
21

Relational Proofs forQuantum Programs

GILLES BARTHE, Max Planck Institute for Security and Privacy, Germany and IMDEA Software Institute,

Spain

JUSTIN HSU, University of WisconsinśMadison, USA

MINGSHENG YING, University of Technology Sydney, Australia, Institute of Software, Chinese Academy

of Sciences, China, and Tsinghua University, China

NENGKUN YU, University of Technology Sydney, Australia

LI ZHOU,Max Planck Institute for Security and Privacy, Germany and Tsinghua University, China

Relational verification of quantum programs has many potential applications in quantum and post-quantum

security and other domains. We propose a relational program logic for quantum programs. The interpretation

of our logic is based on a quantum analogue of probabilistic couplings. We use our logic to verify non-trivial

relational properties of quantum programs, including uniformity for samples generated by the quantum

Bernoulli factory, reliability of quantum teleportation against noise (bit and phase flip), security of quantum

one-time pad and equivalence of quantum walks.

CCS Concepts: · Theory of computation → Quantum computation theory; Hoare logic; Program

verification.

Additional Key Words and Phrases: quantum programming, verification, relational properties, coupling

ACM Reference Format:

Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou. 2020. Relational Proofs for Quantum

Programs. Proc. ACM Program. Lang. 4, POPL, Article 21 (January 2020), 29 pages. https://doi.org/10.1145/

3371089

1 INTRODUCTION

Program verification is traditionally focused on proving properties of a single program execution.
In contrast, relational verification aims to prove properties about two program executions. In
some cases, such as program refinement and program equivalence, the goal is to relate executions
of two different programs on equal or related inputs. However, some properties consider two
executions of the same program (with related inputs); examples include information flow policies
(non-interference: two runs of a program on states that only differ in their secret have equal visible
effects) and robustness (k-Lipschitz continuity: running a program on two initial states at distance d
yields two final states at distance at most k ·d). In the probabilistic setting, relational verification can
also show that a program outputs a uniform distribution, or that two programs yield łapproximately
equalž distributions. By taking suitable instantiations of approximate equality, relational verification

Authors’ addresses: Gilles Barthe, Max Planck Institute for Security and Privacy, Germany , IMDEA Software Institute,

Spain; Justin Hsu, Department of Computer Sciences, University of WisconsinśMadison, USA; Mingsheng Ying, Centre

for Quantum Software and Information, University of Technology Sydney, Australia , State Key Laboratory of Computer

Science, Institute of Software, Chinese Academy of Sciences, China , Tsinghua University, China; Nengkun Yu, Centre for

Quantum Software and Information, University of Technology Sydney, Australia; Li Zhou, Max Planck Institute for Security

and Privacy, Germany , Department of Computer Science and Technology, Tsinghua University, China.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART21

https://doi.org/10.1145/3371089

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3371089
https://doi.org/10.1145/3371089
https://doi.org/10.1145/3371089

21:2 Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou

has found success in cryptography [Barthe et al. 2009], machine learning [Barthe et al. 2018] and
differential privacy [Barthe et al. 2016, 2012].
This paper develops a relational program logic, called rqPD, for a core quantum programming

language. Our logic is based on the interpretation of predicates as physical observables, mathemati-
cally modelled as Hermitian operators [D’Hondt and Panangaden 2006], and is inspired by the qPD
program logic [Ying 2011, 2016] for quantum programs. Concretely, our judgments have the form:

P1 ∼ P2 : A⇒ B

where P1 and P2 are quantum programs, and precondition A and postcondition B are Hermitian
operators over the tensor product Hilbert spaces of P1 and P2. We define an interpretation of these
judgments, develop a rich set of sound proof rules, and show how these rules can be used to verify
relational properties for quantum programs.

Technical challenges and solutions. The central challenge for building a useful relational logic
is to find an interpretation of judgments that captures properties of interest, while guaranteeing
soundness of a convenient set of proof rules. This challenge is not unique to quantum programs.
In the probabilistic setting [Barthe et al. 2015, 2009], one solution is to interpret judgments in
terms of probabilistic couplings, a standard abstraction from probability theory [Lindvall 2002;
Thorisson 2000; Villani 2008]. The connection with probabilistic couplings has many advantages:
(i) it builds the logic on an abstraction that has proven to be useful for probabilistic reasoning; (ii)
it identifies natural extensions of the logic; and (iii) it suggests other applications and properties
that can be handled by similar techniques. Unfortunately, the quantum setting raises additional
challenges. Notably, we may need to reason about entangled quantum states. There are some
existing proposals of analogue of probabilistic couplings in the quantum setting (see [Kümmerer
and Schwieger 2016; Winter 2016]). In particular, Zhou et al. [2019a] addressed this issue by
developing a notion of quantum coupling, and validated their definition by showing an analogue
of Strassen’s theorem [Strassen 1965].1 In this work, we base our notion of valid judgment on this
definition of quantum coupling.

Once the interpretation of the logic is fixed, the next challenge is to define a useful set of proof
rules. As in other relational logics, we need structural rules and three kinds of construct-specific
rules. Synchronous rules apply when P1 and P2 have the same top-level construct and operates on
both programs, whereas the left and right rules only operate on one of the two programs. In the
quantum setting, the main difficulties are:

• Structural rules: many useful rules are not sound in the quantum setting or require further
hypotheses; in particular, in the presence of entanglement Ð an indispensable resource in
quantum computation and communication. We generalise the core judgment to track and
enforce the hypotheses required to preserve soundness.

• Construct-specific rules: all proof rules of quantum Hoare logic qPD can be directly generalised
into quantum relational logic rqPD (see Subsection 5.2). Although these directly generalised
rules are useful, they do not fully capture the essence of quantum relational reasoning (see
Subsection 5.3). Synchronous proof rules for classical control-flow constructs, i.e. conditionals
and loops, generally require that the two programs follow the same control flow path, so
that they execute in lockstep. In order to retain soundness in our setting, we introduce a
measurement condition ensuring that corresponding branches in the control flow are taken
with equal probabilities.

1Informally, Strassen’s theorem states that there exists a B-coupling between two distributions µ and µ′ over sets X and X ′

respectively iff for every subset Y in the support of µ , µ(Y) ≤ µ(B(Y)), where B(Y) is the set-theoretic image of Y under B .

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

Relational Proofs for Quantum Programs 21:3

Simplifying side conditions. Checking measurement conditions is often challenging. To make
this step easier, we introduce a simplified version of rqPD where assertions are modelled as
projective predicates, or equivalently, (closed) subspaces of the state Hilbert space Ð a special case
of Hermitian operators. The restriction to projective predicates leads to simpler inference rules and
easier program verification, at the cost of expressiveness [Zhou et al. 2019b]. In particular, checking
measurement conditions reduces to showing that a program condition lies in a subspace (with
probability 1), a task that is often simpler. We provide a formal comparison between the original
logic system rqPD and its simplified version, and leverage this comparison to relate our work with
a recent proposal for a quantum relational Hoare logic with projective predicates [Unruh 2019b].

Applications. To test its effectiveness, we apply rqPD to verify non-trivial relational properties of
several quantum programs, including uniformity for samples generated by the quantum Bernoulli
factory, reliability of quantum teleportation against noise (bit and phase flip), equivalence of
quantum walks and security of quantum one-time pad. Using our simplified rqPD, we are able
to verify the relational properties of some more sophisticated quantum programs, for example,
equivalence of quantum walks with different coin tossing operators.

Working Example. We will use the following pair of simple quantum programs as our working
example to illustrate our basic ideas along the way:

Example 1.1. Let q be a qubit (quantum bit). Consider two programs:

P1 ≡ q := |0⟩;q := H [q];Q1, P2 ≡ q := |0⟩;Q2;q := H [q].

In both, q is initialised in a basis state |0⟩. P1 applies the Hadamard gate H to q and executesQ1, while
P2 first executes Q2 and then applies H to q. The subprograms Q1,Q2 are as follows:

Q1 ≡ if (M[q] = 0 → q := X [q] □ 1 → q := H [q]) fi
Q2 ≡ if (M ′[q] = 0 → q := Z [q] □ 1 → q := H [q]) fi

where M,M ′ are the measurement in the computational basis |0⟩, |1⟩ and the measurement in basis
|±⟩ = 1√

2
(|0⟩ ± |1⟩) respectively. Intuitively, Q1 first performs M on q, then applies either the Pauli

gate X or Hadamard gate H , depending on whether the measurement outcome is 0 or 1. But Q2 uses
the outcomes of a different measurementM to choose between the Pauli gate Z and Hadamard gate H .

Obviously, programs P1, P2 have similar structures. The logic rqPD developed in this paper will
enable us to specify and prove some interesting symmetry between them.

2 MATHEMATICAL PRELIMINARIES

We assume basic familiarity with Hilbert spaces, see Nielsen and Chuang [2002] for an introduction.

Quantum states. The state space of a quantum system is a Hilbert space H . In this paper, we
only consider finite-dimensional H . A pure state of the quantum system is modelled by a (column)
vector in H of length 1; we use the Dirac notation (|φ⟩, |ψ ⟩) to denote pure states. For example,
qubit q in Example 1.1 has the 2-dimensional Hilbert space as its state space; it can be in basis states
|0⟩, |1⟩ as well as in their superpositions |+⟩, |−⟩ = 1√

2
(|0⟩ ± |1⟩). An operatorA in an d-dimensional

Hilbert spaceH is represented as an d × d matrix. Its trace is defined as tr(A) = ∑
i ⟨i |A|i⟩, where

{|i⟩} is an orthonormal basis ofH . A positive operator ρ inH is called a partial density operator
if its trace satisfies tr(ρ) ≤ 1; if tr (ρ) = 1, then ρ is called a density operator. A mixed state of a
quantum system is a distribution over pure states. If state |ψi ⟩ has probability pi , the mixed state
can be represented by a density operator ρ =

∑
i pi |ψi ⟩⟨ψi |, where row vector ⟨ψi | stands for the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

21:4 Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou

conjugate transpose of |ψi ⟩. For example, if qubit q is in state |0⟩ with probability 2
3 and in |+⟩ with

probability 1
3 , then its state can be described by density operator

ρ =
2

3
|0⟩⟨0| + 1

3
|+⟩⟨+| = 1

6

(
5 1
1 1

)
. (1)

We writeD≤(H) andD(H) for the set of partial density operators and the set of density operators
in H , respectively. For any ρ ∈ D≤(H), the support supp(ρ) of ρ is defined as the span of the
eigenvectors of ρ with nonzero eigenvalues.

Operations on states. A basic operation on a (closed) quantum system is modelled as a unitary
operator U such thatU †U = IH , where † stands for conjugate and transpose. For example, the Pauli
and Hadamard gates used in Example 1.1 are:

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, H =

1
√
2

(
1 1
1 −1

)
,

and X ,Z ,H transform states |0⟩, |1⟩ to X |0⟩ = |1⟩, X |1⟩ = |0⟩; Z |0⟩ = |0⟩, Z |1⟩ = −|1⟩; H |0⟩ =
|+⟩, H |1⟩ = |−⟩, respectively.
Another basic operation is measurement. A physical observable is modelled by an operator A

in H that is Hermitian, i.e., A†
= A. An operator P is a projection onto a (closed) subspace of H

if and only if it is Hermitian (i.e. P† = P) and idempotent (i.e. P2 = P). Quantum measurements
are constructed from observables A. An eigenvector of A is a non-zero vector |ψ ⟩ ∈ H such that
A|ψ ⟩ = λ |ψ ⟩ for some complex number λ (indeed, λ must be real when A is Hermitian). In this case,
λ is called an eigenvalue of A. For each eigenvalue λ, the set {|ψ ⟩ : A|ψ ⟩ = λ |ψ ⟩} of eigenvectors
corresponding to λ and zero vector is a (closed) subspace ofH . We write Pλ for the projection onto
this subspace. By the spectral decomposition [Nielsen and Chuang 2002, Theorem 2.1], A can be
decomposed as a sum A =

∑
λ λPλ where λ ranges over all eigenvalues of A. Moreover,M = {Pλ}λ

is a (projective) measurement.
If we perform M on the quantum system in state ρ, then outcome λ is obtained with probability

pλ = tr(P†
λ
Pλρ) = tr(Pλρ), and after that, the system will be in state (PλρPλ)/pλ . Therefore,

the expectation of A in state ρ is JAKρ =
∑

λ pλ · λ = ∑
λ λtr(Pλρ) = tr(Aρ). For instance, the

measurements in Example 1.1 are defined as M = {M0,M1},M ′
= {M ′

0,M
′
1} with

M0 = |0⟩⟨0| =
(
1 0
0 0

)
, M1 = |1⟩⟨1| =

(
0 0
0 1

)
,

M ′
0 = |+⟩⟨+| = 1

2

(
1 1
1 1

)
, M ′

1 = |−⟩⟨−| = 1

2

(
1 −1
−1 1

)
.

If we perform M ′ on a qubit in (mixed) state ρ given in equation (1), then the probability that we
get outcome ł1ž is

p(1) = tr(M ′
1ρ) = tr

[
1

2

(
1 −1
−1 1

)
· 1
6

(
5 1
1 1

)]
=

1

12
· tr

(
4 0
−4 0

)
=

1

3

and after that, the qubit’s state will change to

M ′
1ρM

′
1/p(1) =

1

2

(
1 −1
−1 1

)
· 1
6

(
5 1
1 1

)
· 1
2

(
1 −1
−1 1

)
÷ 1

3
=

1

2

(
1 −1
−1 1

)
.

Similarly, the probability of outcome ł0ž is p(0) = 2
3 , and then the state changes to |+⟩⟨+|.

