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Abstract
We derive a variant of quantum Hoare logic (QHL), called
applied quantum Hoare logic (aQHL for short), by: (1) re-
stricting QHL to a special class of preconditions and postcon-
ditions, namely projections, which can significantly simplify
verification of quantum programs and are much more con-
venient when used in debugging and testing; and (2) adding
several rules for reasoning about robustness of quantum
programs, i.e. error bounds of outputs. The effectiveness of
aQHL is shown by its applications to verify two sophisti-
cated quantum algorithms: HHL (Harrow-Hassidim-Lloyd)
for solving systems of linear equations and qPCA (quantum
Principal Component Analysis).

CCSConcepts •Theory of computation→Hoare logic;
Program verification.

Keywords Quantum computation, programming languages,
Hoare logic, projections, robustness
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1 Introduction
Quantum programming has already been actively researched
for two decades [4, 15, 27, 31–33, 38]. In particular, in the last
few years, several mature quantum programming languages
and platforms have been introduced, including Quipper [17],
Scaffold [1], QWIRE [28], IBM’s Qiskit [3], Microsoft’s Q#
[34], Google’s Cirq [16] and Rigetti’s Forest [30], perhaps
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stimulated by rapid progress in the implementation of quan-
tum computing hardware. Now people start to consider how
to warrant correctness of quantum programs: debugging,
testing or verification?

Quantum Hoare Logic: Indeed, attempts of developing
Hoare-like logic for verification of quantum programs have
beenmade in a series of papers [2, 6, 7, 9, 10, 14, 21, 29]. In par-
ticular, D’Hondt and Panangaden [13] proposed the notion
of quantum weakest precondition, and Ying [37] established
quantum Hoare logic (QHL for short) for both partial correct-
ness and total correctness with (relative) completeness. More
recently, SDP (Semi-Definite Programming) algorithms for
invariant generation and termination analysis of quantum
programs were developed in [23, 40].

Hoare Logic in Use: In a retrospective article [19], Hoare
described how his logic has been used in industry’s devel-
opment practice: proof and testing are mutually supportive
ways of accumulating evidence of the correctness of pro-
grams. Assertions sprinkled more or less liberally in the
program text, are used not to prove the programs, but rather
to help detect and diagnose programming errors. They are
evaluated at runtime during overnight tests, and indicate the
occurrence of any error as close as possible to the place in
the program where it actually occurred.

How to Use Quantum Hoare Logic? We can expect
that QHL will be applied in the same way in future quantum
software development. Recall from [37] that both partial and
total correctness:

|=par {P}S{Q}, |=tot {P}S{Q}

of a quantum program S are defined by an inequality between
the expectations tr(Pρ) and tr(QJSK(ρ)) of precondition and
postcondition observables P and Q in the input state ρ and
the output state JSK(ρ), respectively. The attractiveness of
QHL comes from its interpretation naturally derived from
quantum mechanics and a (relatively) complete axiomatisa-
tion. However, there is an obvious gap between its theoretical
characterization and practical use; in particular:

1. When combined with testing, even testing a single
atomic step: a large number of measurements are nee-
ded in order to achieve a good estimation of the expec-
tations tr(Pρ) and tr(QJSK(ρ)). Even worse, measure-
ments could destroy the state, and we cannot create
backup copies of a state in the middle of a quantum
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computation, which is prohibited by the quantum no-
cloning theorem.

2. Usually, complicated matrix calculations are involved
in applying the inference rules of QHL, especially the
loop rule for total correctness, where one needs to
compute a ranking function defined by two matrix
inequalities (see Definition 2.6). This is why up to now
only some simple quantum algorithms can be verified
in QHL (by hand).

3. In an attempt to verify a well-known quantum algo-
rithm for machine learning, namely qPCA (quantum
Principal Component Analysis) [25], we notice that a
quantum algorithm often outputs states that do not ex-
actly but only approximately satisfy the postcondition;
that is, they are very close to some states satisfying
the postcondition.

Contributions of the Paper: To circumvent the above
issues, we derive a variant of QHL, called applied quantum
Hoare logic (aQHL for short), as follows:

• Only a special class of Hermitian operators, namely
projections (or equivalently, closed subspaces of the
state Hilbert space), are used as preconditions and post-
conditions. This restriction allows us to significantly
simplify the inference rules for case statements and
loops and computation of ranking functions in QHL.
These simplifications enable us to verify some sophisti-
cated quantum algorithms; in particular a verification
of the famous HHL (Harrow-Hassidim-Lloyd) quan-
tum algorithms for solving systems of linear equations
[18] in aQHL is given in Section 5.

• In order to prove that the outputs of a quantum pro-
gram approximately satisfy a postcondition, we de-
velop several rules for reasoning about robustness of
quantum programs, i.e. error bounds of the outputs
of programs. Using these new rules, a verification of
quantum machine learning algorithm qPCA (quantum
Principal Component Analysis) in aQHL is presented
in Section 6.

In light of testing and debugging quantumprograms, aQHL
has one more advantage. In checking a quantum Hoare triple
{P}S{Q} with P and Q being projections, we don’t need to
calculate expectations tr(Pρ) and tr(QJSK(ρ)). Instead, we
only need to see whether the output state JSK(ρ) falls into the
subspace corresponding to postcondition Q once the input
state ρ is in the subspace corresponding to precondition P .
This is very similar to the case of checking a Hoare triple
for a classical program, and can be done in between two
consecutive atomic steps of the program, thus avoids the
first issue discussed above. Due to the limit of space, we
leave a more detailed discussion on applications of aQHL to
quantum program testing and debugging to a forthcoming
paper [41].

Organisation of the Paper: The remainder of this Intro-
duction is devoted to a discussion about related work. QHL
is briefly reviewed in Section 2. In Section 3, we derive a pro-
jective variant aQHL of QHL with simpler inference rules
and ranking functions than that of the original QHL. This
is achieved by following technical contributions: (1) identi-
fying the termination spaces of quantum programs; and (2)
proving two meta-rules (Lifting and reduction; Theorems 3.2
and 3.3) connecting QHL and aQHL. It is worth pointing out
that aQHL is (relatively) complete for projective precondi-
tions and postconditions. aQHL is expanded in Section 4 by
introducing rules for robustness reasoning. Their soundness
is proved there. Verifications of HHL and qPCA in aQHL are
presented in Sections 5 and 6, respectively. Proof details can
be found in the complete version of this paper.

1.1 Related Work and Comparison
The programming language equipped with aQHL is a re-
stricted version of quantum while-language in [37], where
themeasurement in a case statement or a loop is only allowed
to be a projective measurement. But such a restriction does
not really narrow aQHL’s extension of applications because
a general measurement can always be implemented by a
projective measurement together with a unitary transforma-
tion. On the other hand, the expressive power of correctness
formulas with projective preconditions and postconditions
in aQHL is strictly weaker than that of correctness formu-
las with general Hermitian operators as preconditions and
postconditions in QHL [37]. For current applications, this is
not a significant restriction because the majority of the ex-
isting quantum algorithms are derived from transformations
of pure states. If we directly use the original QHL to verify
these algorithms, the involved calculation would be much
more complicated, and sometimes even unmanageable by
hands.
Note that all projections in (or, closed subspaces of) a

Hilbert space form an orthomodular lattice [22], i.e. (the alge-
braic counterpart of) Birkhoff-von Neumann quantum logic
[8], and thus the power of quantum logic can be leveraged
in reasoning about quantum programs. The first attempt of
using quantum logic in reasoning about quantum programs
was made in [9]. Projections were also employed in [39]
to develop a predicate transformer semantics of quantum
programs. However, no inference rules presented in this pa-
per were derived in [9, 39]. Recently, Unruh [35] developed
a quantum relational Hoare logic (qRHL) using subspaces
as preconditions and postconditions, but qRHL aims at rea-
soning about equivalence between two quantum program
(and targets applications in security verification of quantum
cryptographic protocols) rather than correctness of quantum
programs.

