre-computation of nth 
root is stored. The read accesses index of pre-computation 
of nth root for each thread of a stage is computed in lines 11 
to 13 of Figure 11. The indices are stored in array nth_add. 
Even though the sum and different are performed by 
separate thread, they may share the same element array of 
nth root. 

In each stage of butterfly2, the twiddle size is divided by 
chunk size into t, which is used to determine whether a 
thread performing the sum or a different, and to control a 
thread’s accesses to the correct array elements of nth root. 
Since the sum and difference operation may use the same 
elements of nth root in butterfly operation, each thread read 
accesses to the array nth root starting from mid + 
nth_add[thread id %(t / 2)] up to a chunk size as shown in 
line 21–23 of Figure 11, where mid is half of twiddle size 
shown in line 14 of Figure 11. 

The butterfly2 spawn twiddle function to compute sum 
or difference operation in line 15 of Figure 11. In twiddle 
function, if thread id % t is less or equal to t / 2, the thread 
does sum operation, otherwise a thread does difference 
operation. The parameter t for each next consecutive call is 
twice the size. 

Using examples, the butterfly2 operation start its 
computation at stage 3 in Figure 9, thread 0 (T0) correspond 
to shaded box, it computes the sum operation, they are 
Tmp[0] = a0 + (a2 * A[4]), Tmp[1] = a8 + (a10 * A[5]), 
Tmp[2] = a4+ (a6 * A[6]), Tmp[3] = a12 + (a14 * A[7]), 
where array A is the value are of twiddle factors pre-
computed during computation of nth_roots. This sum is 
represented as up arrow in Figure 8. Thread 1 computes the 
difference, they are Tmp[4] = a0 – (a2 * A[4]), Tmp[5] = a8 – 
(a10 * A[5]), Tmp[6] = a4 – (a6 *A[6]), Tmp[7] = a12 – (a14 * 
A[7]). The difference is represented as down arrow. Thread 
2 and 3 applies the same way. In the next stage, the result of 
the sum and difference are stored back to array M. When the 

next stage is even then we stored the result in Tmp, 
otherwise it stored in M. 

4 Experimental results 

Experiments are performed with two versions of FFT 
running on a four dual-core CPU 2.8 GHz AMD-
OpteronTM 8200/Dell 6950 server with 8G memory, 64KB 
L1 cache, 1MB L2 cache. The parallel application codes are 
compiled with cilkc, a Cilk compiler with gcc version 
3.4.65 and running Linux Cent OS 4.7. We name the 
proposed version of a non-recursive 1-D FFT using Cilk in 
SPMD style, FFTC-1, whereas the recursive Cilk FFT 
implemented by Frigo is named as FFTC-2. Two 
application programs with input size of 226 and 227 are 
executed in this server, each executed in parallel using 1, 2, 
4, 8 threads. With input data size of 227, the proposed code 
allocates approximately more than 3G main memory. 

Tables 1 and 2 show the performance of FFTC-1 with 
input size of 226 and 227 respectively. We measure the 
execution time of the bit-reversal computation, computation 
of nth roots, and the butterfly (Butterfly1 and Butterfly2), 
adding up all these items into the total execution of FFTC-1. 
The proposed code in SPMD style of Cilk for the  
Bit-reversal shows to be scalable as the number of 
processors increases, except a little degradation on using all 
cores of the server. The pre-computation of nth roots is done 
serially, which only take 0.3 seconds for input size 226 and 
0.6 seconds for input size 227. The performance of  
bit-reversal operation scale well up to 4 threads with 
speedup of 2.28x for input 226 and up to 2.25x for input size 
227, but slightly degraded using 8 threads, it has speedup 
2.96x for input size of 226 and 3.04x for input size 227. The 
performance of butterfly operation which consisted of 
Butterfly1 and Butterfly2 have a very similar performance, 
from which we obtained 2.81x using 8 threads for input size 
226 and 2.83x for input size 227. The performance of the full 
program only achieves up to 2.82x and 2.86x for input size 
of 226 and 227 respectively. Despite this, the execution time 
for the proposed sequential code is one half shorter than that 
of FFTC-2 as shown in Figure 12 and, even for each thread, 
the execution time of FFTC-1 is one half shorter than that of 
FFTC-2. 