We will use observables as predicates in our logic. To compare two operatorsA and B in a Hilbert
space H , we will use the Löwner order between operators defined as follows: A ⊑ B if and only if
B −A is positive. A quantum predicate [D’Hondt and Panangaden 2006] (or an effect) in a Hilbert

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

Relational Proofs for Quantum Programs 21:5

spaceH is an observable (a Hermitian operator) A inH with 0 ⊑ A ⊑ I , where 0 and I are the zero
operator and the identity operator in H , respectively.

Tensor Products of quantum states. LetH1,H2 be the state Hilbert spaces of two quantum systems
considered in isolation. Then the composite system has state space modeled by the tensor product
H1 ⊗ H2. The notion of partial trace is needed to extract the state of a subsystem. Formally, the
partial trace over H1 is a mapping tr1(·) from operators on H1 ⊗ H2 to operators in H2 defined
by the following equation: tr1(|φ1⟩⟨ψ1 | ⊗ |φ2⟩⟨ψ2 |) = ⟨ψ1 |φ1⟩ · |φ2⟩⟨ψ2 | for all |φ1⟩, |ψ1⟩ ∈ H1 and
|φ2⟩, |ψ2⟩ ∈ H2 together with linearity. The partial trace tr2(·) overH2 can be defined symmetrically.
Suppose that we have a composite system of two subsystems with state spacesH1,H2, respectively,
and it is in (mixed) state ρ. Then the states of the first and second subsystems can be described by
tr2(ρ), tr1(ρ), respectively. For example, if the subsystems are both qubits, and they are maximally
entangled; i.e. in state |Φ⟩ = 1√

2
(|00⟩ + |11⟩) or equivalently

|Φ⟩⟨Φ| = 1

2
(|0⟩⟨0| ⊗ |0⟩⟨0| + |0⟩⟨1| ⊗ |0⟩⟨1| + |1⟩⟨0| ⊗ |1⟩⟨0| + |1⟩⟨1| ⊗ |1⟩⟨1|) (2)

then the partial traces tr1(|Φ⟩⟨Φ|) = 1
2 (|0⟩⟨0| + |1⟩⟨1|) and tr2(|Φ⟩⟨Φ|) = 1

2 (|0⟩⟨0| + |1⟩⟨1|) describe
states of the second and first subsystems, respectively.

3 QUANTUM COUPLINGS AND LIFTINGS

3.1 Quantum Couplings

To relate pairs of quantum programs, our program logic will rely on a quantum version of proba-
bilistic coupling. In the probabilistic world, a coupling for two discrete distributions µ1 and µ2 over
sets A1 and A2 is a discrete distribution µ over A1 ×A2 such that the first and second marginals of
µ are equal to µ1 and µ2 respectively. A coupling µ is an R-lifting for µ1 and µ2 if additionally its
support is included in R, i.e. every element outside R has probability zero.

In order to define the quantum analogue of couplings, we apply a correspondence between the
probabilistic and quantum worlds [Nielsen and Chuang 2002]:

probability distributions ⇔ density operators marginal distributions ⇔ partial traces

This leads to the following definition of quantum coupling.

Definition 3.1 (Coupling). Let ρ1 ∈ D≤(H1) and ρ2 ∈ D≤(H2). Then ρ ∈ D≤(H1 ⊗ H2) is
called a coupling for ⟨ρ1, ρ2⟩ if tr1(ρ) = ρ2 and tr2(ρ) = ρ1.
Proposition 3.1 (Trace eqivalence). If ρ is a coupling for ⟨ρ1, ρ2⟩, then they have the same

trace: tr(ρ) = tr(ρ1) = tr(ρ2).
The following are examples of quantum couplings. They are quantum generalisations of several

typical examples of (discrete) probabilistic couplings (see [Barthe et al. 2019]). From these simple
examples, we can see a close and natural correspondence as well as some essential differences
between probabilistic coupling and their quantum counterparts. Our first example shows that
couplings always exist.

Example 3.1. Let ρ1 ∈ D(H1) and ρ2 ∈ D(H2) be density operators. The tensor product ρ⊗ =
ρ1 ⊗ ρ2 is a coupling for ⟨ρ1, ρ2⟩.
Just like the case for probabilistic couplings, there can be more than one quantum coupling

between two operators.

Example 3.2. LetH be a d-dimensional Hilbert space. Let B = {|i⟩} be an orthonormal basis ofH .
Then the uniform density operator over H is UnifH =

1
d

∑
i |i⟩⟨i |. For each unitary operatorU in H ,

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

21:6 Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou

we writeU (B) = {U |i⟩}, which is also an orthonormal basis ofH . Then ρU =
1
d

∑
i (|i⟩U |i⟩)(⟨i |⟨i |U †)

is a coupling for ⟨UnifH,UnifH⟩. Indeed, the arbitrariness ofU shows that there are (uncountably)
infinitely many couplings for ⟨UnifH,UnifH⟩. For instance, the maximally entangled state |Φ⟩⟨Φ| in
equation (2) is such a coupling for〈

UnifH1
=

1

2
(|0⟩⟨0| + |1⟩⟨1|),UnifH2

=

1

2
(|0⟩⟨0| + |1⟩⟨1|)

〉
.

Example 3.3. Let ρ be a partial density operator inH . Then by the spectral decomposition theorem
[Nielsen and Chuang 2002, Theorem 2.1], ρ can be written as ρ =

∑
i pi |i⟩⟨i | for some orthonormal

basis B = {|i⟩} and pi ≥ 0 with
∑

i pi ≤ 1. We define ρid(B) =
∑

i pi |ii⟩⟨ii |. Then it is easy to see that
ρid(B) is a coupling for ⟨ρ, ρ⟩. An essential difference between this example and its classical counterpart
(see [Hsu 2017] Example 2.1.5) is that ρ might be decomposed with other orthonormal bases, say
D = {|j⟩}: ρ = ∑

j qj |j⟩⟨j |. In general, ρid(B) , ρid(D), and we can define a different coupling for
⟨ρ, ρ⟩: ρid(D) =

∑
j qj |jj⟩⟨jj |.

3.2 Quantum Lifting

Although there can be many couplings for two operators, it is usually not simple to find one suited
to our application. As said at the beginning of this section, lifting can help for this purpose. The
definition of liftings smoothly generalises to the quantum case.

Definition 3.2. Let ρ1 ∈ D≤(H1) and ρ2 ∈ D≤(H2), and let X be (the projection onto) a (closed)
subspace ofH1 ⊗ H2. Then ρ ∈ D≤(H1 ⊗ H2) is called a witness of the lifting ρ1X#ρ2 if:

(1) ρ is a coupling for ⟨ρ1, ρ2⟩;
(2) supp(ρ) ⊆ X.

Example 3.4. The following are examples of quantum liftings.

(1) The coupling ρU for the uniform density operator and itself in Example 3.2 is a witness for the
lifting UnifH X(B,U)# UnifH , where X(B,U) = span{|i⟩U |i⟩} is a subspace ofH ⊗ H .

(2) The coupling ρid(B) in Example 3.3 is a witness of the lifting ρ(=B)#ρ, where (=B) ≡ span{|ii⟩}
defined by the orthonormal basis B = {|i⟩} is a subspace ofH ⊗H . It is interesting to note that
the maximally entangled state |Ψ⟩ = 1√

d

∑
i |ii⟩ is in =B .

(3) The coupling ρid(B) in Example 3.3 is a witness of the lifting ρ(=sym)#ρ, defining =sym to be the

symmetrisation operator, i.e. (=sym) ≡ 1
2 (I ⊗ I + S), where S is the SWAP operator defined by

S |φ,ψ ⟩ = |ψ ,φ⟩ for any |φ⟩, |ψ ⟩ ∈ H together with linearity. Operator S is independent of the
basis, and given any orthonormal basis {|i⟩} ofH , S has the following form: S =

∑
i j |i⟩⟨j |⊗|j⟩⟨i |.

(4) The coupling ρ1 ⊗ ρ2 in Example 3.1 is a witness of the lifting ρ1 (H1 ⊗ H2)# ρ2.
The two operators =B and =sym in the above example represents two different kind of symmetry

between two quantum systems with the same state Hilbert space H . They will be used to describe
relational properties of the two quantum programs P1, P2 in Example 1.1. Liftings of equality are
especially interesting for verification, since they can be interpreted as relating equivalent quantum
systems. The following proposition characterizes these liftings.

Proposition 3.2. Let ρ1, ρ2 ∈ D≤(H). The following statements are equivalent:

1. ρ1 = ρ2;
2. there exists an orthonormal basis B s.t. ρ1(=B)#ρ2;
3. ρ1(=sym)#ρ2.
We see from Example 3.4 and Proposition 3.2 that in the quantum world, equality has different

generalisations =B and =sym. Our logic will establish the existence of a lifting of equality, which
then implies equality of density operators, i.e., equivalence of quantum states.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

Relational Proofs for Quantum Programs 21:7

The notion of quantum lifting can be further generalised to a quantitative version, which will be
more convenient in defining the semantics of our logic. We first recall a notation introduced in
D’Hondt and Panangaden [2006]: ρ |=λ Ameans tr(Aρ) ≥ λ. It can be understood as a quantitative
satisfaction relation between a state ρ and an observable A with a real number λ > 0 as a threshold.

Definition 3.3. Let ρ1 ∈ D≤(H1) and ρ2 ∈ D≤(H2), let A be an observable in H1 ⊗ H2, and let
λ > 0. Then ρ ∈ D≤(H1 ⊗ H2) is called a witness of the λ-lifting ρ1A#ρ2 if:

(1) ρ is a coupling for ⟨ρ1, ρ2⟩;
(2) ρ |=λ A.
It is obvious that whenever A is the projection onto subspace X and λ = tr(ρ), then the above

definition degenerates to Definition 3.2.

3.3 Separable versus Entangled Liftings

Entanglement presents a major difference between classical and quantum systems and is respon-
sible for most of the advantages of quantum computing and communication over their classical
counterparts. A partial density operator ρ ∈ D≤(H1 ⊗ H2) is said to be separable if there exist
ρmi ∈ D≤(Hi) (i = 1, 2) such that ρ =

∑
m (ρm1 ⊗ ρm2) . A (mixed) state ρ inH1 ⊗H2 is said to be

entangled if it is not separable. Indeed, the notions of separability and entanglement can be defined
for a general positive operator (rather than density operator).
The following proposition shows that entanglement can provide a stronger witness of lifting

even with respect to a separable observable A; that is, sometimes an entangled witness is possible
but separable witness does not exist (the proof is given in [Barthe et al. 2019]).

Proposition 3.3. There are states ρi in Hi (i = 1, 2), separable observable A over H1 ⊗ H2,
entangled state ρ in H1 ⊗ H2, and λ > 0 such that:

(1) ρ is a witness of λ-lifting ρ1A
#ρ2; and

(2) any separable state σ in H1 ⊗ H2 is not a witness of λ-lifting ρ1A
#ρ2.

4 QUANTUM PROGRAMMING LANGUAGE

We recall the syntax and semantics for a quantum programming language given in [Ying 2011,
2016]. Let Var be a set of quantum variables. For each q ∈ Var , we write Hq for its state Hilbert
space.

Definition 4.1 (Syntax). Quantum programs are defined by the following syntax:

P ::= skip | P1; P2 | q := |0⟩ | q := U [q] | if (□m · M[q] =m → Pm) fi | while M[q] = 1 do P od

The initialisation q := |0⟩ sets quantum variable q to a basis state |0⟩. The statement q := U [q]
means that unitary transformation U is applied to register q. The if-statement is a quantum
generalisation of a classical case statement. In executing it, measurement M = {Mm} is performed
on q, and then a subprogram Pm is selected to be executed next according to the outcomem of
measurement. The while-statement is a quantum generalisation of the classical while loop. The
measurement in it has only two possible outcomes 0, 1; if the outcome 0 is observed then the
program terminates, otherwise the program executes the subprogram P and continues.

We write var(P) for the set of quantum variables occurring in a quantum program P . Then tensor
product HP =

⊗
q∈var(P) Hq is the state Hilbert space of P . A configuration is a pair C = ⟨P, ρ⟩,

where P is a program or the termination symbol ↓, and ρ ∈ D≤(HP) is a partial density operator
modeling the state of quantum variables.

Definition 4.2 (Operational Semantics). The operational semantics of quantum programs is
defined as a transition relation → by the transition rules in Fig. 1.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

21:8 Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou

(Sk) ⟨skip, ρ⟩ → ⟨↓, ρ⟩ (In) ⟨q := |0⟩, ρ⟩ → ⟨↓, ρq0 ⟩

(UT) ⟨q := U [q], ρ⟩ → ⟨↓,UρU †⟩ (SC)
⟨P1, ρ⟩ → ⟨P ′

1, ρ
′⟩

⟨P1; P2, ρ⟩ → ⟨P ′
1; P2, ρ

′⟩
(IF) ⟨if (□m · M[q] =m → Pm) fi, ρ⟩ → ⟨Pm,MmρM

†
m⟩

(L0) ⟨while M[q] = 1 do P od, ρ⟩ → ⟨↓,M0ρM
†
0 ⟩

(L1) ⟨while M[q] = 1 do P od, ρ⟩ → ⟨P ;whileM[q] = 1 do P od,M1ρM
†
1 ⟩

Fig. 1. Transition Rules. Symbol ↓ stands for termination. In rule (In), ρ
q
0 =

∑
i |0⟩q ⟨i |ρ |i⟩q ⟨0| for a given

orthonormal basis {|i⟩} ofHq . In (IF),m ranges over all possible outcomes of measurementM .

The transitions in rules (IF), (L0) and (L1) are essentially probabilistic. In both if and while

statements, a measurement is performed at the beginning, and then the program enters different
branches based on the measurement outcome. For each outcomem, the transition in (IF) happens

with probability pm = tr(M†
mMmρ), and the program state ρ is changed to ρm = MmρM

†
m/pm . In

rule (L0) and (L1) the outcome ł0ž occurs with the probability p0 = tr(M0ρM
†
0), and the program

terminates in state M0ρM
†
0/p0; otherwise, with the probability p1 = tr(M1ρM

†
1), the outcome ł1ž

occurs, the program state is changed toM1ρM
†
1/p1, and then the program executes the loop body P

and goes back to the beginning of the loop. We follow a convention suggested by Selinger [2004a] to

combine probability pm and density operator ρm into a partial density operatorMmρM
†
m = pmρm .