Continuity and robustness of classical programs have been
systematically studied in [11, 12]. Robustness analysis of
quantum programs was first considered in [20]. However,
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both the motivation and approach in [20] are different from
that in this paper. The proof system developed in [20] is
mainly for reasoning about erroneous behaviour of (faulty
or noisy implementation of) quantum programs. Our proof
rules can be used to verify inexact quantum algorithms like
qPCA; in particular, it seems that the verification techniques
developed in [20] are unable to verify qPCA. However, the
notion of (a,n)-bounded quantum loop proposed in [20]
plays an essential role in our rules for robustness reasoning.

2 Quantum Hoare Logic
For convenience of the reader, we briefly review quantum
Hoare logic in this section; for more details we refer to [37,
38]. We assume a set Var of quantum variables.

Definition 2.1 (Syntax [37]). The quantumwhile-programs
are defined by the grammar:

S ::= skip | S1; S2 | q := |0⟩ | q := U [q] (1)
| if (□m ·M[q] =m → Sm) fi (2)
| whileM[q] = 1 do S od (3)

The program constructs defined above are explained as
follows. q := |0⟩ means that quantum variable q is initialised
in a basis state |0⟩. q := U [q] denotes that unitary transfor-
mation U is applied to a sequence q of quantum variables.
In the case statement if · · · fi, quantum measurement M is
performed on q and then a subprogram Sm is chosen for
next execution according to the measurement outcomem.
In the loop while · · · od, measurement M in the guard has
only two possible outcomes 0, 1: if the outcome is 0 the loop
terminates, and if the outcome is 1 it executes the loop body
S and enters the loop again.

For each program S , we write var(S) for its state Hilbert
space, i.e. the tensor product of the state Hilbert spaces of the
quantum variables occurring in S . We further write D(HS )

for the set of partial density operators, i.e. positive operators
with traces ≤ 1, inHS . A configuration is a pair C = ⟨S, ρ⟩
where S is a program or the termination symbol ↓, and ρ ∈

D(HS ) denotes the state of quantum variables.

Definition 2.2 (Operational Semantics [37]). The operational
semantics of quantum while-programs is defined as a transi-
tion relation→ by the transition rules in Figure 1.

Let us briefly explain the transitional rules in Figure 1.
Essentially, rules (In), (UT), (IF), (L0) and (L1) are determined
by the basic postulates of quantum mechanics. The state ρq0
in rule (In) is obtained by initialising quantum variable q to
basis state |0⟩ by leaving other quantum variables unchanged.
Such an initialisation can be realised by quantum operation
EI (ρ) =

∑
n |0⟩q ⟨n |ρ |n⟩q ⟨0| for all ρ. Unlike the classical case,

a quantum state over q and other variables in the register
may be entangled and therefore, only setting the state of
q being |0⟩q ⟨0| is not meaningful. In rule (UT) (and in the
sequel), † stands for the adjoint of an operator; in particular,

(Sk) ⟨skip, ρ⟩ → ⟨↓, ρ⟩

(In) ⟨q := |0⟩, ρ⟩ → ⟨↓, ρ
q
0 ⟩

(UT) ⟨q := U [q], ρ⟩ → ⟨↓,UρU †⟩

(SC)
⟨S1, ρ⟩ → ⟨S ′1, ρ

′⟩

⟨S1; S2, ρ⟩ → ⟨S ′1; S2, ρ ′⟩

(IF) ⟨if (□m ·M[q] =m → Sm) fi, ρ⟩ → ⟨Sm ,MmρM
†
m⟩

(L0) ⟨whileM[q] = 1 do S od, ρ⟩ → ⟨↓,M0ρM
†
0 ⟩

(L1) ⟨whileM[q] = 1 do S od, ρ⟩ →

⟨S ;whileM[q] = 1 do S od,M1ρM
†
1 ⟩

Figure 1. Transition Rules. In (In), ρq0 =
∑

n |0⟩q ⟨n |ρ |n⟩q ⟨0|.
In (SC), we make the convention ↓; S2 = S2. In (IF),m ranges
over every possible outcome of measurementM = {Mm}.

if the state Hilbert space finite dimensional, it denotes the
transpose and conjugate of a matrix. Rule (UT) is simply a
rewriting of the postulate for (discrete-time) dynamics of a
(closed) quantum system. Transitions in rules (IF), (L0) and
(L1) are essentially probabilistic; but we adopt a convention
from [33] to present them as a non-probabilistic transition.
For example, for eachm, the transition in (IF) happens with
probability pm = tr(M†Mmρ), and the program state ρ is
changed to ρm = MmρM

†
m/pm .We can combine probability

pm and density operator ρm into a partial density operator
MmρM

†
m = pmρm . This convention significantly simplifies

the presentation.

Definition 2.3 (Denotational Semantics [37]). For any quan-
tum while-program S , its semantic function is the mapping:

JSK : D(HS ) → D(HS )

defined by

JSK(ρ) =
∑

{|ρ ′ : ⟨S, ρ⟩ →∗ ⟨↓, ρ ′⟩|} (4)

for every ρ ∈ D(HS ), where→∗ is the reflexive and transitive
closure of →, and {| · |} denotes a multi-set.

Intuitively, for an input ρ, if for each k ≥ 0, program S
terminates at step k with probability qk and outputs density
operator σk , then with the convention above in mind it is
easy to see that JSK(ρ) =

∑∞
k=0 qkσk .

The properties of quantum program states are described
by a special class of observables, called quantum predicates
[13]. The Löwner order between operators is defined as fol-
lows:A ⊑ B if and only if B−A is positive. Then a quantum
predicate in a Hilbert spaceH is an observable (a Hermitian
operator) A in H with 0 ⊑ A ⊑ I , where 0 and I are the zero
operator and the identity operator in H , respectively.

Definition 2.4 (Hoare Triple [37]). A correctness formula
(or a Hoare triple) is a statement of the form: {A}S{B}, where
S is a quantum while-program, and both A,B are quantum
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predicates in HS , called the precondition and postcondition,
respectively.

For any operator A in state Hilbert spaceHS , its trace is
defined as tr(A) =

∑
i ⟨i |A|i⟩, where {|i⟩} is an orthonormal

basis of HS , and ⟨i | denotes the adjoint of |i⟩. In the special
case of dimHS < ∞, A can be seen as a matrix and tr(A) is
the sum of the entries on the diagonal of A.

Definition 2.5 (Correctness [37]). 1. The correctness for-
mula {A}S{B} is true in the sense of total correctness,
written: |=tot {A}S{B}, if for all ρ ∈ D(HS ) we have:

tr(Aρ) ≤ tr(BJSK(ρ)). (5)

2. The correctness formula {A}S{B} is true in the sense
of partial correctness, written: |=par {A}S{B}, if for all
ρ ∈ D(HS ) we have:

tr(Aρ) ≤ tr(BJSK(ρ)) + [tr(ρ) − tr(JSK(ρ))]. (6)

The defining inequalities (5) and (6) of total and partial
correctness can be easily understood by noting that the in-
terpretation of tr(Aρ) in physics is the expectation of observ-
able A in state ρ. More precisely, observable A determines a
measurement. We repeatedly perform this measurement on
quantum systems in the state ρ. Then each possible outcome
will be obtained with a certain probability. Then tr(Aρ) is the
(statistical) average value of the outcomes in the experiment.
Furthermore, tr(ρ) − tr(JSK(ρ)) is indeed the probability that
with input ρ program S does not terminate.

A Hoare-like logic for quantum while-programs was es-
tablished in [37]. The proof system qPD for partial correct-
ness is presented in Figure 2. Similar to the classical case, the
notion of ranking function is needed to guarantee termina-
tion.

(Ax.Sk) {A}skip{A}

(Ax.In)
{∑

n

|n⟩q ⟨0|A|0⟩q ⟨n |
}
q := |0⟩{A}

(Ax.UT) {U †AU }q := U [q] {A}

(R.SC)
{A}S1{B} {B}S2{C}

{A}S1; S2{C}

(R.IF)
{Am}Sm{B} for allm{ ∑

m M†
mAmMm

}
if (□m ·M[q] =m → Sm) fi{B}

(R.LP)
{A}S

{
M†

0BM0 +M
†
1AM1

}{
M†

0BM0 +M
†
1AM1

}
whileM[q] = 1 do S od{B}

(R.Or)
A ⊑ A′ {A′}S{B′} B′ ⊑ B

{A}S{B}

Figure 2. Proof System qPD.