Butterfly1 is used to perform the sum and difference 
computation for which each thread accesses their data is 
within its chunk size boundary; this is determined by 
twiddle size less or equal to chunk size of a thread. 
Therefore, when the number of thread is one, the twiddle 
size will be within the chunk size boundary for all stages, 
hence, butterfly2 is not performed for one thread of 
execution. When the number of threads is 4, there will be 
four stages of the butterfly operation. As we observed, our 
algorithm obtained the best performance for input size 226 
when there are 4 threads, there will be 4 stages: first two 
stages (obtained from b-log2(threads)) are performed by 
butterfly1 and the remaining two stages (obtained from 
log2(threads)) are done by butterfly2. 



786 T-H. Weng et al.  

Table 1 The execution time of FFTC-1 with 226 

Size = 226 

# of thread Bit-reversal Nth-roots Butterfly Total 

1 10.906423 0.413586 11.312422 22.632432 

2 6.526568 0.296749 8.053472 14.87679 

4 4.763673 0.317307 4.258173 9.339153 

8 3.684177 0.319891 4.014965 8.019033 

Table 2 The execution time of FFTC-1 with 227 

Size = 227 

# of thread Bit-reversal Nth-roots Butterfly Total 

1 22.46298 0.822327 24.126726 47.412030 

2 13.69277 0.604429 16.932400 31.229597 

4 9.941122 0.609798 8.917085 19.468004 

8 7.371065 0.629462 8.524797 16.525323 

Table 3 The execution time of FFTC-2 

Input 
size 

Total execution 

Number of threads 

n 1 2 4 8 

226 49.385168 23.761773 14.196570 7.947805 

227 118.686967 55.894257 31.365389 17.305458 

Figure 12 The execution of time FFT codes (see online version 
for colours) 

 

 

With eight threads, Butterfly1 performs 20 stages, then 
Butterfly2 process 4 stages. For the input data size 2b, there 
are b stages. The first stage all read reference to data of the 
computation is next to each other. At each next stage, the 
read reference will be twice distant apart as the previous 
stage. Hence, when b is large, the stage i will have a 
distance of 2i – 1 for their read reference to data stored in an 
array, causing huge number of cache misses. Due to this 
reason, more improvement is possible for Butterfly2 
operation. 

 
 
 

Table 3 presents the result of execution time of FFTC-2, 
a parallel recursive Cilk FFT implemented by Frigo that is 
included in Cilk 5.4.6. It is well written, highly hand-tune 
recursive parallel Cilk FFT code. Even though the execution 
time of FFTC2 on each thread is twice as much compared to 
those of FFTC1, the performance of FFTC-2 achieves 
nearly perfect linear speed up as shown in Figure 13, 
obtaining nearly 7x using eight threads. 

Figure 13 The speedup of FFTC1 and FFTC2 

 

5 Conclusions and future work 

We have developed two versions of non-recursive SPMD 
style of Cilk FFT written in C. It can be easily ported to 
other parallel programming languages such as UPC, 
OpenMP, CUDA and MPI. FFTC1 performs Bit-reversal 
and its computed result is an input to butterfly operation, 
hence they operate as separate phases. 

The advantage of FFTC1 is the first log2(chunksize) 
stages the data accesses are within the chunksize of each 
thread and the remaining b-log2(chunksize) stages access 
data are outside size chunk size boundary of each thread. 
The FFTC1 accesses the memory element outside chunk 
size boundary and far apart even in the early stage of 
butterfly operation. FFTC1 has significant overhead of 
cache misses compared to FFTC2. Experimental results of 
FFTC1 showed promise although more memory spaces are 
used, and has better performance compared to FFTC2. 
Nevertheless, more improvements are possible. The future 
work includes implementing FFT using CUDA for GPU on 
Hadoop clusters to enable massive data computation (Jiang 
et al., 2015; Chen et al., 2016) taking into consideration the 
scheduling via orchestrating the distributed servers, 
providing fault tolerance and redundancy. 
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