This convention is useful for presenting the operational semantics as a non-probabilistic transition
system, simplifying the presentation.

Definition 4.3 (Denotational Semantics). For any quantum program P , its semantic function
is the mapping JPK : D≤(HP) → D≤(HP) defined as follows: for every ρ ∈ D≤(HP),

JPK(ρ) =
∑

{|ρ ′ : ⟨P, ρ⟩ →∗ ⟨↓, ρ ′⟩|} , (3)

where →∗ is the reflexive and transitive closure of →, and {| · |} denotes a multi-set.

For instance, let us consider program Q2 in our working example 1.1 with input ρ given in
equation (1). According to Definition 4.2, it has two transitions:

⟨Q2, ρ⟩ → ⟨q := Z [q], ρ0⟩ → ⟨↓, ρ ′0⟩, ⟨Q2, ρ⟩ → ⟨q := H [q], ρ1⟩ → ⟨↓, ρ ′1⟩,
where:

ρ0 = M
′
0ρM

′
0 =

1

3

(
1 1
1 1

)
, ρ ′0 = Zρ0Z =

1

3

(
1 −1
−1 1

)
,

ρ1 = M
′
1ρM

′
1 =

1

6

(
1 −1
−1 1

)
, ρ ′1 = Hρ1H =

1

3

(
0 0
0 1

)
.

According to Definition 4.3, the output is JQ2K(ρ) = ρ ′0 + ρ ′1 = 1
3

(
1 −1
−1 2

)
. Furthermore, one

can show that for any possible input ρ with trace one, programs P1, P2 in Example 1.1 have the

same output: JP1K(ρ) = JP2K(ρ) = 1
4

(
1 −1
−1 3

)
.

The soundness of some of the proof rules in probabilistic relational Hoare logic requires programs
to terminate [Barthe et al. 2009]. The same is true in the quantum setting.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

Relational Proofs for Quantum Programs 21:9

Definition 4.4. A quantum program P is called lossless, written |= P lossless, if its semantics
function JPK is trace-preserving; that is, tr(JPK(ρ)) = tr(ρ) for all ρ ∈ D≤(HP).

For example, programs P1 and P2 in Example 1.1 are both lossless.

Remark 4.1. The lossless property of quantum loopwhileM[q] = 1 do P odwas previously studied
[Ying et al. 2013]. Let the semantic function of loop body P be given in Kraus operator-sum form:

JPK(ρ) = ∑
i EiρE

†
i .We define (super-)operator E by E(ρ) = ∑

i (M†
1E

†
i)ρ(EiM1) for every ρ. A square

matrix X is called an eigenvector of E corresponding to an eigenvalue λ if E(X) = λX . It was shown
that the loop is lossless if and only if any eigenvector of E corresponding to an eigenvalue with modulus
1 is traceless.

5 RELATIONAL PROGRAM LOGIC

We adopt standard conventions and notations for relational program logics. For each quantum
variable q ∈ Var , we assume two tagged copies q⟨1⟩ and q⟨2⟩, and their state Hilbert spaces are
the same as that of q: Hq ⟨1⟩ = Hq ⟨2⟩ = Hq . For i = 1, 2, if X ⊆ Var , then we write X ⟨i⟩ = {q⟨i⟩ |
q ∈ X }. Furthermore, for every quantum program P with var(P) ⊆ Var , we write P ⟨i⟩ for the
program obtained by replacing each quantum variable q in P with q⟨i⟩. Also, for each operator A in
HX =

⊗
q∈X Hq , we write A⟨i⟩ for the corresponding operator of A in HX ⟨i ⟩ =

⊗
q∈X Hq ⟨i ⟩ . For

simplicity, we will drop the tags whenever they can be understood from the context; for example,
we often simply write A ⊗ B instead of A⟨1⟩ ⊗ B⟨2⟩.

5.1 Judgments and Satisfaction

Judgments in our logic are of the form

Γ ⊢ P1 ∼ P2 : A⇒ B (4)

where P1 and P2 are quantum programs, A and B are quantum predicates in HP1 ⟨1⟩ ⊗ HP2 ⟨2⟩ ,
and Γ is a set of measurement or separability conditions. If Γ = {Σ1, ..., Σn}, then for any ρ ∈
D≤ (

HP1 ⟨1⟩ ⊗ HP2 ⟨2⟩
)
, ρ |= Γ means ρ |= Σi for all i = 1, ...,n. We defer the definition of measure-

ment or separability condition Σi for now, simply assuming a given notion of satisfaction ρ |= Σi .
In particular, if Γ = ∅, then we simply write ⊢ P1 ∼ P2 : A⇒ B for Γ ⊢ P1 ∼ P2 : A⇒ B.

Definition 5.1. The judgment Γ ⊢ P1 ∼ P2 : A⇒ B is valid, written:

Γ |= P1 ∼ P2 : A⇒ B

if for every ρ ∈ D≤ (
HP1 ⟨1⟩ ⊗ HP2 ⟨2⟩

)
such that ρ |= Γ, there exists a quantum coupling σ for〈

JP1K(tr ⟨2⟩(ρ)), JP2K(tr ⟨1⟩(ρ))
〉
such that

tr(Aρ) ≤ tr(Bσ) + tr(ρ) − tr(σ). (5)

We will often use ρ |= P1 ∼ P2 : A⇒ B as shorthand.

The above definition differs from validity in probabilistic relational Hoare logic in several ways.
Except the set Γ of measurability and separability conditions (explained below), lifting does not
appear explicitly. However, the existence of a lifting can be established from inequality (5) under
mild conditions, as we now explain. First, we note that tr(ρ) − tr(σ) captures the non-termination
probability of the programs, as in the (non-relational) quantum program logic qPD. To see a clearer
probabilistic-quantum correspondence, let us consider the simple case where both P1 and P2 are
lossless. Then tr(ρ) − tr(σ) = 0 and inequality (5) is simplified to tr(Aρ) ≤ tr(Bσ), or equivalently:
for any λ > 0, ρ |=λ A ⇒ σ |=λ B. This is a real number-valued analogue of boolean-valued
proposition łρ ∈ A⇒ σ ∈ Bž. Therefore, for any λ > 0, if ρ |=λ A, then σ |=λ B and combined with

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

21:10 Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou

{=B}{I ⊗ I } (Conseq) Derivation of Q1 ∼ Q2 (IF1)
q := |0⟩;∼ q := |0⟩; (Init) M ≈ M ′ |= I ⊗ I ⇒ {A00,A11}

{I ⊗ I } {SC :M ′ ≈ M ′}
{
A00 =

1

2
[I ⊗ I + (X ⊗ ZH)S(X ⊗ HZ)]

}
q := H [q];∼ skip; (UT-L) q := X [q];∼ q := Z [q]; (UT)

{I ⊗ I } {SC :M ≈ M ′}
{
B =

1

2
[I ⊗ I + (I ⊗ H)S(I ⊗ H)]

}

Q1;∼ Q2; (IF1)
{
A11 =

1

2
[I ⊗ I + (H ⊗ HH)S(H ⊗ HH)]

}
{
B =

1

2
[I ⊗ I + (I ⊗ H)S(I ⊗ H)]

}
q := H [q];∼ q := H [q]; (UT)

skip;∼ q := H [q]; (UT-R)
{
B =

1

2
[I ⊗ I + (I ⊗ H)S(I ⊗ H)]

}
{
(=sym) = 1

2
[I ⊗ I + S]

}

Fig. 2. Verification of working example 1.1 in rqPD: P1 ∼ P2. The proof outline is shown in the left column

with side-condition labeled by SC, and the derivation of Q1 ∼ Q2 is displayed in the right column with

measurement condition.

the assumption that σ is a coupling for
〈
JP1K(tr ⟨2⟩(ρ)), JP2K(tr ⟨1⟩(ρ))

〉
, we see that σ is a witness

for λ-lifting JP1K(tr ⟨2⟩(ρ))B#JP2K(tr ⟨1⟩(ρ)).
An interesting symmetry between programs P1, P2 in our working example 1.1 can be expressed

as the following judgment:

⊢ P1 ∼ P2 : (=B) ⇒ (=sym). (6)

where precondition =B is the equality defined by the computational basis B = {|0⟩, |1⟩} of a qubit;
i.e. (=B) = span{|00⟩, |11⟩} = |00⟩⟨00| + |11⟩⟨11| [see Example 3.4 2)], and postcondition =sym is
the projector onto the symmetric space [see Example 3.4 3)]. The validity of this judgment can be
checked by the denotational semantics of P1, P2. We first observe that for any ρ ∈ D≤ (

HP1 ⊗ HP2

)
,

tr(=B ρ) ≤ tr(ρ). Moreover, we have:

JP1K(tr ⟨2⟩(ρ)) = JP2K(tr ⟨1⟩(ρ)) =
1

4

(
1 −1
−1 3

)
× tr(ρ)

by noting that tr(tr ⟨2⟩(ρ)) = tr(tr ⟨1⟩(ρ)) = tr(ρ). As shown in Example 3.4 (3), lifting JP1K(tr ⟨2⟩(ρ))
(=sym)#JP2K(tr ⟨1⟩(ρ)) holds and, suppose σ is a witness, then we have tr(=sym σ) = tr(σ) and
therefore, tr(=B ρ) ≤ tr(=sym σ) as tr(ρ) = tr(σ) according to Proposition 3.1, which actually
implies the validity of judgment (6).

In the remainder of this section, we gradually develop the proof system for our logic rqPD. At the
same time, we will see how the proof rules in rqPD can be used to verify judgment (6). For readability,
we first give a proof outline of judgment (6) in Fig. 2, where a judgment Γ ⊢ P1 ∼ P2 : A ⇒ B

derived by an inference rule R in rqPD is displayed as

{A} {SC : Γ}
P1 ∼ P2 (R)

{B}

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

Relational Proofs for Quantum Programs 21:11

5.2 Basic Construct-Specific Rules

As usual, the proof system consists of two categories of rules: construct-specific rules and structural
rules. Let us start from a set of construct-specific rules that can be directly adapted from quantum
Hoare logic qPD [Ying 2011, 2016]. They include two-side rules and one-side rules given in Figs. 3
and 4, respectively. It is worth noting that all of these rules do not introduce any measurement
or separability condition. These rules are easy to understand if compared with the corresponding
rules of qPD, which are displayed in [Barthe et al. 2019], and those of probabilistic logic pRHL. For
the working example 1.1, these rules are used to prove the following judgments in Fig. 2:

(1) ⊢ q := |0⟩ ∼ q := |0⟩ : (=B) ⇒ I ⊗ I by rule (Conseq) and (Init);
(2) ⊢ q := H [q] ∼ skip : I ⊗ I ⇒ I ⊗ I by rule (UT-L);
(3) ⊢ skip ∼ q := H [q] : B ⇒ (=sym) by rule (UT-R); and
(4) ⊢ q := X [q] ∼ q := Z [q] : A00 ⇒ B and ⊢ q := H [q] ∼ q := H [q] : A11 ⇒ B by rule (UT).

As we will see in Section 6, these basic rules are already enough to verify interesting relational
properties of quantum programs, including security of quantum one-time pad.

(Skip) ⊢ Skip ∼ Skip : A⇒ A

(Init) ⊢ q1 := |0⟩ ∼ q2 := |0⟩ :
∑
i , j

(|i⟩q1 ⟨1⟩ ⟨0| ⊗ |j⟩q2 ⟨2⟩ ⟨0|)A(|0⟩q1 ⟨1⟩ ⟨i | ⊗ |0⟩q2 ⟨2⟩ ⟨j |) ⇒ A

(UT) ⊢ q1 := U1 [q1] ∼ q2 := U2 [q2] :
(
U †
1 ⊗ U †

2

)
A (U1 ⊗ U2) ⇒ A

(SC)
⊢ P1 ∼ P2 : A⇒ B ⊢ P ′

1 ∼ P ′
2 : B ⇒ C

⊢ P1; P ′
1 ∼ P2; P

′
2 : A⇒ C

(IF) ⊢ P1m ∼ P2n : Bmn ⇒ C for every (m,n) ∈ S ∀m,n : |= P1m, P2n lossless

⊢ if (□m · M1[q] =m → P1m) fi ∼ if (□n · M2[q] = n → P2n) fi :∑
(m,n)∈S

(
M†

1m ⊗ M†
2n

)
Bmn (M1m ⊗ M2n) ⇒ C

(LP)

|= while Mi [q] = 1 do Pi od lossless (i = 1, 2)
⊢ P1 ∼ P2 : B ⇒ (M10 ⊗ M20)†A(M10 ⊗ M20) + (M11 ⊗ M21)†B(M11 ⊗ M21)

⊢ whileM1[q] = 1 do P1 od ∼ whileM2[q] = 1 do P2 od :

(M10 ⊗ M20)†A(M10 ⊗ M20) + (M11 ⊗ M21)†B(M11 ⊗ M21) ⇒ A

Fig. 3. Two-sided rqPD rules. The set S in rule (IF) is a subset of the Cartesian product of the possible outcomes

of measurementsM1 and M2.

Remark 5.1. Note that in rule (IF) the branches of two case statements are not required to match
exactly. Whenever there is an one-to-one correspondence between the outcomes of measurementM1

andM2, then (IF) can be simplified to (IF-w) in Fig. 5.