Definition 2.6 (Ranking functions [37]). Consider quantum
loop:

while ≡ whileM[q] = 1 do S od.
LetA be a quantum predicate inHwhile and real number ϵ > 0.
A function

t : D(Hwhile) → N (nonnegative integers)
is called a (A, ϵ)-ranking function of while if it satisfies the
following two conditions: for all ρ ∈ D(Hwhile),

1. t
(
JSK

(
M1ρM

†
1

))
≤ t(ρ); and

2. tr (Aρ) ≥ ϵ implies t
(
JSK

(
M1ρM

†
1

))
< t(ρ).

The proof system qTD for total correctness is obtained
from qPD by replacing rule (R.LP) with (R.LT) in Figure 3.

(R.LT)

• {A}S{M†
0BM0 +M

†
1AM1}

• for any ϵ > 0, tϵ is a (M†
1AM1, ϵ)-ranking

function of while

{M†
0BM0 +M

†
1AM1}whileM[q] = 1 do S od{B}

Figure 3. Proof System qTD.

The soundness and (relative) completeness of both qPD
and qTD were proved in [37].

Theorem 2.1 (Soundness and Completeness [37]). For any
quantum program S , and for any quantum predicates A,B:

|=par {A}S{B} ⇔ ⊢qPD {A}S{B},

|=tot {A}S{B} ⇔ ⊢qTD {A}S{B}.

3 Reasoning about Projective Hoare
Triples

Now we start to develop a variant aQHL (applied Quantum
Hoare Logic) of QHL (Quantum Hoare Logic) presented in
the above section.

3.1 Projective Measurement
Tomotivate this variant, let us consider a special kind of mea-
surement in quantum physics. A projective measurement on
a system with state Hilbert space H is described by a col-
lection {Pm} of projections over H satisfying

∑
m Pm = IH ,

where indexm stands for the measurement outcomes that
may occur in the experiment. If the state of a quantum
system was ρ immediately before the measurement is per-
formed on it, then the probability that outcomem occurs is
pm = tr(Pmρ), and the state of the system after the measure-
ment is ρm = PmρP

†
m/pm . Actually, a general measurement

can always be implemented by a projective measurement to-
gether with a unitary transformation if an ancillary system is
allowed. This fact enables us to restrict all the measurement
in a program being projective. For example, in the circuit
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model of quantum computation, measurement are usually
assumed to be in the computational basis, a special kind of
projective measurement.

For a mixed state (density operator) ρ, its support supp(ρ)
is defined as the (topological) closure of the subspace spanned
by the eigenvectors of ρ with nonzero eigenvalues. It is easy
to see that supp(ρ) = {|φ⟩ ∈ H : ⟨φ |ρ |φ⟩ = 0}⊥, where ⊥

stands for ortho-complement. An important fact of projec-
tive measurements is that, given a state ρ and projection
P such that supp(ρ) ⊆ P , if we apply the (yes/no) projec-
tive measurement {P , I − P} on ρ, the state is not changed.
This enables us to check projective Hoare triple between
two consecutive atomic steps of a program in testing and
debugging.

3.2 Termination Space
Let us first consider termination problem of quantum pro-
grams. The interpretation of tr(ρ) − tr(JPK(ρ)) given after
Definition 2.5 directly leads to the following:

Definition 3.1. We say that a quantum program S with input
state ρ almost surely terminates if tr(JSK(ρ)) = tr(ρ).

The next theorem gives a characterisation of termination:

Theorem 3.1. For any quantum program S , there exists a
closed subspace T[S ] such that for any ρ:

• S with input ρ almost surely terminate if and only if
supp(ρ) ⊆ T[S ].

Proof. Suppose that the semantic function of S has the Kraus
operator-sum representation: JSK(ρ) =

∑
i EiρE

†
i . Then for

any ρ ∈ D(HS ),

tr(JSK(ρ)) = tr
(∑

i

EiρE
†
i
)
= tr

(
ρ
∑
i

E†i Ei
)
.

Now we have:
tr(ρ) − tr(JSK(ρ)) = tr

(
ρ
(
IHS −

∑
i

E†i Ei
) )

where IHS is the identity operator onH . Therefore, tr(JSK(ρ))
= tr(ρ) if and only if ρ is orthogonal to the positive semi-
definite operator IHS −

∑
E†i Ei . Define closed subspace

T[S ] =
(
IH −

∑
i

E†i Ei
)⊥
=

{
|φ⟩ :

(
IH −

∑
i

E†i Ei
)
|φ⟩ = 0

}
.

We can observe thatT[S ] satisfies the wanted conditions. □

The subspace T[S ] in the above theorem is called the ter-
mination space of program S .
For a finite-dimensional state Hilbert space, we have an

algorithm to compute the termination space. To present it,
we need the following simple generalisation of Theorem 3.1:

Proposition 3.1. For any quantum program S and quantum
operation (super-operator) E1, there exists a closed subspace
Q(S, E1) such that for any ρ:

lim
n→∞

tr((JSK ◦ E1)
n(ρ)) = 0 iff supp(ρ) ⊆ Q(S, E1).

It is easy to see that T[while] = Q(S, E1) for quantum loop

while ≡ whileM[q] = 1 do S od,

where quantum operation: E1(σ ) = M1σM
†
1 for all σ . For

simplicity, assume that JSK is trace preserving. We notice:

lim
n→∞

tr((JSK ◦ E1)
n(ρ)) = lim

n→∞
tr((E∗

1 ◦ JSK∗)n(I )ρ),

where I is the identity operator and ∗ stands for dual opera-
tion. Then it is routine to check that sequence{

(E∗
1 ◦ JSK∗)n(I )

}
of bounded operators is non-increasing with the Löwner or-
der. On the other hand, the Löwner partial order in a separa-
ble Hilbert space is complete. Thus, this sequence converges
to a bounded positive semi-definite operator, call it R. In
particular, if the state Hilbert space is finite-dimensional, R
can be calculated using Jordan decomposition. Furthermore,
we have: T[while] = Q(S, E1) = R⊥.

3.3 Correctness of Projective Hoare Triples
From now on, we only consider a special class of quantum
Hoare triples {P}S{Q}, where both precondition P and post-
condition Q are projections, and all measurements in pro-
gram S are projective.

There is a one-to-one correspondence between the closed
subspaces of a Hilbert space and projectors in it, and more-
over, the inclusion between closed subspaces is coincident
with the Löwner order between their projectors. So, we will
not distinguish a closed subspace from the projection onto it.
We write S(H) for the set of all closed subspaces of Hilbert
spaceH . Furthermore, let ⊥ stands for the orthocomplement,
and for any P ,Q , we define:

P ∧Q = P ∩Q, P ∨Q = span(P ∪Q)

where T stands for the closure of T and span(T ) for the
subspace spanned byT . It is well-known that (S(H),∧,∨,⊥ )

is an orthomodular lattice (or quantum logic) [8, 22], with
inclusion ⊆ as its order.

The restriction to projective Hoare triples can significantly
simplify the definition of their correctness.

Definition 3.2. Let P ∈ S(H) and ρ ∈ D(H). We say that
ρ satisfies P , written ρ |= P , if supp(ρ) ⊆ P ; that is, Pρ = ρ .

Definition 3.3. 1. Projective Hoare triple {P}S{Q} is true
in the sense of partial correctness in aQHL, written: |=a

par
{P}S{Q}, if for all ρ:

ρ |= P ⇒ JSK(ρ) |= Q .

2. {P}S{Q} is true in the sense of total correctness in aQHL,
written: |=a

tot {P}S{Q}, if for all ρ:

ρ |= P ⇒ JSK(ρ) |= Q & supp(ρ) ⊆ T[S ].