5.3 Measurement Conditions

The straightforward generalisations of the proof rules for case statements and loops in qPD given in
the above subsection are not strong enough for more complicated applications of rqPD. In particular,
they do not reveal the subtle differences between the relational and non-relational properties of
quantum programs. To understand this point, let us take a closer look at derivation of the judgment
about two if statements Q1 and Q2 in Fig. 2. Let us first list all derivable judgments of possible
combinations of branches as follows:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

21:12 Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou

(Init-L) ⊢ q1 := |0⟩ ∼ skip :
∑
i

(
|i⟩q1 ⟨1⟩ ⟨0|

)
A
(
|0⟩q1 ⟨1⟩ ⟨i |

)
⇒ A

(UT-L) ⊢ q1 := U1 [q1] ∼ skip : U †
1AU1 ⇒ A

(IF-L) ⊢ P1m ∼ P : Bm ⇒ C for everym

⊢ if (□m ·M1[q] =m → P1m) fi ∼ P :
∑
m M†

1mBmM1m ⇒ C

(LP-L)
|= whileM1[q] = 1 do P1 od lossless ⊢ P1 ∼ skip : B ⇒ M†

10AM10 +M
†
11BM11

⊢ whileM1[q] = 1 do P1od ∼ skip : M†
10AM10 +M

†
11BM11 ⇒ A

Fig. 4. One-sided rqPD rules. We omitted the right-sides rules, which are symmetric to the ones here.

(IF-w) ⊢ P1m ∼ P2m : Bm ⇒ C for everym ∀m : |= P1m, P2m lossless

⊢ if (□m ·M1[q] =m → P1m) fi ∼ if (□m ·M2[q] =m → P2m) fi :∑
m

(
M†

1m ⊗ M†
2m

)
Bm (M1m ⊗ M2m) ⇒ C

Fig. 5. A weak rule for case statements.

(1) ⊢ q := X [q] ∼ q := Z [q] : A00 ⇒ B and ⊢ q := H [q] ∼ q := H [q] : A11 ⇒ B;
(2) ⊢ q := X [q] ∼ q := H [q] : A01 ⇒ B and ⊢ q := H [q] ∼ q := Z [q] : A10 ⇒ B

where A00,A11 and B are given as in Fig. 2 and

A01 =
1

2
[I ⊗ I + (X ⊗ HH)S(X ⊗ HH)], A10 =

1

2
[I ⊗ I + (H ⊗ ZH)S(H ⊗ HZ)].

Applying rule (IF) directly we obtain: ⊢ Q1 ∼ Q2 : A⇒ B, where

A =

1∑
i , j=0

(Mi ⊗ M ′
j)†Ai j (Mi ⊗ M ′

j) =
©­­­«

7/8 1/8 0 0
1/8 7/8 0 0
0 0 7/8 −1/8
0 0 −1/8 7/8

ª®®®¬
.

Then, using rule (UT-L), (UT-R) and (Init) for the rest parts of the programs, we are only able to
derive ⊢ P1 ∼ P2 :

7
8 I ⊗ I ⇒ =sym . However, =B @ 7

8 I ⊗ I , so the rule (IF) is too weak to derive
judgment (6) as we desire. A similar argument shows that rules (IF-L) and (IF-R) are also too weak.
We have more examples (e.g., Example 6.1) showing that some important relational properties

cannot be verified simply using rules (IF) and (LP). The reason can be seen from the soundness
proof of (IF) and (LP) [Barthe et al. 2019], where we only use a part of the output states to construct
the coupling, so for a given postcondition, the derivable preconditions are sometimes too weak. To
resolve this issue, we need to capture more relational information between two programs. A crucial
issue in developing inference rules for relational reasoning is to guarantee that two programs P1 and
P2 under comparison execute in lockstep. In probabilistic relational Hoare logic, a side-condition
Θ ⇒ e1 = e2 is introduced for this purpose, where Θ is the precondition, e1 and e2 are the guards
in P1 and P2, respectively. In the quantum case, branching (control flow) is determined by the
measurement outcomes. So, more sophisticated rules for case analysis, loops, and conditionals in
rqPD involve measurement conditions.

Definition 5.2. LetM1 = {M1m} andM2 = {M2m} be two measurements with the same set {m}
of possible outcomes inHP1 andHP2 , respectively, and let ρ ∈ D≤ (

HP1 ⟨1⟩ ⊗ HP2 ⟨2⟩
)
. Then we say that

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

Relational Proofs for Quantum Programs 21:13

ρ satisfies M1 ≈ M2, written ρ |=M1 ≈ M2, if M1 and M2 produce equal probability distributions

when applied to ρ. That is, for allm, we have: tr(M1mtr ⟨2⟩(ρ)M†
1m) = tr(M2mtr ⟨1⟩(ρ)M†

2m).

Intuitively, the above measurement conditions mean that P1 and P2 enter the corresponding
branches with the same probability (and thus execute in lockstep).

The above definition is enough for relating measurements in case statements. But when dealing
with loops, we have to consider the measurements in the loop guards together with the loop bodies.
To address this issue, we further introduce the following definition:

Definition 5.3. Let P1 and P2 be two programs, and letM1 = {M10,M11},M2 = {M20,M21} be
boolean-valued measurements in HP1,HP2 , respectively. Then for any ρ ∈ D≤ (

HP1 ⟨1⟩ ⊗ HP2 ⟨2⟩
)
, we

say that ρ satisfies (M1, P1) ≈ (M2, P2), written

ρ |= (M1, P1) ≈ (M2, P2),

if M1 and M2 produce equal probability distributions in iterations of P1 and P2, respectively; that is,
for all n ≥ 0:

tr[E10 ◦ (JP1K ◦ E11)n(tr ⟨2⟩(ρ))] = tr[E20 ◦ (JP2K ◦ E21)n(tr ⟨1⟩(ρ))] (7)

where Ei j (·) = Mi j (·)M†
i j for i = 1, 2 and j = 0, 1.

In the above definition, equation (7) is required to hold for all n ≥ 0 (and thus, for infinitely
many n). But the next lemma shows that it can be actually checked within a finite number of steps
when the state Hilbert spaces are finite-dimensional, as in our setting. Therefore, an algorithm for
checking the measurement condition (M1, P1) ≈ (M2, P2) can be designed and incorporated into
the tools (e.g. theorem prover) implementing our logic in the future.

Lemma 5.1. Let di = dimHPi (i = 1, 2). If (7) holds for any 0 ≤ n ≤ d21 + d
2
2 − 1, then it holds for

all n ≥ 0.

Note that a branching structure appears after a measurement is performed. To describe it, we
introduce the following:

Definition 5.4. Let M1 = {M1m} and M2 = {M2m} be as in Definition 5.2, and let A and Bm be
quantum predicates inHP1 ⟨1⟩ ⊗ HP2 ⟨2⟩ .We define:

M1 ≈ M2 |= A⇒ {Bm}

if for any ρ |= M1 ≈ M2, and for each m, there exists a coupling σm for
〈
M1mtr ⟨2⟩(ρ)M†

1m,

M2mtr ⟨1⟩(ρ)M†
2m

〉
such that

tr(Aρ) ≤ tr
(∑

m

Bmσm

)
. (8)

For the working example 1.1, one may checkM ≈ M ′ |= I ⊗I ⇒ {A00,A11} as shown in Fig. 2. To
see this, suppose ρ |=M ≈ M ′. Form = 0,M0tr ⟨2⟩(ρ)M0 = p0 |0⟩⟨0| andM ′

0tr ⟨1⟩(ρ)M ′
0 = p0 |+⟩⟨+|

with parameter p0 = tr(M0tr ⟨2⟩(ρ)M0), and it is straightforward to check σ0 = p0 |0⟩⟨0| ⊗ |+⟩⟨+|
is a witness of lifting (M0tr ⟨2⟩(ρ)M0)A00

#(M ′
0tr ⟨1⟩(ρ)M ′

0), which leads to tr(A00σ0) = p0. Similar
arguments hold for m = 1, with p1 = tr(M1tr ⟨2⟩(ρ)M1), witness σ1 = p1 |1⟩⟨1| ⊗ |−⟩⟨−| and
tr(A11σ1) = p1. Observe that tr(I ⊗ I ρ) = tr(ρ) and tr(ρ) = p0 + p1. Thus, we conclude that
tr(I ⊗ I ρ) = tr(A00σ0) + tr(A11σ1).
A one-side variant of the above definition will also be useful.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

21:14 Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou

(IF1) M1 ≈ M2 |= A⇒ {Bm} ⊢ P1m ∼ P2m : Bm ⇒ C for everym

M1 ≈ M2 ⊢ if (□m · M1[q] =m → P1m) fi ∼ if (□m · M2[q] =m → P2m) fi : A⇒ C

(LP1) M1 ≈ M2 |= A⇒ {B0,B1} ⊢ P1 ∼ P2 : B1 ⇒ A

(M1, P1) ≈ (M2, P2) ⊢ whileM1[q] = 1 do P1od ∼ whileM2[q] = 1 do P2 od : A⇒ B0

(IF1-L) M1 ≈ I2 |= A⇒ {Bm} ⊢ P1m ∼ P : Bm ⇒ C for everym

⊢ if (□m · M1[q] =m → P1m) fi ∼ P : A⇒ C

(LP1-L)

|= whileM1[q] = 1 do P1 od lossless
M1 ≈ I2 |= A⇒ {B0,B1} ⊢ P1 ∼ skip : B1 ⇒ A

⊢ whileM1[q] = 1 do P1 od ∼ skip : A⇒ B0

Fig. 6. More rules for case statements and loops. We omitted the right-sides rules, which are symmetric to

the ones displayed here. In (LP1-L),M10 andM11 only apply on the Hilbert space of the left program, that is,

e.g.,M10 is an abbreviation ofM10 ⊗ I2.

Definition 5.5. Let M1 = {M1m}, A and Bm be as in Definition 5.4. We define

M1 ≈ I2 |= A⇒ {Bm},
where I2 stands for the identity operator in HP2 , if for any ρ ∈ D≤ (

HP1 ⟨1⟩ ⊗ HP2 ⟨2⟩
)
, and for

each m, there exist ρ2m ∈ D≤ (
HP2 ⟨2⟩

)
and a coupling σm for

〈
M1mtr ⟨2⟩(ρ)M†

1m, ρ2m

〉
such that∑

m ρ2m = tr ⟨1⟩(ρ) and
tr(Aρ) ≤ tr

(∑
m

Bmσm

)
. (9)

Similarly, we can define I1 ≈ M2 |= A⇒ {Bm}, where I1 is the identity operator in HP1 .
Now we are ready to present our new rules for case statements and loops in Fig. 6. As pointed

out in the Introduction, synchronous rules in non-probabilistic relational Hoare logic RHL and
probabilistic logic pRHL for control-flow constructs (conditionals and loops) require that the two
programs under comparison execute in lockstep. The control flows of quantum programs studied
in this paper are determined by the outcome of measurements. Thus, measurement conditions
M1 ≈ M2 and (M1, P1) ≈ (M2, P2) in our rules (IF1) and (LP1) and their one-side variants are
introduced to warrant that the two programs execute in lockstep; more precisely, they enter the
same branch in their control flows with equal probabilities.

Using rule (IF1), we are able to derive M ≈ M ′ ⊢ Q1 ∼ Q2 : I ⊗ I ⇒ B for our working example,
shown in Fig. 2. Also in Example 6.1, correctness of Quantum Bernoulli Factory is verified using
(LP1) while (LP) is too weak to derive the desired judgment.

Comparison between Rules (IF), (LP) and (IF1), (LP1): A careful comparison between the
rules without and with measurement conditions is helpful for us to determine where the rules with
measurement conditions are needed.

(1) First, we notice that the appearance of the special case (IF-w) of (IF) is similar to (IF1). Indeed,
whenever the measurement conditions are true and each branch is terminating, then (IF1)

degenerates to (IF-w) provided we set: A =
∑
m

(
M†

1m ⊗ M†
2m

)
Bm (M1m ⊗ M2m) . However,

this choice of A is much weaker than the best possible choice. To see this, suppose ρ is

a coupling of inputs that satisfy the premises, and let ρ1m = M1mtr2(ρ)M†
1m and ρ2m =

M2mtr1(ρ)M†
2m for allm. Actually, (IF-w) uses

∑
m ρ1m ⊗ ρ2m as part of the coupling of the

output states to derive the precondition. However, this state represents only 1/d of the output

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

Relational Proofs for Quantum Programs 21:15

in general, where d is the dimension of the quantum register being measured. More precisely,
the set {(M1m ⊗ M2m)}m is a part of quantum measurementM1 ⊗M2 = {(M1m ⊗ M2n)}m,n

and only contains about 1/d measurement operators ofM1 ⊗ M2. Consequently, the trace
of the coupling state (probability of occurrence) is smaller than possible, which leads to a
weaker precondition.

(2) The above defect was remedied in the general rule (IF) by allowing all possible combinations
(m,n) rather than only diagonal (m,m). But there is another issue that sometimes prevents
(IF) to derive relational properties as strong as those by (IF1). As can be seen in its soundness
proof, (IF) simply relates two programs in a manner of tensor product, which does not
captures the possible correlation between these programs. Recall that in probabilistic logic
pRHL, coupling was introduced to warrant that two programs be executed in a lockstep
manner so that sharing randomness can be achieved. The rule (IF1) is proposed for the same
purpose and can be used to reason about stronger relational properties of quantum programs,
as shown in Example 1.1 as well as Example 6.1. On the other hand, whenever a strong
correlation between two programs does not exist or is unnecessary for our purpose (see for
instance, Example 6.5 - quantum one-time pad), we prefer to use (IF) because it is simpler.

(3) The same argument applies to the rules (LP) and (LP1) for loops.

5.4 Separability Conditions

We now turn to the structural rules for our logic rqPD. The rules (Conseq), (Weaken) and (Case)
of probabilistic relation Hoare logic (pRHL) can be straightforwardly generalised to the quantum
setting and are shown in Fig. 7. In (Conseq), we use the Löwner order between quantum predicates
(Hermitian operators) in place of boolean implication. The meanings of rules (Weaken) and (Case)
are obvious. However, the (Frame) rule requires special care.

(Conseq) Γ ⊢ P1 ∼ P2 : A
′ ⇒ B′ A ⊑ A′ B′ ⊑ B

Γ ⊢ P1 ∼ P2 : A⇒ B

(Weaken) Γ ⊆ Γ
′

Γ ⊢ P1 ∼ P2 : A⇒ B

Γ′ ⊢ P1 ∼ P2 : A⇒ B

(Case) Γ ⊢ P1 ∼ P2 : Ai ⇒ B (i = 1, ...,n) {pi } is a probability distribution

Γ ⊢ P1 ∼ P2 :
∑n

i=1 piAi ⇒ B

(Frame) Γ ⊢ P1 ∼ P2 : A⇒ B

Γ ∪ {[V , var(P1, P2)]} ⊢ P1 ∼ P2 : A ⊗ C ⇒ B ⊗ C

Fig. 7. Structural rqPD rules. In (Conseq), ⊑ stands for the Löwner order between operators. In (Frame),

V
⋂

var(P1, P2) = ∅ and C is a quantum predicate in HV .

A typical difficulty in reasoning about a quantum system is entanglement between its subsys-
tems. The notions of bipartite separability and entanglement considered in Subsection 3.3 can be
generalised to the case of more than two subsystems. A partial density operator ρ in

⊗n
i=1 Hi

is separable between Hi (i = 1, ...,n) if there exist partial density operators ρmi ∈ D≤(Hi) such
that ρ =

∑
m

(⊗n
i=1 ρmi

)
. The following separability condition can be introduced to specify that

certain entanglement is not provided (as a resource) or not allowed (e.g. between an adversary and
a storage containing sensitive information).

Definition 5.6. Let P1, P2 be two programs and Σ = [X1, ...,Xn] a partition of var(P1⟨1⟩) ∪
var(P2⟨2⟩). Then we say that a state ρ ∈ D≤ (

HP1 ⟨1⟩ ⊗ HP2 ⟨2⟩
)
satisfies separability condition Σ,

written ρ |= Σ, if ρ is separable between HXi
(i = 1, ...,n).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

21:16 Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou

(SC+)
Γ ⊢ P1 ∼ P2 : A⇒ B ∆ ⊢ P ′

1 ∼ P ′
2 : B ⇒ C Γ

(P1,P2)
|= ∆

Γ ⊢ P1; P ′
1 ∼ P2; P

′
2 : A⇒ C

Fig. 8. Strong sequential rule

With the above definition, we can define the (Frame) rule for quantum programs in Fig. 7 where
a separability condition between the programs P1, P2 and the new predicate C . Recall that in
probabilistic logic pRHL, the frame rule allows an assertion C to be carried from the precondition
through to the postcondition. The validity of the frame rule is based on the assumption that the
two programs P1 and P2 cannot modify the (free) variables in C; or mathematically speaking,
var(P1, P2) ∩ var(C) = ∅. In the quantum setting, however, the syntactic disjointness between
var(P1, P2) and var(C) is not enough. Indeed, an entanglement can occur between them even if they
are disjoint, and some properties of the subsystem denoted by the variables inC can be changed by
certain actions, say measurements of P1 or P2. So, the separability condition Γ = [V , var(P1, P2)]
is introduced in the conclusion part of the frame rule to exclude such an entanglement between
P1, P2 and C , where V is the set of quantum variables appearing in C .

5.5 Entailment between Side-Conditions

In the above two subsections, measurement and separability conditions are introduced into our
logic rqPD. But the (SC) rule for sequential composition in Fig. 3 does not contain these conditions.
So, it must be accordingly strengthened to accommodate the propagation of measurement and
separability conditions. To this end, we need the following:

Definition 5.7. Let Γ,∆ be two sets of measurement or separability conditions, and P1, P2 two
programs. We say that ∆ is couple-entailed by Γ through (P1, P2), written

Γ

(P1,P2)
|= ∆, (10)

if for any ρ |= Γ, whenever σ is a coupling for
〈
JP1K

(
tr ⟨2⟩(ρ)

)
, JP2K

(
tr ⟨1⟩(ρ)

)〉
, then σ |= ∆.

Using the above definition, a strengthened version of (SC) is presented as rule (SC+) in Fig. 8.
Let us go back to the working example 1.1. After a direct calculation, we are able to show

∅
(q:= |0⟩,q:= |0⟩)

|= M ′ ≈ M ′ and M ′ ≈ M ′
(q:=H [q],skip)

|= M ≈ M ′
.

Now, using rule (SC+) we can combine all the segment judgments shown in last few sections
together to reason about judgment (6), as shown in Fig. 2.
In general, it is not easy to use this rule because it is hard to check a side condition of the

form (10). However, in most of the applications, we do not need the full power of (SC+) because
most of conditionals and loops can be dealt with by using (IF) and (LP) where no measurement
conditions are introduced and thus Γ = ∆ = ∅, and (IF1) and (LP1) are only employed for a few
times. In particular, if we only need (IF1) or (LP1) to reason about a single conditional or loop,
then ∆ = ∅ and side condition (10) is trivially valid; for instance, Example 6.1 is actually this case.
The difficulty of applying (SC+) will arise only when (IF1) and (LP1) are needed to reason about
many conditionals and loops. In the case of finite-dimensional state Hilbert spaces, for a large
class of quantum programs, this difficulty can be significantly eased by a back-tracking strategy
for collecting a set of measurement or separability conditions at the beginning of a sequence of
consecutive judgments in order to warrant that all side-conditions of the form (10) are valid. An
elaboration of this strategy is given in [Barthe et al. 2019].

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

Relational Proofs for Quantum Programs 21:17

5.6 Auxiliary Rules for GeneralQuantum Operations

Our programming language only contains two simple kinds of quantum operations: unitary trans-
formations and quantum measurements. Also, the post-measurement states are recorded in the
semantics so that the dimension of the state Hilbert space is fixed. In applications, however, it is often
convenient to apply general quantum operations; for example, quantum noises and communication
channels. Principally, a general quantum operation can be implemented by unitary transforma-
tions and measurements through introducing ancilla systems and discarding post-measurement
states (see [Nielsen and Chuang 2002], Section 8.2.2 for the system-environment model). But the
implementations are usually quite complicated. So, for convenience, we choose to expand the
programming language by explicitly adding program constructs of the form:

P ::= q := E[q] (11)

where E is a general quantum operation. Mathematically, E is modelled as trace-preserving super-
operator with Hilbert space Hq as its domain, but its codomain can be a different Hilbert space,
even with a different dimension, e.g. Hq\q′ or Hq∪q′ . It is well-known that a super-operator E can

be represented by a set of operators {Ei } (Kraus operator-sum representation): E(ρ) = ∑
i EiρE

†
i

for every state ρ inHq .
The operational semantics of program q := E[q] is defined by the following transition rule:

⟨q := E[q], ρ⟩ → ⟨↓, E(ρ)⟩.
Based on this, the denotational semantics of quantum programs containing super-operators can be
defined in the same way as Definition 4.3, provided allowing that the domain and codomain of the
semantic function of a quantum program can be different.
We present three inference rules for general quantum operations in Fig. 9, generalising rules

(UT), (UT-L) and (UT-R), respectively.

(SO) ⊢ q1 := E1 [q1] ∼ q2 := E2 [q2] :
(
E∗
1 ⊗ E∗

2

)
(A) ⇒ A

(SO-L) ⊢ q1 := E1 [q1] ∼ skip : E∗
1(A) ⇒ A

Fig. 9. Rules for trace-preserving super-operators (quantum operations). We use E∗ to denote the dual of
super-operator E; that is, E∗(A) = ∑

i E
†
i AEi if E(ρ) =

∑
i EiρE

†
i . Rule (SO-R) is symmetric to (SO-L).

Remark 5.2. It is worth mentioning that allowing different dimensions of the domain and codomain
of E in (11) has a benefit; that is, it enables us to introduce auxiliary quantum variables or discard
a quantum variable. The construct of introducing auxiliary variables can be defined as cylinder
extension, i.e. tensor product with the identity operator of the state Hilbert space of the auxiliary
variables (divided by its dimension for normalisation), and the construct of discarding a quantum
variable q ∈ q is indeed included in Selinger’s quantum programming language QPL [Selinger 2004b].
It can be defined as a partial trace Tr[q], with its semantics described as a special super-operator:
E(ρ) = ∑

i ⟨i |ρ |i⟩ ∈ D(Hq\{q }) for any ρ ∈ D(Hq), where {|i⟩} is an orthonormal basis of Hq . Then
rules (SO) and its one-side variants (SO-L), (SO-R) warrant that introducing auxiliary variables and
discarding a variable can be safely done in relational reasoning.

5.7 Soundness Theorem

We can prove that our proof system is sound with respect to validity of judgments. The proof of
soundness is given in the complete version of this paper [Barthe et al. 2019].

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

21:18 Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou

Theorem 5.1 (Soundness). Derivable judgments are valid:

Γ ⊢ P1 ∼ P2 : A⇒ B =⇒ Γ |= P1 ∼ P2 : A⇒ B

Completeness of relational logics is a challenging problem. In the deterministic setting, relational
Hoare logic can be shown to be relatively complete for terminating programs provided it includes
sufficiently many one-sided rules. Relative completeness fails for probabilistic relational Hoare
logic; a further potential complication is that the coupling method Ð upon which probabilistic
relational Hoare logic builds Ð is itself not complete for proving convergence Markov chains
[Anil Kumar and Ramesh 2001].

6 EXAMPLES

In this section, we give several examples to illustrate the power of rqPD. We mainly show how
their relational properties can be formally specified as rqPD judgments. Due to the limited space,
only a proof outline of the first example is given, and the formal derivations of other judgments are
deferred to [Barthe et al. 2019].

6.1 Symmetry between Simple Programs

Let us start from our working example 1.1. In last section, we already proved judgment (6) in our
logic rqPD. A symmetry between programs P1 and P2 modelled by judgment (6) is more interesting
than their similarity we can observe at the first glance. It worth noting that two different kinds of
łquantum equalityž are used in the precondition and postcondition. To understand this judgment
better, let recall Proposition 3.2, which give us an intuition of what=B and=sym mean. The judgment
tell us that, if the inputs of P1 and P2 are the same, then the outputs are also same, or in other words,
program P1 and P2 are actually equal.

Remark 6.1. As discussed before, rule (IF1) is necessary to derive judgment (6) while using rule
(IF-w) or more general (IF) is impossible to prove it. A strong correlation between two programs can be
detected only if we run them in a lockstep manner. This is why rule (IF1) works. However, (IF) only
requires that two programs run simultaneously while lockstep is not guaranteed. Therefore, it is not
surprising to see (IF) fails here.

6.2 Uniformity

An elegant characterisation of uniform probability distribution with coupling was given in [Barthe
et al. 2017]. Unfortunately, the characterisation does not directly carry over to the quantum setting.
In this subsection, we show how an alternative approach based on quantum coupling can be
used to describe uniformity in quantum systems. Let H be a Hilbert space and B = {|i⟩} be an
orthonormal basis of H . For each i , we write Mi = |i⟩⟨i |. Then the measurement in basis B is
defined as MB = {Mi }.

Definition 6.1. A density operator ρ in H with d = dimH is called uniform in basis B if the
outcome of measurementMB on ρ is uniformly distributed; i.e. for every i ,

pi = tr(Miρ) = ⟨i |ρ |i⟩ = 1

d
.

The following proposition gives a characterization of uniformity of a program’s outputs in terms
of quantum coupling.

Proposition 6.1 (Uniformity by coupling). Let P be a quantum program, B = {|i⟩} be an
orthonormal basis ofHP and d = dimHP . Then the following three statements are equivalent:

(1) for any input density operator ρ in HP , output JPK(ρ) is uniform in basis B;

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

Relational Proofs for Quantum Programs 21:19

(2) for any basis state |i⟩ in B,

|= P ∼ P :
I ⊗ I

d
⇒ |i⟩⟨i | ⊗ I (12)

where I is the identity operator inHP ;
(3) for any basis state |i⟩ in B,

[var(P ⟨1⟩), var(P ⟨2⟩)] |= P ∼ P :=eC ⇒ |i⟩⟨i | ⊗ I (13)

where C = {|j⟩} is an arbitrary orthonormal basis ofHP , and the equality operator =
e
C is defined

to be |Φ⟩⟨Φ|, where Φ is the maximally entangled state |Φ⟩ = 1√
d

∑
j |jj⟩. More precisely, =eC is

(the projection onto) the one-dimensional subspace spanned by the maximally entangle state
|Φ⟩. It is interesting to see that in judgment (13), a separability condition is enforced on inputs,
but entanglement appears in the precondition =eC . This suggests that entanglement cannot be
avoid in such a characterisation of uniformity.

Now, we consider uniformity for a concrete quantum protocol. The Bernoulli factory (BF) [Keane
and O’Brien 1994] is a protocol for random number generation. It uses a coin with an unknown
probability p of heads to simulate a new coin that has probability f (p) of heads for a given function
f : [0, 1] → [0, 1]. The Quantum Bernoulli factory (QBF) [Dale et al. 2015] also generates classical
randomness (e.g., a biased coin with probability f (p)), but it uses quantum coins instead of classical
coins. Interestingly, QBF can simulate a strictly larger class of functions f than those simulated by
BF. As a direct application of the above proposition, we can verify a simplified version of quantum
Bernoulli factory in our logic.