Several simple properties of partial and total correctness in
aQHL can be immediately derived from the above definition.
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Proposition 3.2.
1. |=a

tot {P}S{Q} iff |=a
par {P}S{Q} & P ⊆ T[S ]. Moreover,

if |=a
par {P}S{Q}, then |=a

tot {P ∧T[S ]}S{Q}.
2. if |=a

par {Pi }S{Qi } (i = 1, 2), then

|=a
par {P1 ∨ P2}S{Q1 ∨Q2}, |=

a
par {P1 ∧ P2}S{Q1 ∧Q2}.

The same holds for total correctness.

3.4 Lifting and Reduction
Now we consider the relationship between partial and total
correctness |=par, |=tot in QHL and |=a

par, |=
a
tot in aQHL. First

of all, correctness in aQHL can be lifted to QHL:

Theorem 3.2 (Lifting Principle). For any P ,Q ∈ S(H):
1. if |=a

par {P}S{Q}, then |=par {P}S{Q};
2. if |=a

tot {P}S{Q}, then |=tot {P}S{Q}.

Proof. The semantics JSK of a quantum program S is a quan-
tum operation (or super-operator) E ([38], Proposition 3.3.5).
We use E∗ to denote the dual map of E. Note that for any
operator A with 0H ⊑ A ⊑ IH , we have: 0H ⊑ E∗(A) ⊑ IH ,
where 0H and IH are the zero and identity operator on the
state Hilbert space H .
1. Assume that |=a

par {P}S{Q}. Then for any ρ ∈ D(H)

such that ρ |= P , we have JSK(ρ) |= Q , or equivalently,

∀ ρ, tr(P⊥ρ) = 0 ⇒ tr(Q⊥E(ρ)) = 0.

Furthermore, we obtain:

∀ ρ, tr(P⊥ρ) = 0 ⇒ tr(Q⊥E(ρ)) = 0
=⇒ supp(E∗(Q⊥)) ⊆ supp(P⊥)

=⇒ E∗(IH −Q) ⊑ IH − P

=⇒ ∀ ρ, tr((IH −Q)E(ρ)) ≤ tr((IH − P)ρ)

=⇒ ∀ ρ, tr(Pρ) ≤ tr(QJSK(ρ)) + tr(ρ) − tr(JSK(ρ))
=⇒ |=par {P}S{Q}.

2. Assume that |=a
tot {P}S{Q}. Then for any ρ |= P , we

have JSK(ρ) |= Q and tr(ρ) = tr(JSK(ρ)). Consequently,
it holds that tr(ρ) = tr(QJSK(ρ)), or equivalently, tr(ρ) =
tr(E∗(Q)ρ). In other words, for any |ψ ⟩ ∈ P , we have

⟨ψ |E∗(Q)|ψ ⟩ = ⟨ψ |ψ ⟩.

Note the fact that 0H ⊑ E∗(Q) ⊑ IH . We now prove the
following:

Claim: For any |ϕ⟩ ∈ P⊥, ⟨ψ |E∗(Q)|ϕ⟩ = 0.
If the claim is not true, without any loss of generality, we

can suppose that |ψ ⟩ and |ϕ⟩ are unit vectors and

⟨ψ |E∗(Q)|ϕ⟩ = x > 0, ⟨ϕ |E∗(Q)|ϕ⟩ = y ≥ 0.

We restrict our attention to the closed subspace span{|ψ ⟩, |ϕ⟩},
and note that |ψ ⟩ ⊥ |ϕ⟩. Then in the basis B = {|ψ ⟩, |ϕ⟩},

E∗(Q) has the form:
(

1 x
x̄ y

)
, which has two eigenvalues:

λ1, λ2 =
y + 1 ±

√
(1 − y)2 + 4|x |2

2
.

As 0H ⊑ E∗(Q) ⊑ IH , we must have 0 ≤ y ≤ 1 and
0 ≤ λ1, λ2 ≤ 1, and therefore |x | = 0, which leads to a
contradiction. Now, for any state |φ⟩, we can always write it
as |φ⟩ = |ψ ⟩ + |ϕ⟩, where |ψ ⟩ ∈ P and |ϕ⟩ ∈ P⊥, and then:

⟨φ |E∗(Q)−P |φ⟩ = (⟨ψ | + ⟨ϕ |)(E∗(Q) − P)(|ψ ⟩ + |ϕ⟩)

= ⟨ψ |E∗(Q)|ψ ⟩ + ⟨ψ |E∗(Q)|ϕ⟩ + ⟨ϕ |E∗(Q)|ψ ⟩

+ ⟨ϕ |E∗(Q)|ϕ⟩ − ⟨ψ |P |ϕ⟩

= ⟨ψ |ψ ⟩ + 0 + 0 + ⟨ϕ |E∗(Q)|ϕ⟩ − ⟨ψ |ψ ⟩

= ⟨ϕ |E∗(Q)|ϕ⟩ ≥ 0.

This implies that 0 ⊑ E∗(Q) − P , or P ⊑ E∗(Q). Therefore,
for any ρ ∈ D(H), we have:

tr(Pρ) ≤ tr(E∗(Q)ρ) = tr(QE(ρ)) = tr(QJSK(ρ)),

which means that |=tot {P}S{Q}. □

To see how QHL can be partially reduced to aQHL, for
any positive semi-definite operator A, we write E(A) for
the eigenspace of A with eigenvalue 1: E(A) = {|ψ ⟩ ∈ H :
A|ψ ⟩ = |ψ ⟩}. Obviously, E(A) ⊑ A, and if A itself is a projec-
tor, then E(A) = A. Then we have the following:

Theorem 3.3 (Reduction Principle). For any quantum pred-
icate P ,Q and program S :

1. if |=par {P}S{Q}, then |=a
par {E(P)}S{E(Q)};

2. if |=tot {P}S{Q}, then |=a
tot {E(P)}S{E(Q)}.

Proof. 1. If |=par {P}S{Q}, then for any ρ |= E(P), we have
tr(Pρ) = tr(ρ). So, from the definition of |=par, we have:

tr(Pρ) ≤ tr(QJSK(ρ)) + tr(ρ) − tr(JSK(ρ))
=⇒ tr(JSK(ρ)) ≤ tr(QJSK(ρ))
=⇒ JSK(ρ) |= E(Q)

which yields |=a
par {E(P)}S{E(Q)}

2. If |=tot {P}S{Q}, then for any ρ |= E(P), we have
tr(Pρ) = tr(ρ). Therefore:

tr(ρ) = tr(Pρ) ≤ tr(QJSK(ρ)) ≤ tr(JSK(ρ)) ≤ tr(ρ), (7)

Thus, all ≤’s in equation (7) are saturated, and it holds that
JSK(ρ) |= E(Q) and tr(JSK(ρ)) = tr(ρ), which is exactly |=a

tot
{E(P)}S{E(Q)}. □

3.5 Proof System
The lifting and reduction rules proved in the last subsection
(Theorems 3.2 and 3.3) can help us to obtain a proof system
qPD-a for partial correctness and qTD-a for total correctness
in aQHL simpler than that for QHL presented in Section 2.

3.5.1 Proof System for Partial Correctness
The system qPD-a consists of (Ax.Sk), (Ax.UT), (R.SC) and
(R.Or) in Figure 2 (restricted to projective Hoare triples) to-
gether with (Ax.In-a), (R.IF-a) and (R.LP-a) in Figure 4, which
are simplified from (Ax.In), (R.IF) and (R.LP) in QHL.
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(Ax.In-a)
{
Iq ⊗ ⌈Q⌉

}
q := |0⟩{Q} (R.IF-a)

{Pm} Sm{Q} for allm{∨
m(Mm ∧ Pm)

}
if (□m ·M[q] =m → Sm) fi{Q}

(R.LP-a)
{P}S{(M0 ∧Q) ∨ (M1 ∧ P)}

{(M0 ∧Q) ∨ (M1 ∧ P)}whileM[q] = 1 do S od{Q}
(R-LT-a)

{P}S{(M0 ∧Q) ∨ (M1 ∧ P)}
for all ϵ > 0, tϵ is a ((M0 ∧Q) ∨ (M1 ∧ P), ϵ)-ranking

function of loop while

{(M0 ∧Q) ∨ (M1 ∧ P)}whileM[q] = 1 do S od{Q}

Figure 4. Simplified Axioms and Inference Rules. In (Ax.In-a), ⌈Q⌉ =
∨
{ closed subspaces T : |0⟩⟨0|q ⊗ T ⊆ Q}

3.5.2 Proof System for Total Correctness
The definition of ranking functions can also be significantly
simplified. For any ρ ∈ D(H) andM ∈ S(H), we write ρ |M
for the restriction of ρ onM : ρ |M = MρM .

Definition 3.4. Let quantum loop while ≡ while M[q] =
1 do S od,Q ∈ S(Hwhile) and ϵ > 0. A function t : D(Hwhile)

7→ N is called a (Q, ϵ)-ranking function of while if for all ρ
with ρ |= Q :

1. JSK(ρ |M1 ) |= Q ;
2. t(JSK(ρ |M1 )) ≤ t(ρ); and
3. tr(ρ) ≥ ϵ implies t(JSK(ρ |M1 )) < t(ρ)

It is worth comparing the above definition with the origi-
nal definition of ranking functions (Definition 2.6). First, the
conditions in the above definition are simpler than those in
Definition 2.6. More importantly, the conditions in Defini-
tion 2.6 must be satisfied for all ρ ∈ D(H), but in the above
definition, we only need to check the conditions for inputs
ρ within Q , which might be much smaller than the whole
state Hilbert space. As will be seen in verification of the
HHL algorithm, this simplification makes finding a ranking
function much easier, especially when the semantic function
is difficult to represent for general inputs but is simple for
those ρ |= Q .

The system qTD-a is then obtained from qPD-a by replac-
ing rule (R.LP-a) by (R.LT-a), which is also given in Figure 4.
We write ⊢a

qPD and ⊢a
qTD for provability in qPD-a and qTD-a,

respectively.

3.5.3 Soundness and Completeness
The soundness and (relative) completeness for qPD-a and
qTD-a are then established in the following:
Theorem 3.4 (Soundness and Completeness). For any pro-
jective Hoare triples {P}S{Q}:

|=a
par {P}S{Q} ⇔ ⊢a

qPD {P}S{Q}.

|=a
tot {P}S{Q} ⇔ ⊢a

qTD {P}S{Q}.

Proof. This theorem can be derived from Theorem 2.1 using
Theorems 3.2 and 3.3. □

It is interesting to compare the above theorem and Theo-
rem 2.1: aQHL also enjoys (relative) completeness. In practi-
cal, when only projective preconditions and postconditions

are allowed, e.g., in testing and debugging, aQHL is sufficient
for use without the need for more complex rules of QHL.

4 Rules for Robustness Reasoning
In the last section, we provided a way to simplify proof
rules and ranking functions in QHL so that QHL can be
used to verify some larger programs. In this section, we
increase applicability of QHL in a different direction. The
proof systems given in the last section can be applied very
well in reasoning about exact quantum algorithms: on any
input data, they output the correct answer with certainty
(probability 1) (see for example, [5, 26]). To make it also
applicable to inexact quantum algorithms, we extend aQHL
with several rules for reasoning about robustness of quantum
programs.
For robustness reasoning, we always desire that the out-

come ρ of a program is close to the ideal result ρI ; that is, the
distance between ρ and ρI ≤ ϵ for some error bound ϵ , for
example tr|ρ − ρI | ≤ ϵ using trace norm. It seems that such
a condition cannot be expressed as a Hermitian operator in
the original QHL. So, we introduce a notion of approximate
satisfaction.

4.1 Approximate Satisfaction
Let us first introduce several notations. For any states σ ∈

D(H), we define the ball with centre σ and radius ϵ as:

B(σ , ϵ) = {ρ ∈ D(H) : tr(ρ) = tr(σ ),D(ρ,σ ) ≤ ϵ}

where D(ρ,σ ) = 1
2 tr|ρ − σ | is the trace distance between

ρ and σ . We can further define the distance between two
subspace P ,Q as follows:

D(P ,Q) = sup
ρ |=P

inf
σ |=Q

D(ρ,σ ),

where ρ and σ range over all density operators.

Definition 4.1. Let P ∈ S(H) be a projection in (or a closed
subspace of) H and ϵ ≥ 0. We define convex set:

(P , ϵ) :=
⋃
σ |=P

B(σ , ϵ) = {ρ ∈ D(H) : ∃ σ |= P s.t.

tr(ρ) = tr(σ ) and D(ρ,σ ) ≤ ϵ}.

It is easy to see that inclusion relation ⊆ is a partial or-
der over set S = {(P , ϵ) : 0H ⊏ P ⊏ IH , 0 ≤ ϵ < 1} ∪
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{(0H , 0), (IH , 1)}. In particular, for any (P , ϵ), (Q,δ ) ∈ S ,
(P , ϵ) = (Q,δ ) if and only if P = Q, ϵ = δ .
Now we are ready to introduce a key notion of approxi-

mate satisfaction in this section:

Definition 4.2. We say state ρ approximately satisfies (pro-
jective) predicate P with error parameter ϵ , written: ρ |=ϵ P , if
ρ ∈ (P , ϵ), i.e., there exists a σ with the same trace that σ |= P
and D(ρ,σ ) ≤ ϵ .

4.2 Robust (Projective) Hoare Triples
With the preparation in the above subsection, we can define
the notion of robust Hoare triple and its truth:

Definition 4.3. 1. A robust (projective) Hoare triple is a
formula of the form: {(P , ϵ)}S{(Q,δ )}, where P ,Q are
projections, S is a program, and 0 ≤ ϵ,δ < 1.

2. {(P , ϵ)}S{(Q,δ )} is true, written: |=rt {(P , ϵ)}S{(Q,δ )},
if for all ρ ∈ D(H):

ρ |=ϵ P ⇒ JSK(ρ) |=δ Q .

Note that predicates P ,Q in Definitions 4.1, 4.2 and 4.3 are
all projective. Indeed, it is not clear how to define a notion
similar to Definition 4.1 for a general Hermitian operator. So,
in the next subsection, we are only able to extend projective
QHL (rather than the original QHL with general Hermitian
operators) for robustness reasoning.

4.3 Inference Rules
To present our rule for reasoning about robust Hoare triples,
we need some very technical preparations. First, let recall a
definition from [20].

Definition 4.4 (Bounded Loops [20]). Let 0 ≤ a ≤ 1 and
integer n ≥ 1. Quantum loop whileM[q] = 1 do S od is said
to be (a,n)-bounded if (E∗)n(M†

1M1) ⊑ aM†
1M1, where linear

map E is defined by E(ρ) := JSK(M1ρM
†
1 ) for all ρ, and E∗ is

the dual of E.

The next definition also requires the notion of quantum
program schemes, which can be defined as usual by adding
procedure identifiers, ranged over by X ,Y ,Z , ..., to the syn-
tax of quantum while-programs.

Definition 4.5. Let X be a procedure identifier and S a pro-
gram scheme. Then the counter Count(S,X ) of X in C is de-
fined by induction as follows:

1. if S ≡ X , then Count(S,X ) = 1;
2. if S ≡ skip, S ≡ q := |0⟩ or S ≡ q := U [q], then

Count(S,X ) = 0;
3. if S ≡ S1; S2, then Count(S,X ) = Count(S1,X )+Count

(S2,X );
4. if S ≡ if (□m ·M[q] =m → Sm) fi, then Count(S,X ) =

maxm Count(Sm ,X );
5. if S ≡ whileM[q] = 1 do S ′ od and S is (a,n)-bounded,

then Count(S,X ) = n
1−a Count(S ′,X ).