Example 6.1 (SimplifiedQuantum Bernoulli Factory). Suppose we have a two-qubit system
with state Hilbert spaceHqx ⊗Hqy and an initial state |0⟩qx |0⟩qy . We are allowed to perform projective
measurement M = {M0,M1}:
M0 = |0⟩qx ⟨0| ⊗ |1⟩qy ⟨1| + |1⟩qx ⟨1| ⊗ |0⟩qy ⟨0|, M1 = |0⟩qx ⟨0| ⊗ |0⟩qy ⟨0| + |1⟩qx ⟨1| ⊗ |1⟩qy ⟨1|

and apply a givenÐbut unknownÐone-qubit unitary transformation U such that 0 < |⟨0|U |0⟩| < 1
on system x or y.2 How can we produce the uniform state 1

2 Iqx ? The following quantum program
accomplishes this task:

QBF ≡ qx := |0⟩; qy := |0⟩; whileM[qx ,qy] = 1 do qx := U [qx]; qy := U [qy] od; Tr[qy]
where Tr stands for the partial trace over system qy .

Note that state 1
2 Iqx is the only density operators being uniform in any orthonormal basis B.

With Proposition 6.1, QBF can be verified by proving that for any |ψ ⟩ ∈ Hqx :

|= QBF ∼ QBF :
1

2
Iqx ⊗ Iqy ⊗ Iq′x ⊗ Iq′y ⇒ |ψ ⟩qx ⟨ψ | ⊗ Iq′x . (14)

Since this judgment is valid for all |ψ ⟩, the output is uniform in all basis so the output state must
be 1

2 Iqx .
It is worth pointing out that rule (LP1) plays an essential role in the proof. All registers are

initialised before the loop and therefore, we are able to run two of the same QBF in a lockstepmanner.
Thus, rule (LP) is too weak to derive judgment (14). Rule (SO) is also needed in the verification of
(14) because Tr[qy] appears at the end of QBF. Indeed, if we do not trace out system qy at the end,

then QBF outputs the Bell state 1√
2
(|0⟩qx |1⟩qy + |1⟩qx |0⟩qy). This fact can also be realized in our

logic. Moreover, it implies that our program QBF is not a trivial generalisation of classical Bernoulli
factory because it is capable of producing the maximally entangled state.

2In the classical BF, this condition means that the coin must be non-trivialÐit cannot always return 0 or always return 1.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

21:20 Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou

6.3 Quantum Teleportation

Now we consider a more sophisticated example. Quantum teleportation [Bennett et al. 1993] is
arguably the most famous quantum communication protocol. With it, quantum information (e.g.
the exact state of an atom or a photon) can be transmitted from one location to another, only
through classical communication, but with the help of previously shared entanglement between
the sender and the receiver. The correctness of quantum teleportation has been formally verified by
several different methods in the literature, e.g. using categorical formalism of quantum mechanics
[Abramsky and Coecke 2004]. Our logic provides a new way for verifying the correctness of
quantum teleportation; more importantly, it can be used to verify the reliability of quantum
teleportation against various kinds of quantum noise. To the best of our knowledge, this is the first
formal verification of its reliability.

Example 6.2. Suppose that Alice possesses two qubits p,q and Bob possesses qubit r , and there is
entanglement, i.e. the EPR (Einstein-Podolsky-Rosen) pair: |β00⟩ = 1√

2
(|00⟩ + |11⟩) between q and r .

Then Alice can send an arbitrary qubit state |ψ ⟩ = α |0⟩ + β |1⟩ to Bob, i.e. from p to r , by two-bit
classical communication (for detailed description, see [Nielsen and Chuang 2002], Section 1.3.7). If we
regard p as the input state and r the output state, then this protocol can be modeled by a quantum
program:

QTEL ≡ q := |0⟩; r := |0⟩; q := H [q]; q, r := CNOT[q, r]; p,q := CNOT[p,q]; p := H [p];
if (M[q] = 0 → skip □ 1 → r := X [r]) fi;
if (M[p] = 0 → skip □ 1 → r := Z [r]) fi

where H is the Hadamard gate, X and Z are the Pauli gates, CNOT is the controlled-NOT:

CNOT =

(
I 0
0 X

)
,

I , 0 are the 2 × 2 unit and zero matrices, respectively, andM is the measurement in the computational
basis, i.e.M = {M0,M1}, whereM0 = |0⟩⟨0|,M1 = |1⟩⟨1|.

6.3.1 Correctness of Quantum Teleportation. In this subsection, we show how our logic can be
used to verify the correctness of quantum teleportation. The correctness of QTEL can be described
as the judgment:

|= QTEL ∼ skip : (=B) ⇒ (=B), (15)

where B = {|ψ ⟩, |ϕ⟩} is an arbitrary othornormal basis of the state Hilbert space of a qubit, and
(=B) = |ψ ⟩|ψ ⟩⟨ψ |⟨ψ | + |ϕ⟩|ϕ⟩⟨ϕ |⟨ϕ | is the projector onto the subspace span{|ψ ⟩|ψ ⟩, |ϕ⟩|ϕ⟩} [see
Example 3.4 (2)]. Indeed, for any input states ρ, there always exists an orthonormal basis B such
that ρ(=B)#ρ, and we assume that a witness for this lifting is σ . From judgment (15), we know
that there exists a coupling σ ′ for

〈
JQTELK(ρ), JskipK(ρ)

〉
such that tr(=B σ ′) ≥ tr(=B σ) = 1. So,

σ ′ is a witness of lifting: JQTELK(ρ)(=B)#JskipK(ρ), which, together with Proposition 3.2, implies
JQTELK(ρ) = JskipK(ρ) = ρ.
Interestingly, the correctness of QTEL can also be described as the following judgment:

|= QTEL ∼ skip : (=sym) ⇒ (=sym) (16)

using a different equality =sym, that is, the projector onto the symmetric subspace [see Example 3.4
(3)]. A similar argument shows that for any input ρ, we have JQTELK(ρ) = JskipK(ρ) = ρ.

The proof of these two judgments are somewhat easy. Unlike the previous two examples, the
basic construct-specific rule (IF-L) is enough to derive the results.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

Relational Proofs for Quantum Programs 21:21

6.3.2 Reliability of Quantum Teleportation. In this subsection, we further show that our logic can
be used to deduce not only correctness but also reliability of quantum teleportation when its actual
implementation suffers certain physical noise.
Quantum noise are usually modelled by super-operators, a more general class of quantum

operations than unitary transformations.

Example 6.3 (Noise of Qubits, [Nielsen and Chuang 2002], Section 8.3).

(1) The bit flip noise flips the state of a qubit from |0⟩ to |1⟩ and vice versa with probability 1 − p,
and can be modelled by super-operator:

EBF (ρ) = E0ρE0 + E1ρE1 (17)

for all ρ, where

E0 =
√
pI =

√
p

(
1 0
0 1

)
E1 =

√
1 − pX =

√
1 − p

(
0 1
1 0

)
.

(2) The phase flip noise can be modelled by the super-operator EPF with

E0 =
√
pI =

√
p

(
1 0
0 1

)
E1 =

√
1 − pZ =

√
1 − p

(
1 0
0 −1

)
.

(3) The bit-phase flip noise is modelled by the super-operator EBPF with

E0 =
√
pI =

√
p

(
1 0
0 1

)
E1 =

√
1 − pY =

√
1 − p

(
0 −i
i 0

)
.

where X ,Y ,Z are Pauli matrices.

We sometimes write the bit flip super-operators as EBF (p) in order to explicitly specify the flip
probability p. The same convention is applied to the phase flip EPF and bit-phase flip EBPF .

Example 6.4. If the bit flip noise occurs after the Hadamard gates on both qubit p and q, then the
teleportation programs becomes:

QTELBF ≡ q := |0⟩; r := |0⟩; q := H [q];q := EBF [q]; q, r := CNOT[q, r];
p,q := CNOT[p,q]; p := H [p];p := EBF [p];
if (M[q] = 0 → skip □ 1 → r := X [r]) fi;
if (M[p] = 0 → skip □ 1 → r := Z [r]) fi

where EBF is the bit flip super-operator. Moreover, we write QTELPF and QTELBPF for the phase flip
and bit-phase flip occurring at the same positions.

Now the reliability of QTEL with the different noisesÐbit flip, phase flip and bit-phase flipÐis
modelled by the judgments:

|= QTELBF ∼ QTEL : EPF (p)(|ψ ⟩p ⟨ψ |) ⊗ |ψ ⟩p′ ⟨ψ | ⇒ |ψ ⟩r ⟨ψ | ⊗ |ψ ⟩r ′ ⟨ψ |, (18)

|= QTELPF ∼ QTEL : EPF (p)(|ψ ⟩p ⟨ψ |) ⊗ |ψ ⟩p′ ⟨ψ | ⇒ |ψ ⟩r ⟨ψ | ⊗ |ψ ⟩r ′ ⟨ψ |, (19)

|= QTELBPF ∼ QTEL : EPF (p2 + (1 − p)2)(|ψ ⟩p ⟨ψ |) ⊗ |ψ ⟩p′ ⟨ψ | ⇒ |ψ ⟩r ⟨ψ | ⊗ |ψ ⟩r ′ ⟨ψ |. (20)

To understand these judgments better, let us choose pure state |ψ ⟩ as the input of both QTELBF
andQTEL as an example. The correctness of QTEL has been verified and therefore, JQTELK(|ψ ⟩⟨ψ |) =
|ψ ⟩⟨ψ |.We assume that JQTELBFK(|ψ ⟩⟨ψ |) = ρ. There exists a unique coupling ρ ⊗ |ψ ⟩⟨ψ | for the
outputs ⟨ρ, |ψ ⟩⟨ψ |⟩, and according to the judgment (18), we know that:

tr(EPF (p)(|ψ ⟩p ⟨ψ |) ⊗ |ψ ⟩p′ ⟨ψ | · |ψ ⟩p ⟨ψ | ⊗ |ψ ⟩p′ ⟨ψ |) ≤ tr(|ψ ⟩r ⟨ψ | ⊗ |ψ ⟩r ′ ⟨ψ | · ρ ⊗ |ψ ⟩r ′ ⟨ψ |);

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

21:22 Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou

that is, ⟨ψ |ρ |ψ ⟩ ≥ p + (1 − p)|⟨ψ |Z |ψ ⟩|2.Whenever p is close to 1, then ρ is also close to |ψ ⟩⟨ψ |,
and this is what reliability actually means.
Judgemens (18), (19) and (20) can be verified in our logic rqPD using rule (SO-L) for general

quantum operations and rule (IF) for all pairwise comparisons.

6.4 Quantum One-Time Pad

In this subsection, we show that our logic can be used to specify and verify correctness and security
of a basic quantum encryption scheme, namely the quantum one-time pad (QOTP) [Boykin and
Roychowdhury 2003; Mosca et al. 2000]. Similar to the classical one-time pad, it uses a one-time
pre-shared secret key to encrypt and decrypt the quantum data, providing the information-theoretic
security. We first consider the simplest case, for protecting one-qubit data.

Example 6.5. The QOTP scheme includes three parts: key generation KeyGen, encryption Enc and
decryption Dec, which can be written as programs:

KeyGen ≡ a := |0⟩;b := |0⟩; a := H [a];b := H [b];
if M[a,b] = 00 → skip □ 01 → skip

□ 10 → skip □ 11 → skip

fi

Enc ≡ Dec ≡ if M[a,b] = 00 → skip □ 01 → p = Z [p]
□ 10 → p = X [p] □ 11 → p = Z [p];p = X [p]

fi

DisKey ≡ Tr[a];Tr[b]

Here, registers a and b are used as the secret key, and measurement

M = {M00 = |00⟩ab ⟨00|,M01 = |01⟩ab ⟨01|,M10 = |10⟩ab ⟨10|,M11 = |11⟩ab ⟨11|}

is introduced to detect the value of secret key, which has two-bit classical outcome. Register p is the
input quantum data which we want to protect. H is the Hadamard gate and X ,Z are Pauli gates as
usual. As the secret key is not considered when analysing the correctness and security of the protocol,
we further introduce DisKey to discard the key.

6.4.1 Correctness of Quantum One-Time Pad. The correctness of QOTP can be formulated as the
following judgment:

⊢ KeyGen;Enc;Dec;DisKey ∼ skip : (=sym) ⇒ (=sym). (21)

where =sym represents the projector onto the symmetric space. By an argument similar to that
for the correctness of quantum teleportation in Section 6.3.1, we can show that if judgment (21) is
valid, then for any possible input ρ of register p,

JKeyGen;Enc;Dec;DisKeyK(ρ) = JskipK(ρ) = ρ;

that is, the input state is the same as the output after QOTP.
Judgment (21) can be verified mainly with rule (IF-L). But note that the initialisations of registers

a and b are regarded as the creation of new local qubits. So, rules (SO-L) and (SO-R) are needed
here instead of (Init-L).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

Relational Proofs for Quantum Programs 21:23

6.4.2 Security ofQuantum One-Time Pad. Using the characterisation of uniformity given in Section
6.2, we may verify the security of QOTP by proving that for any |ψ ⟩ ∈ Hp :

⊢ KeyGen;Enc;DisKey ∼ KeyGen;Enc;DisKey :
Ip ⊗ Ip′

2
⇒ |ψ ⟩p ⟨ψ | ⊗ Ip′ . (22)

In fact, if judgment (22) is valid for all |ψ ⟩, then the output is uniform in all bases; that is, the output
of register p is 1

2 Ip , which is actually the maximally mixed state and nothing can be inferred from
it. To derive this judgment, we need rule (SO) and (IF-w).

6.4.3 General Quantum One-Time Pad. Now let us generalise Example 6.5 to the general case for
protecting n-qubit data. In this case, QOTP can be written as the following quantum program:

KeyGen(n) ≡ a1 := |0⟩; · · · ;an := |0⟩;b1 := |0⟩; · · · ;bn := |0⟩;
a1 := H [a1]; · · · ;an := H [an];b1 := H [b1]; · · · ;bn := H [bn];
if (□x1z1 · M[a1,b1] = x1z1 → skip) fi;
.
.
.

if (□xnzn · M[an,bn] = xnzn → skip) fi
Enc(n) ≡ Dec(n) ≡ if (□x1z1 · M[a1,b1] = x1z1 → p1 = Z

z1 [p1]; p1 = X x1 [p1]) fi;
.
.
.

if (□xnzn · M[an,bn] = xnzn → pn = Z
zn [pn]; pn = X xn [pn]) fi

DisKey(n) ≡ Tr[a1]; · · · ;Tr[an];Tr[b1] · · · ;Tr[bn]

Again, if we regard register p̄ = p1, · · · ,pn as the input and output of QOTP and consider the trivial
program skip with the duplicated register p̄ ′ = p ′1, · · · ,p ′n , then the judgment

⊢ KeyGen(n);Enc(n);Dec(n);DisKey(n) ∼ skip : (=sym) ⇒ (=sym). (23)

is derivable using the basic rules of logic rqPD, where =sym is the projector onto the symmetric
space between p̄ and p̄ ′. Indeed, this judgment implies the correctness of QOTP; that is, the input
and output quantum data on register p̄ = p1, · · · ,pn (might be entangled) are conserved. Similarly,
we can also prove that for any |ψ ⟩ ∈ Hp̄ :

|= KeyGen(n);Enc(n);DisKey(n) ∼ KeyGen(n);Enc(n);DisKey(n) :
Ip̄ ⊗ Ip̄′

2n
⇒ |ψ ⟩p̄ ⟨ψ | ⊗ Ip̄′ .

(24)

The above judgment actually implies the output after the encryption is the maximally mixed state
and it is impossible for the eavesdropper to obtain any information about the quantum data.

7 REASONING ABOUT PROJECTIVE PREDICATES

The logic rqPD was developed for reasoning about the equivalence between quantum programs
with respect to general preconditions and postconditions represented by Hermitian operators. But
in some applications, it is more convenient to use a simplified version of rqPD with preconditions
and postconditions being projective predicates (equivalently, subspaces of the state Hilbert spaces).
In this section, we present such a simplified version of rqPD and give an example to show its utility.
As one may expect, a price for this simplification is a weaker expressive power of the logic. The
coefficients 1

d
and 1

2
in the preconditions of judgments (12) and (14) are not expressible in rqPD

with projective predicates, indicating that the expressive power of rqPD with projective predicates
is strictly weaker than that of full rqPD.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

21:24 Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou

7.1 Inference Rules

In this subsection, we develop inference rules for judgments with projective preconditions and
postconditions. We consider judgments of the form:

P1 ∼ P2 : A⇒ B (25)

where A,B are two projections in (or equivalently, subspaces of) HP1 ⟨1⟩ ⊗ HP2 ⟨2⟩ .

Definition 7.1. Judgment (25) is projectively valid, written:

|=P P1 ∼ P2 : A⇒ B,

if for any ρ1 ∈ D≤ (
HP1 ⟨1⟩

)
and ρ2 ∈ D≤ (

HP2 ⟨2⟩
)
such that ρ1 A

ρ2, there exists a lifting of B
relating the output quantum states: JP1K(ρ1) B# JP2K(ρ2).

The following proposition clarifies the relationship between projective validity and the notion of
validity introduced in Definition 5.1.

Proposition 7.1. For any two program P1 and P2, and projective predicates A and B:

(1) |= P1 ∼ P2 : A⇒ B ⇛ |=P P1 ∼ P2 : A⇒ B;
(2) |= P1 ∼ P2 : A⇒ B ̸⇚ |=P P1 ∼ P2 : A⇒ B.

To present rules for proving projectively valid judgments, we need the following modifications
of Definitions 5.4 and 5.5.

Definition 7.2. LetM1 = {M1m} andM2 = {M2m} be two measurements with the same set {m}
of possible outcomes inHP1 andHP2 , and let A and Bm be projective predicates inHP1 ⟨1⟩ ⊗ HP2 ⟨2⟩ .
Then the assertion

|=P M1 ≈ M2 : A⇒ {Bm} (26)

holds if for any ρ1 ∈ D≤ (
HP1 ⟨1⟩

)
and ρ2 ∈ D≤ (

HP2 ⟨2⟩
)
such that ρ1 A

ρ2, there exists a sequence
of lifting of Bm relating the post-measurement states with the same outcomes: for allm,

(M1mρ1M
†
1m) B

#
m (M2mρ2M

†
2m).

Definition 7.3. Let M1 = {M1m} be a measurements in HP1 , and let A and Bm be projective
predicates inHP1 ⟨1⟩ ⊗ HP2 ⟨2⟩ . Then the assertion

|=P M1 ≈ I2 : A⇒ {Bm} (27)

holds if for any ρ1 ∈ D≤ (
HP1 ⟨1⟩

)
and ρ2 ∈ D≤ (

HP2 ⟨2⟩
)
such that ρ1 A

ρ2, there exist ρ2m such
that

∑
m ρ2m = ρ2 and for allm,

(M1mρ1M
†
1m) B

#
m ρ2m .

Now the proof system for judgments with projective preconditions and postconditions consists
of rules (Skip), (UT), (SC), (UT-L/R), (Conseq), (Equiv) and (Frame) in Figs. 4, 6 and 7 with ⊢, |=
being replaced by ⊢P and |=P , respectively, together with the rules given in Fig. 10.

Let us carefully compare this simplified proof system for projective predicates with the original
rqPD for general predicates of Hermitian operators:

• In rules (Init-P), (Init-P-L), (Init-P-R), (SO-P), (SO-P-L) and (SO-P-R), we have to use the
operation proj(·) because the operators in its operand there are not necessarily projective.

• Rule (Case) has no counterpart for projective predicates because probabilistic combination∑
i piAi of a family of projective predicates Ai is usually not projective.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

Relational Proofs for Quantum Programs 21:25

(Init-P) ⊢P q1 := |0⟩ ∼ q2 := |0⟩ : A⇒ |0⟩q1 ⟨1⟩ ⟨0| ⊗ |0⟩q2 ⟨2⟩ ⟨0| ⊗ proj(trHq1 ⟨1⟩⊗Hq2 ⟨2⟩
(A))

(Init-P-L) ⊢P q1 := |0⟩ ∼ skip : A⇒ |0⟩q1 ⟨1⟩ ⟨0| ⊗ proj(trHq1 ⟨1⟩
(A))

(IF-P) |=P M1 ≈ M2 : A⇒ {Bm} ⊢P P1m ∼ P2m : Bm ⇒ C for everym

⊢P if (□m · M1[q] =m → P1m) fi ∼ if (□m · M2[q] =m → P2m) fi : A⇒ C

(IF-P-L) |=P M1 ≈ I2 : A⇒ {Bm} ⊢P P1m ∼ P : Bm ⇒ C for everym

⊢P if (□m · M1[q] =m → P1m) fi ∼ P : A⇒ C

(LP-P) |=P M1 ≈ M2 : A⇒ {B0,B1} ⊢P P1 ∼ P2 : B1 ⇒ A

⊢P whileM1[q] = 1 do P1 od ∼ while M2[q] = 1 do P2 od : A⇒ B0

(LP-P-L)

|= while M1[q] = 1 do P1 od lossless
|=P M1 ≈ I2 : A⇒ {B0,B1} ⊢P P1 ∼ skip : B1 ⇒ A

⊢P whileM1[q] = 1 do P1 od ∼ skip : A⇒ B0

(SO-P) ⊢P q1 := E1 [q1] ∼ q2 := E2 [q2] : A⇒ proj((E1 ⊗ E2) (A))
(SO-P-L) ⊢P q1 := E1 [q1] ∼ skip : A⇒ proj(E1(A))

Fig. 10. Rules for Projective Predicates. For any positive operator A on Hilbert space H , we write proj(A)
for the projection onto supp(A), the subspace spanned by the eigenvectors of A with nonzero eigenvalues.

The quantum operations appeared in (SO-P) and (SO-P-L) are all trace-preserving. We omit the right-side

counterparts of (Init-P-L), (IF-P-L), (LP-P-L) and (SO-P-L).

• The main simplification occurs in the rules for control-flow constructs (i.e. conditionals
and loops). We only consider rule (IF-P); the same explanation applies to other control-flow
rules. First, the measurement condition |=P M1 ≈ M2 : A⇒ {Bm} in the premise of (IF-P)
is weaker than the measurement condition M1 ≈ M2 |= A ⇒ {Bm} in the premise of
(IF). Second, the measurement condition M1 ≈ M2 is the conclusion of (IF) is removed in
(IF-P). As already pointed out in the Introduction, this is biggest reward of the projective
simplification of our logic.

Proposition 7.2. The proof system for judgments with projective preconditions and postconditions
are sound.

As will be seen in the next subsection, this simplified proof system, in particular, the simplified
rules for control-flow constructs, whenever they are applicable, can significantly ease the verification
of relational properties of quantum programs. On the other hand, some relational properties of
quantum programs, e.g. judgments (12), (14) and (18-20), can be verified by the original rqPD but
not by this simplified system. Even for the same quantum programs, the original rqPD usually
can prove stronger relational properties in the case where the weakest preconditions or strongest
postconditions are not projective.

7.2 Example: Quantum Walks

In this subsection, we present an example to show the effectiveness of the inference rules given in the
previous subsection. Quantum (random) walks [Kempe 2003; Venegas-Andraca 2012] are quantum
analogues of random walks, and have been widely used in the design of quantum algorithms,
including quantum search and quantum simulation. There are two key ideas in defining a quantum
walk that are fundamentally different from that of a classical random walk: (1) a łquantum coinž
is introduced to govern the movement of the walker, which allows the walker to move to two
different directions, say left and right, simultaneously; (2) an absorbing boundary is realised by a

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

21:26 Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou

quantum measurement. Here, we show how our logic can be applied to verify a certain equivalence
of two one-dimensional quantum walks with absorbing boundaries: the quantum coins used in
these two quantum walks are different, but they terminate at the same position.

Example 7.1. Let Hc be the coin space, the 2-dimensional Hilbert space with orthonormal basis
state |L⟩ (or |0⟩c) and |R⟩ (or |1⟩c), indicating directions Left and Right, respectively. Let Hp be the
(n + 1)-dimensional Hilbert space with orthonormal basis states |0⟩, |1⟩, ..., |n − 1⟩, |n⟩, where vector
|i⟩ denotes position i for each 0 ≤ i ≤ n; in particular, positions 0 and n are the absorbing boundaries.
The state space of the walk is then H = Hc ⊗ Hp . Each step of the walk consists of:

(1) Measure the position of the system to see whether it is 0 or n. If the outcome is łyesž, then the walk
terminates; otherwise, it continues. The measurement can be described as M = {Myes,Mno},
where the measurement operators are: Myes = |0⟩⟨0| + |n⟩⟨n |,Mno = Ip −Myes =

∑n−1
i=1 |i⟩⟨i | ,

and Ip is the identity in position space Hp ;
(2) Apply a łcoin-tossingž operator C is in the coin spaceHc .

(3) Apply a shift operator S =
∑n−1

i=1 |L⟩⟨L| ⊗ |i − 1⟩⟨i | +∑n−1
i=1 |R⟩⟨R | ⊗ |i + 1⟩⟨i | in the space H .

Intuitively, operator S moves the position one step to the left or to the right according to the
direction state.

A major difference between a quantum walk and a classical random walk is that a superposition of
movement to the left and a movement to the right can happen in the quantum case. The quantum walk
can be written as a quantum program with the initial state in Hc ⊗ Hp as the input:

whileM[p] = no do c := C[c]; c,p := S[c,p] od (28)

We consider two frequently used łcoin-tossingž operators here: the Hadamard operator H and

the balanced operator: Y = 1√
2

(
1 i

i 1

)
.We use while(H) and while(Y) to denote program (28)

with C = H or Y , respectively. What interests us is: with what kind of initial states do the quantum
walks with different łcoin-tossingž operators H and Y produce the same output position? To this
end, we add a measurement to determine the exact position of the walks after their termination,
and discard the coin. So, programs while(H) and while(Y) are modified to:

QW (H) ≡ while(H); if (□i · M ′[p] = i → skip) fi; Tr[c],
QW (Y) ≡ while(Y); if (□i · M ′[p] = i → skip) fi; Tr[c]

where measurementM ′
= {M ′

i } withM ′
i = |i⟩⟨i | for i = 0, 1, · · · ,n.

Before formulating our result in our logic, let us fix the notations. Whenever comparing programs
QW (H) and QW (Y) and using, say x , to denote a variable in the former, then we shall use x ′ for
the same variable in the latter. For simplicity, we use |d, i⟩c ,p as an abbreviation of |d⟩c |i⟩p , Ic ,p
is the identity over the whole space Hc ⊗ Hp , and Sc ,p ;c ′,p′ is the SWAP operator between two
systemsHc ⊗ Hp andHc ′ ⊗ Hp′ . Furthermore, we introduce the following unitary operatorU and

projective predicates (=sym) and (=psym):

U : |d, i⟩c ,p 7→ (−1) i+d+32 |d, i⟩c ,p (=sym) =
1

2
(Ic ,p ⊗ Ic ′,p′ + Sc ,p ;c ′,p′)

(=psym) =
1

2

(∑
i ,i′=0,n

|i⟩p ⟨i | ⊗ |i ′⟩p′ ⟨i ′ | +
∑

i ,i′=0,n

|i⟩p ⟨i ′ | ⊗ |i⟩p′ ⟨i ′ |
)
,

In [Barthe et al. 2019], we show how to derive the following judgment in the projective version of
rqPD:

|=P QW (H) ∼ QW (Y) : Uc ′,p′(=sym)U †
c ′,p′ ⇒ (=psym). (29)

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

Relational Proofs for Quantum Programs 21:27

This judgment means that if walks QW (H) and QW (Y) start from states ρ1 and ρ2 = Uρ1U
†,

respectively, then they terminate at exactly the same position.