(R.We)
{(P , ϵ)}S{(Q,δ )} θ ≥ 0
{(P , ϵ + θ )}S{(Q,δ + θ )}

(R.No)

{(P , ϵ)}S{(Q,δ )}

∥JX K − JY K∥⋄ ≤ θ Count(S,X ) ≤ n

{(P , ϵ)}S[Y/X ]{(Q,δ + nθ )}

(R.SN)
{(P , ϵ)}S1{(Q,δ )} {(Q,δ )}S2{(R,θ )}

{(P , ϵ)}S1; S2{(R,θ )}

(R.ON)

{(P ′, ϵ ′)}S{(Q ′,δ ′)}

(P , ϵ) ⊆ (P ′, ϵ ′) (Q ′,δ ′) ⊆ (Q,δ )

{(P , ϵ)}S{(Q,δ ))}

Figure 5. Inference Rules for Robust Reasoning. In rule
(R.No), ∥JX K − JY K∥⋄ is the diamond norm between the se-
mantic functions JX K and JY K, and S[Y/X] stands for the
program scheme obtained by substituting all occurrences of
X in S with Y .

Intuitively, Count(S,X) is used to count the number of calls
of subprogram X in the whole program S .

Now, we are able to build a proof system qR for robustness
reasoning. The system qR consists of all axioms and inference
rules of aQHL presented in the last section together with
the rules (R.We), (R.No), (R.SN) and (R.ON) in Figure 5. Some
of these rules deserve careful explanations. Note that ρ |=

P iff ρ ∈ (P , 0) iff ρ |=0 P . So, we can make the convention
P = (P , 0). When ϵ and δ are chosen to be 0, then a special
case of rule (R.We) is:

{P}S{Q} θ ≥ 0
{(P ,θ )}S{(Q,θ )}

Thus, the proof system for projective Hoare triples can be
embedded into that for robust Hoare triples. The diamond
distance in rule (R.No) is widely used in quantum computa-
tion and quantum information science and defined as follows:
for any two quantum operations E and F on Hilbert space
H ,

∥E − F ∥⋄ = sup
ρ

D
(
(E ⊗ IH′)(ρ), (F ⊗ IH′)(ρ)

)
where IH′ is the identity operation on H ′, the supremum
is taken over all separable Hilbert space H ′, and density
operator ρ is chosen from D(H ⊗ H ′).

We present soundness of the proof system for robustness
reasoning as the following:

Theorem 4.1. (Soundness) The proof system for robustness
reasoning is sound for terminating quantum programs: for any
terminating quantum program S , projective quantum predi-
cates P ,Q ∈ S(Hall) and ϵ, ε ≥ 0, we have:

⊢qR {(P , ϵ)}S{(Q,δ )} implies |=rt {(P , ϵ)}S{(Q,δ )}.
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Proof. As usual, it suffices to prove soundness of the rules in
Figure 5. But the calculation in the proof; in particular for
rule (R.NO), is very involved. □

5 Verification of the HHL Algorithm
The purpose of this and the next section is to show the
effectiveness of the proof systems presented in previous
sections by employing them to verify the correctness of
two major quantum algorithms that form the cornerstone of
quantum machine learning.
In this section, we give a verification of quantum algo-

rithm for linear systems of equations (known as the HHL
algorithm, named after Harrow, Hassidim and Lloyd) [18],
using the proof systems qPD-a and qTD-a established in
Section 3. Solving linear systems of equations is a fundamen-
tal problem in almost all fields of science: given a matrix A
and a vector ®b, find a vector ®x such that A®x = ®b . The HHL
algorithm [18] was proposed for solving linear systems by
providing a state |x⟩ corresponding to ®x rather than give a
classical characterisation of ®x . When A is sparse and has a
low condition number κ, then the algorithm has a runtime
of O(log(N )κ2) where N is the number of linear equations,
which offers an exponential speedup over the fastest classical
algorithm.

5.1 The HHL Algorithm
To simplify the presentation, let us assume A is Hermitian
and full-rank with dimension N = 2m and therefore it is pos-
sible to apply the transform eıAt0 for a given time t0. Then A
is diagonalizable with the form A =

∑N
j=1 λj |uj ⟩⟨uj |, where

λj and |uj ⟩ are the corresponding eigenvalues and eigen-
vectors. To make the algorithm exact, we presume that, for
all 0 ≤ j ≤ N , λjt0 is a multiple of 2π : δ j =

λj t0
2π ∈ N+.

We also suppose that the input vector ®b can be prepared
efficiently; that is, there is a unitary operatorUb which can
efficiently transform |0⟩ into: |b⟩ =

∑N
i=1 bi |i⟩. The scale

of ®b is not essential as we only care about the solution ®x
up to some unimportant scale factor. Thus we can assume∑N

i=1 |bi |
2 = 1, and |b⟩ is a unit vector. Moreover, |b⟩ can al-

ways be written as a linear combination of |uj ⟩ with complex
numbers βj : |b⟩ =

∑N
j=1 βj |uj ⟩. The phase estimation algo-

rithm is employed and a control system is needed. We chose
a proper dimension T of the control system, T = 2n where
n = ⌈maxj δ j ⌉, which ensures that the phase estimation suc-
ceed with probability 1 if the initial state of control system
is |0⟩⊗n . Actually, the original HHL algorithm uses a more
complex initial state of control system, which minimize a
certain quadratic loss function. But as we only want to show
the key ideas of the algorithm, a simpler state |0⟩⊗n is used
as it can make the algorithm output an exact solution state
under the assumption of A and t0 stated above. Given the
above A and |b⟩, it is easy to calculate the solution for the

p := |0⟩⊗n ;
q := |0⟩⊗m ;
r := |0⟩;
whileM[r ] = 1 do D od

Figure 6. HHL – quantum algorithm for linear systems of
equations.

q := |0⟩⊗m ;
q := Ub [q];
p := H ⊗n[p];
p,q := Uf [p,q];

p := QFT−1[p];
p, r := Uc [p, r ];
p := QFT[p];

p,q := U †

f [p,q];

p := H ⊗n[p]

Figure 7. Loop body D in HHL algorithm.

linear equation A|x⟩ = |b⟩:

|x⟩ = c
N∑
j=1

βj

λj
|uj ⟩,

up to some unimportant scale factor where c is only used to
normalize |x⟩.

5.2 Program HHL
The HHL algorithm can be written as a quantum program in
the quantumwhile-language defined in Section 3; see Figure
6. The register p is an n-qubit system with 2n = T , which is
used as a control system in the phase estimation step, while
q is an m-qubit system which stores the vector b, in the
sense of a corresponding quantum state |b⟩ =

∑
i bi |i⟩. The

last register r is an one qubit system and it is the indicator
of the while loop. The measurement M = {M0,M1} in the
loop is the simplest “yes-no" measurement:M0 = |1⟩r ⟨1| and
M1 = |0⟩r ⟨0|. The loop body D in Figure 6 is displayed in
Figure 7. The unitary operatorUb is a given operator which
generates the input vector b; that is,

Ub |0⟩⊗m = |b⟩ =
N∑
i=1

bi |i⟩.
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Uf is a controlled unitary operator whose control system is
p and target system is q; more precisely,

Uf =

T−1∑
τ=0

|τ ⟩p ⟨τ | ⊗ eıAτ t0/T .

QFT and QFT−1 are the quantum Fourier transform and the
inverse quantum Fourier transform applied to the control
register p; more precisely

QFT : |k⟩ 7→
1
√
T

T−1∑
τ=0

e2πıτ k/T |τ ⟩, k = 0, 1, · · · ,T − 1,

QFT−1 : |k⟩ 7→
1
√
T

T−1∑
τ=0

e−2πıτ k/T |τ ⟩, k = 0, 1, · · · ,T − 1.

Uc is a controlled unitary which operates on the control
register p and target register r . Formally,Uc is the transform
with some proper parameter C:

Uc : |0⟩p |0⟩r 7→ |0⟩p |0⟩r

|i⟩p |0⟩r 7→ |i⟩p

(√
1 −

C2

i2
|0⟩r +

C

i
|1⟩r

)
1 ≤ i ≤ T − 1

5.3 Partial Correctness
Now the partial correctness of program HHL can be stated
as the following projective Hoare triple:

|=a
par {Ip ⊗ Iq ⊗ Ir }HHL{|0⟩p ⟨0| ⊗ |x⟩q ⟨x | ⊗ |1⟩r ⟨1|}, (8)

in the sense that for any possible input state, the output
of the program is always |0⟩p |x⟩q |1⟩r , where the state of
register q is the desired solution and not entangled with
other registers.

Before proving (8), let us first derive:

⊢a
qPD {|0⟩p ⟨0| ⊗ Iq ⊗ |0⟩r ⟨0|}D

{|0⟩p ⟨0| ⊗ (|x⟩q ⟨x | ⊗ |1⟩r ⟨1| + Iq ⊗ |0⟩r ⟨0|)},

for the loop body D in Figure 7. For simplicity, we use fol-
lowing notations:

P = |0⟩p ⟨0| ⊗ Iq ⊗ |0⟩r ⟨0|;
Q = |0⟩p ⟨0| ⊗ |x⟩q ⟨x | ⊗ |1⟩r ⟨1|;
R = |0⟩p ⟨0| ⊗ (|x⟩q ⟨x | ⊗ |1⟩r ⟨1| + Iq ⊗ |0⟩r ⟨0|);

|vj ⟩r =

√
1 −

C2

δ 2
j
|0⟩r +

C

δ j
|1⟩r , for 1 ≤ j ≤ N

Using the (Ax.In-a), (Ax.UT) and (R.SC), we have:

⊢a
qPD

{
P
}
D

{
|0⟩p ⟨0| ⊗

[ N∑
j, j′=1

(βj |uj ⟩q |vj ⟩r )(β̄j′q ⟨uj′ |r ⟨vj′ |)

]}
Moreover, we can also relate the post predicate in the above
equation to R. To do this, we first write the explicit form of

the state
N∑
j=1

βj |uj ⟩q |vj ⟩r =
N∑
j=1

βj |uj ⟩q

(√
1 −

C2

δ 2
j
|0⟩r +

C

δ j
|1⟩r

)
=

N∑
j=1

c1 |x⟩q |1⟩r +
N∑
j=1

βj

√
1 −

C2

δ 2
j
|uj ⟩q |0⟩r

where c1 is some constant. Note that |x⟩q |1⟩r ∈ |x⟩q ⟨x | ⊗
|1⟩r ⟨1| and

N∑
j=1

βj

√
1 −

C2

δ 2
j
|uj ⟩q |0⟩r ∈ Iq ⊗ |0⟩r ⟨0|,

and two subspaces |x⟩q ⟨x | ⊗ |1⟩r ⟨1| and Iq ⊗ |0⟩r ⟨0| are
orthogonal. Then

∑N
j=1 βj |uj ⟩q |vj ⟩r is in the subspace of

|x⟩q ⟨x | ⊗ |1⟩r ⟨1| + Iq ⊗ |0⟩r ⟨0|. So, we have:

|0⟩p ⟨0| ⊗
[ N∑
j, j′=1

(βj |uj ⟩q |vj ⟩r )(β̄j′q ⟨uj′ |r ⟨vj′ |)

]
⊑ |0⟩p ⟨0| ⊗ (|x⟩q ⟨x | ⊗ |1⟩r ⟨1| + Iq ⊗ |0⟩r ⟨0|) = R, (9)

and using rule (R.Or), we obtain: ⊢a
qPD {P}D{R}. Because

R = (M0 ∧Q) ∨ (M1 ∧ P), we can further apply (R.LP-a) to
conclude:

⊢a
qPD {R}whileM[r ] = 1 do D od {Q}

The following is immediate from (Ax.In-a) and (R.SC):

⊢a
qPD {Ip ⊗ Iq ⊗ Ir }p := |0⟩⊗n ;q := |0⟩⊗m ; r := |0⟩

{|0⟩p ⟨0| ⊗ |0⟩q ⟨0| ⊗ |0⟩r ⟨0|},

and using (R.Or) yields:

⊢a
qPD {Ip ⊗ Iq ⊗ Ir }p := |0⟩⊗n ;q := |0⟩⊗m ; r := |0⟩ {R},

as |0⟩p ⟨0| ⊗ |0⟩q ⟨0| ⊗ |0⟩r ⟨0| ⊑ R. Now, it follows that

⊢a
qPD {Ip ⊗ Iq ⊗ Ir }HHL{Q},

and we complete the proof of partial correctness.

5.4 Total Correctness
We can further prove the total correctness of HHL:

|=a
tot {Ip ⊗ Iq ⊗ Ir }HHL{|0⟩p ⟨0| ⊗ |x⟩q ⟨x | ⊗ |1⟩r ⟨1|}.

which implies that, for any input state, HHL terminates
and the state stored in the register q of the output is the
desired solution state |x⟩. Actually, we only need to show
the existence of (R, ϵ)-ranking function of quantum loop:
while ≡ whileM[r ] = 1 do D od for any ϵ > 0. Here, we
adopt the simplified definition of ranking function for aQHL
(Definition 3.4). If we use the original definition of ranking
function (Definition 2.6), the calculation will be much more
complicated. Let us first define a constant c2 ∈ (0, 1):

c2 =

N∑
j=1

βj β̄j

(
1 −

C2

δ 2
j

)
,
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X [p,q, r ,a] ≡ r := |0⟩;a := |0⟩;
r ,a := Uρ [r ,a];
a := |0⟩;
p,q, r := CU [p,q, r ];
r := |0⟩;

Y [p,q, r ,a] ≡ r := |0⟩;
a := |0⟩;
p,q := CV [p,q];

Figure 8. Subprogram X and ideal subprogram Y . Both of
them are terminating.

and a function f : D(Hall ) 7→ [0, 1]:

f (ρ) = tr(ρIp ⊗ Iq ⊗ |0⟩r ⟨0|).

Then for any ϵ > 0, define function tϵ : D(Hall ) 7→ N:

tϵ (ρ) =


0, f (ρ) < ϵ ;⌈

logc2

ϵ

f (ρ)

⌉
+ 1, f (ρ) ≥ ϵ .

It is easy to check that tϵ is a (R, ϵ)-ranking function of loop
while.

6 Verification of qPCA
Principal component analysis (PCA) is one of the fundamen-
tal tool used in data analysis, that can be used to reduce a
large set of data into a small set while most of the informa-
tion is still preserved. Mathematically, given a symmetric
matrix A, it returns the first n components, that is, the top n
largest eigenvalues together with their eigenvectors.

The quantum algorithm for principal component analysis
(qPCA) was proposed by Lloyd, Mohseni and Rebentrost in
[25], which offers a exponentially speed up over the best
classical algorithm when the unknown density matrix is of
low-rank. This algorithm opens a new door to the field of
quantum machine learning. In this subsection, we present a
proof of the correctness of qPCA using aQHL together with
the rules for robustness reasoning presented in Section 4.

6.1 The qPCA Algorithm as a Quantum Program
Suppose a given unknown density operator ρ of dimen-
sion nρ has the spectral decomposition: ρ =

∑
j r j |α j ⟩⟨α j |,

where r j and |α j ⟩ are the corresponding eigenvalues and
eigenvectors. Let us first consider two different programs
X and Y with input registers p,q, r and ra shown in Figure
8. Here, p is a qubit serving as the control register, q and
r are two registers of dimension nρ used to store the den-
sity operator ρ, and a is the ancilla register which is used
to prepare ρ; more precisely, a unitary operatorUρ satisfies:
Uρ |0⟩r |0⟩a = |ψρ ⟩r,a , where |ψρ ⟩r,a is a purification of ρ, or

qPCA ≡ p1 := |0⟩; · · · ;pN := |0⟩;
p1 := H [p1]; · · · ;pN := H [pN ];
p1,q, r ,a := X [p1,q, r ,a];

p2,q, r ,a := X 2[p2,q, r ,a];
...

pN ,q, r ,a := X 2(N−1)
[pN ,q, r ,a];

p1,p2, · · · ,pN := QFT[p1,p2, · · · ,pN ]

Figure 9. Program qPCA. X is the subprogram given in Fig-
ure 8. The superscript ofX denotes the number of repetitions
of X .

in other words, tra(|ψρ ⟩r,a ⟨ψρ |) = ρ. CU is the controlled
swap unitary defined by

CU [p,q, r ] = |0⟩p ⟨0| ⊗ Iq,r + |1⟩p ⟨1| ⊗ e−iS∆t

where ∆t is a small time interval, Iq,r is the identity opera-
tor of registers p, r , and S is the swap gate, that is, for any
pure states |ψ ⟩q and |ϕ⟩r : S |ψ ⟩q |ϕ⟩r = |ϕ⟩r |ψ ⟩p . CV is also a
controlled unitary which has the form:

CV [p,q] = |0⟩p ⟨0| ⊗ Iq + |1⟩p ⟨1| ⊗ e−i ρ∆t .

In [25], it was shown that X and Y are closed in the sense of
trace norm

∥JX K − JY K∥tr = O(1)∆t2.

However, as the whole system may be larger than the sub-
systems X and Y applied to, it is indeed not appropriate to
use trace norm to bound the error. Generally, diamond norm
can be as large as m times of trace norm where m is the
dimension of the system the quantum operation applied to;
that it, ∥JX K − JY K∥⋄ may be as large as nρO(1)∆t2, which
implies that the error depends on the dimension nρ of ρ. But
a tedious calculation yields ∥JX K − JY K∥⋄ = O(1)∆t2, which
does not depend on nρ .
Now we can write the qPCA algorithm as a quantum

program in Figure 9. The ideal version qPCA′ is the same
as qPCA except that all occurrences of subprogram X is
replaced by Y :

qPCA′ = qPCA[Y/X ].

Here, p1,p2, · · · ,pN are qubit variables, and q, r ,a are regis-
ters used to store the input state and produce density opera-
tor ρ.

6.2 Exact Correctness of qPCA′

Repeatedly applying rules (Ax.In-a), (Ax.UT) and (Ax.SC),
we can prove the correctness of qPCA′:

⊢a
qTD{Ip̄ ⊗ |α j ⟩q ⟨α j | ⊗ Ir ⊗ Ia}qPCA′

{|ϕ⟩p̄ ⟨ϕ | ⊗ |α j ⟩q ⟨α j | ⊗ |0⟩r ⟨0| ⊗ |0⟩a ⟨0|}
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where p̄ = p1,p2, · · · ,pN , operators Ip̄ , Ir , Ia are identitymap-
ping over registers p̄, r and a, respectively, T = 2N and

|ϕ⟩ =
T−1∑
τ=0

T−1∑
x=0

1
T
e−ı(r j∆t−2πτ /T )x |τ ⟩ =

T−1∑
τ=0

f (r j ,τ )|τ ⟩,

f (r j ,τ ) =
T−1∑
x=0

1
T
e−ı(r j∆t−2πτ /T )x .

6.3 Approximate Correctness of qPCA
It is easy to compute that Count(qPCA,X ) = T − 1. Then
using rule (R.No), we have the following correctness formula
for qPCA:

⊢qR {(Ip̄ ⊗ |α j ⟩q ⟨α j | ⊗ Ir ⊗ Ia , 0)}qPCA{(|ϕ⟩p̄ ⟨ϕ |

⊗ |α j ⟩q ⟨α j | ⊗ |0⟩r ⟨0| ⊗ |0⟩a ⟨0|, (T − 1)O(1)∆t2)}.

because ∥JX K − JY K∥⋄ = O(1)∆t2. For eigenvalue r j of ρ, we
assume that

r j∆tT

2π
= δ̃ j = δ j + ∆j

with δ j ∈ N and 0 ≤ |∆j | ≤
1
2 . If we only care whether

|ϕ⟩ is close to the correct eigenvalue, we might consider the
subspace Q j of Hp̄ :

Q j =
∑

δj−∆<τ <δj+∆

|τ ⟩p̄ ⟨τ |

in the sense that, for any state that is in Q j , if we measure it
using the computational basis and obtain the resultmj , then
we can use 2πmj

∆tT to approximate r j , with an error at most
2π∆
∆tT . Actually, Q j satisfies the property:

D(|ϕ⟩p̄ ⟨ϕ |,Q j ) ≤
1

√
2∆ − 1

.

Note that |α j ⟩⟨α j | ⊗ |0⟩r ⟨0| ⊗ |0⟩a ⟨0| is a rank 1 subspace, so

D(|ϕ⟩p̄ ⟨ϕ | ⊗ |α j ⟩q ⟨α j | ⊗ |0⟩r ⟨0| ⊗ |0⟩a ⟨0|,
Q j ⊗ |α j ⟩q ⟨α j | ⊗ |0⟩r ⟨0| ⊗ |0⟩a ⟨0|) = D(|ϕ⟩p̄ ⟨ϕ |,Q j ).

Using the rule (R.ON) and the soundness of qR (Theorem
4.1), we conclude that:

|=rt {(Ip̄ ⊗ |α j ⟩q ⟨α j | ⊗ Ir ⊗ Ia , 0)}qPCA′
{(
Q j ⊗ |α j ⟩q ⟨α j |

⊗ |0⟩r ⟨0| ⊗ |0⟩a ⟨0|, (T − 1)O(1)∆t2 +
1

√
2∆ − 1

)}
;

that is, for the input state |α j ⟩⟨α j | of register q, there exists
a density operator σj ∈ D(H) satisfies σj |= Q j , such that:

D(JqPCAK(|α j ⟩q ⟨α j |),σj ⊗ |α j ⟩q ⟨α j |)

≤ (T − 1)O(1)∆t2 +
1

√
2∆ − 1

.

The linearity of the quantum program ensures that, if the in-
put state of register q is ρ itself, then there exists a sequence

of density operator σj |= Q j which can be used to approxi-
mate the eigenvalue r j with an error at most 2π∆

∆tT , and the
output of the qPCA is closed to the state

∑
j r jσj ⊗ |α j ⟩⟨α j |:

D(JqPCAK(ρ),
∑
j

r jσj ⊗ |α j ⟩⟨α j |)

≤ (T − 1)O(1)∆t2 +
1

√
2∆ − 1

.

This gives us a hint to choose a proper order of parameters.
For example, if we want to estimate the eigenvalue within
an error bound ϵ , and we desire that the program success
with a constant probability, then we can choose ∆t = Θ(ϵ2),
∆ = O(1),T = Θ(ϵ−3), which is coincident to the parameters
in [25]. If we also want that the probability of success of the
program is larger than 1 − ϵ ′ (ϵ < ϵ ′), then we can choose
∆t = Θ(ϵ2ϵ ′2), ∆ = Θ(ϵ ′−2) and T = Θ(ϵ−3ϵ ′−4).

7 Conclusion
This paper derived an applied variant, called aQHL (applied
quantum Hoare logic), of QHL which significantly improves
applicability of QHL in two different directions:

• simplifying inference rules of QHL by restricting to
projective preconditions and postconditions, so that
QHL can be applied to larger quantum programs;

• developing a set of new rules for reasoning about ro-
bustness, so that QHL can be more conveniently used
to verify inexact quantum programs.

Two sophisticated quantum algorithms, namely HHL for
solving systems of linear equations and qPCA (quantum
Principal Component Analysis), were verified in aQHL (by
hands). In future work, we plan to incorporate the simplified
QHL rules and newly introduced rules for robustness reason-
ing into a theorem prover for QHL (for example, see a recent
attempt [24]) so that HHL and qPCA (and more quantum
algorithms) can be mechanically verified.
As discussed in the Introduction, aQHL is more suitable

for testing and debugging of quantum programs than the
original QHL. A scheme for quantum program testing and
debugging with projective assertions (quantum predicates)
in aQHL will be presented in a forthcoming paper [41]. In
particular, we will show that, with robust assertions defined
in Section 4 and the gentle measurement lemma [36], it is
still applicable when a small system error or noise in imple-
mentation occurs.
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