8 RELATED WORK

The formal verification of quantum programs is an active area of research, and many expressive
formalisms have been proposed in the literature [Chadha et al. 2006; D’Hondt and Panangaden
2006; Feng et al. 2007; Kakutani 2009; Ying 2011, 2016]. However, previous work largely considers
single program executions. Security of quantum one-time pad (our Example 6.5) was verified in
[Unruh 2019a] using a variant of quantumHoare logic rather than relational logic. Other formalisms
explicitly target equivalence of quantum programs [Ardeshir-Larijani et al. 2013; Feng and Ying
2015; Kubota et al. 2013]. However, these works are based on bisimulations and symbolic methods,
which have a more limited scope and are less powerful than general relational program logics.
Finally, some works develop specialized methods for proving concrete properties of quantum
programs; for instance, Hung et al [Hung et al. 2018] reason about quantitative robustness of
quantum programs. It would be interesting to cast the latter into our more general framework. This
seems possible although may not be straightforward; indeed, in Subsection 6.3.2, we showed that
our logic can be used to reason about the reliability of quantum teleportation against several kinds
of quantum noise.
Our work is most closely related to the quantum relational Hoare logic recently proposed by

Li and Unruh [2019]; Unruh [2019b]. Both works are inspired by probabilistic relational Hoare
logic [Barthe et al. 2009] and share the long-term objective of providing a convenient framework
for formal verification of quantum cryptography. However, the two works explore different points
in the design space of relational logics for quantum programs. There are several fundamental
differences between our logic and Unruh’s one, including expressiveness, entanglement in defining
the validity of judgments and inference rules. A careful comparison of them is given in [Barthe
et al. 2019].

9 CONCLUSION

We have introduced a relational program logic for a core quantum programming language; our logic
is based on a quantum analogue of probabilistic couplings, and is able to verify several non-trivial
examples of relational properties for quantum programs.
There are several promising directions for future work. First, we would like to further develop

the theory of quantum couplings, and in particular to define a quantum version of approximate
couplings. An extension apRHL of probabilistic relational Hoare logic pRHL was defined in [Barthe
et al. 2013] for verification of differential privacy. A surprising connection between quantum
differential privacy and gentle measurements recently observed by Aaronson and Rothblum [2019]
presents a further possible application of a quantum counterpart of apRHL in quantum physics.
Second, we would like to explore variants and applications of our logic to other areas, including
the convergence of quantum Markov chains, quantum cryptography, and translation validation
of quantum programs; in particular, the correctness of optimising quantum compilers for NISQ
(Noisy Intermediate Quantum) devices.

ACKNOWLEDGMENTS

This work is partially supported by the University of Wisconsin, a Facebook TAV award, the
Australian Research Council (Grant No: DE180100156 and DP180100691), the National Key R&D
Program of China (Grant No: 2018YFA0306701), and the National Natural Science Foundation of
China (Grant No: 61832015). We are grateful to the Max Planck Institute for Software Systems for
hosting some of the authors.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

21:28 Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou

REFERENCES

Scott Aaronson and Guy N. Rothblum. 2019. Gentle Measurement of Quantum States and Differential Privacy. In Proceedings

of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC 2019). ACM, New York, NY, USA, 322ś333.

https://doi.org/10.1145/3313276.3316378

Samson Abramsky and Bob Coecke. 2004. A Categorical Semantics of Quantum Protocols. In 19th IEEE Symposium on Logic

in Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings. 415ś425. https://doi.org/10.1109/LICS.2004.

1319636

V.S. Anil Kumar and H. Ramesh. 2001. Coupling vs. conductance for the JerrumśSinclair chain. Random Structures &

Algorithms 18, 1 (2001), 1ś17. https://doi.org/10.1002/1098-2418(200101)18:1<1::AID-RSA1>3.0.CO;2-7

Ebrahim Ardeshir-Larijani, Simon J. Gay, and Rajagopal Nagarajan. 2013. Equivalence Checking of Quantum Protocols. In

Tools and Algorithms for the Construction and Analysis of Systems - 19th International Conference, TACAS 2013, Held as

Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.

Proceedings (Lecture Notes in Computer Science), Nir Piterman and Scott A. Smolka (Eds.), Vol. 7795. Springer, 478ś492.

https://doi.org/10.1007/978-3-642-36742-7_33

Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, Léo Stefanesco, and Pierre-Yves Strub. 2015. Relational

Reasoning via Probabilistic Coupling. In Logic for Programming, Artificial Intelligence, and Reasoning - 20th International

Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings (Lecture Notes in Computer Science), Martin Davis,

Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov (Eds.), Vol. 9450. Springer, 387ś401. https://doi.org/10.1007/978-

3-662-48899-7_27

Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2017. Proving uniformity and

independence by self-composition and coupling. In LPAR-21, 21st International Conference on Logic for Programming,

Artificial Intelligence and Reasoning, Maun, Botswana, 7-12th May 2017 (EPiC Series), Thomas Eiter and David Sands (Eds.),

Vol. 46. EasyChair, 385ś403. http://www.easychair.org/publications/paper/340344

Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2018. Proving expected sensitivity of

probabilistic programs. PACMPL 2, POPL (2018), 57:1ś57:29. https://doi.org/10.1145/3158145

Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2016. Proving Differential Privacy

via Probabilistic Couplings. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS

’16, New York, NY, USA, July 5-8, 2016, Martin Grohe, Eric Koskinen, and Natarajan Shankar (Eds.). ACM, 749ś758.

https://doi.org/10.1145/2933575.2934554

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal certification of code-based cryptographic

proofs. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

2009, Savannah, GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.). ACM, 90ś101. https:

//doi.org/10.1145/1480881.1480894

Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou. 2019. Relational Proofs for Quantum Programs

(Extended Version). CoRR abs/1901.05184 (2019). arXiv:1901.05184 http://arxiv.org/abs/1901.05184

Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. 2012. Probabilistic relational reasoning for

differential privacy. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, John Field and Michael Hicks (Eds.). ACM, 97ś110.

https://doi.org/10.1145/2103656.2103670

Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella-Béguelin. 2013. Probabilistic Relational Reasoning for

Differential Privacy. ACM Trans. Program. Lang. Syst. 35, 3, Article 9 (nov 2013), 49 pages. https://doi.org/10.1145/2492061

Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters. 1993. Teleporting

an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70 (Mar 1993),

1895ś1899. Issue 13. https://doi.org/10.1103/PhysRevLett.70.1895

P. Oscar Boykin and Vwani Roychowdhury. 2003. Optimal encryption of quantum bits. Phys. Rev. A 67 (Apr 2003), 042317.

Issue 4. https://doi.org/10.1103/PhysRevA.67.042317

Rohit Chadha, Paulo Mateus, and Amílcar Sernadas. 2006. Reasoning About Imperative Quantum Programs. Electr. Notes

Theor. Comput. Sci. 158 (2006), 19ś39. https://doi.org/10.1016/j.entcs.2006.04.003

Howard Dale, David Jennings, and Terry Rudolph. 2015. Provable quantum advantage in randomness processing. Nature

communications 6 (2015), 8203.

Ellie D’Hondt and Prakash Panangaden. 2006. Quantum weakest preconditions. Mathematical Structures in Computer

Science 16, 3 (2006), 429ś451. https://doi.org/10.1017/S0960129506005251

Yuan Feng, Runyao Duan, Zheng-Feng Ji, and Mingsheng Ying. 2007. Proof rules for the correctness of quantum programs.

Theor. Comput. Sci. 386, 1-2 (2007), 151ś166. https://doi.org/10.1016/j.tcs.2007.06.011

Yuan Feng and Mingsheng Ying. 2015. Toward Automatic Verification of Quantum Cryptographic Protocols. In 26th

International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015 (LIPIcs), Luca Aceto

and David de Frutos-Escrig (Eds.), Vol. 42. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 441ś455. https:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

https://doi.org/10.1145/3313276.3316378
https://doi.org/10.1109/LICS.2004.1319636
https://doi.org/10.1109/LICS.2004.1319636
https://doi.org/10.1002/1098-2418(200101)18:1<1::AID-RSA1>3.0.CO;2-7
https://doi.org/10.1007/978-3-642-36742-7_33
https://doi.org/10.1007/978-3-662-48899-7_27
https://doi.org/10.1007/978-3-662-48899-7_27
http://www.easychair.org/publications/paper/340344
https://doi.org/10.1145/3158145
https://doi.org/10.1145/2933575.2934554
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1145/1480881.1480894
http://arxiv.org/abs/1901.05184
http://arxiv.org/abs/1901.05184
https://doi.org/10.1145/2103656.2103670
https://doi.org/10.1145/2492061
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevA.67.042317
https://doi.org/10.1016/j.entcs.2006.04.003
https://doi.org/10.1017/S0960129506005251
https://doi.org/10.1016/j.tcs.2007.06.011
https://doi.org/10.4230/LIPIcs.CONCUR.2015.441
https://doi.org/10.4230/LIPIcs.CONCUR.2015.441

Relational Proofs for Quantum Programs 21:29

//doi.org/10.4230/LIPIcs.CONCUR.2015.441

Justin Hsu. 2017. Probabilistic Couplings for Probabilistic Reasoning. CoRR abs/1710.09951 (2017). arXiv:1710.09951

http://arxiv.org/abs/1710.09951

Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying, Michael Hicks, and Xiaodi Wu. 2018. Quantitative

Robustness Analysis of Quantum Programs (Extended Version). CoRR abs/1811.03585 (2018). arXiv:1811.03585 http:

//arxiv.org/abs/1811.03585 To appear at POPL’19.

Yoshihiko Kakutani. 2009. A Logic for Formal Verification of Quantum Programs. In Advances in Computer Science -

ASIAN 2009. Information Security and Privacy, 13th Asian Computing Science Conference, Seoul, Korea, December 14-

16, 2009. Proceedings (Lecture Notes in Computer Science), Anupam Datta (Ed.), Vol. 5913. Springer, 79ś93. https:

//doi.org/10.1007/978-3-642-10622-4_7

MS Keane and George L O’Brien. 1994. A Bernoulli factory. ACM Transactions on Modeling and Computer Simulation

(TOMACS) 4, 2 (1994), 213ś219.

Julia Kempe. 2003. Quantum random walks: an introductory overview. Contemporary Physics 44, 4 (2003), 307ś327.

Takahiro Kubota, Yoshihiko Kakutani, Go Kato, Yasuhito Kawano, and Hideki Sakurada. 2013. Automated Verification of

Equivalence on Quantum Cryptographic Protocols. In 5th International Symposium on Symbolic Computation in Software

Science, SCSS 2013, Castle of Hagenberg, Austria (EPiC Series in Computing), Laura Kovács and Temur Kutsia (Eds.), Vol. 15.

EasyChair, 64ś69. http://www.easychair.org/publications/paper/143661

Burkhard Kümmerer and Kay Schwieger. 2016. Diagonal couplings of quantumMarkov chains. Infinite Dimensional Analysis,

Quantum Probability and Related Topics 19, 2 (2016), 1650012.

Yangjia Li and Dominique Unruh. 2019. Quantum Relational Hoare Logic with Expectations. CoRR abs/1903.08357 (2019).

arXiv:1903.08357 http://arxiv.org/abs/1903.08357

Torgny Lindvall. 2002. Lectures on the coupling method. Courier Corporation.

Michele Mosca, Alain Tapp, and Ronald de Wolf. 2000. Private quantum channels and the cost of randomizing quantum

information. arXiv preprint quant-ph/0003101 (2000). https://arxiv.org/abs/quant-ph/0003101

Michael A Nielsen and Isaac Chuang. 2002. Quantum computation and quantum information. Cambridge University Press.

Peter Selinger. 2004a. A Brief Survey of Quantum Programming Languages. In Functional and Logic Programming, 7th

International Symposium, FLOPS 2004, Nara, Japan, April 7-9, 2004, Proceedings (Lecture Notes in Computer Science),

Yukiyoshi Kameyama and Peter J. Stuckey (Eds.), Vol. 2998. Springer, 1ś6. https://doi.org/10.1007/978-3-540-24754-8_1

Peter Selinger. 2004b. Towards a quantum programming language. Mathematical Structures in Computer Science 14, 4 (2004),

527ś586. https://doi.org/10.1017/S0960129504004256

Volker Strassen. 1965. The existence of probability measures with given marginals. The Annals of Mathematical Statistics

(1965), 423ś439. http://projecteuclid.org/euclid.aoms/1177700153

Hermann Thorisson. 2000. Coupling, Stationarity, and Regeneration. springer.

Dominique Unruh. 2019a. Quantum Hoare Logic with Ghost Variables. In 2019 34th Annual ACM/IEEE Symposium on Logic

in Computer Science (LICS). 1ś13. https://doi.org/10.1109/LICS.2019.8785779

Dominique Unruh. 2019b. Quantum Relational Hoare Logic. Proc. ACM Program. Lang. 3, POPL, Article 33 (Jan. 2019),

31 pages. https://doi.org/10.1145/3290346

Salvador Elías Venegas-Andraca. 2012. Quantum walks: a comprehensive review. Quantum Information Processing 11, 5

(2012), 1015ś1106.

Cédric Villani. 2008. Optimal transport: Old and new. springer.

Andreas Winter. 2016. Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy

distance and energy constraints. Communications in Mathematical Physics 347, 1 (2016), 291ś313.

Mingsheng Ying. 2011. Floyd-Hoare logic for quantum programs. ACM Trans. Program. Lang. Syst. 33, 6 (2011), 19:1ś19:49.

https://doi.org/10.1145/2049706.2049708

Mingsheng Ying. 2016. Foundations of Quantum Programming. Morgan-Kaufmann.

Mingsheng Ying, Nengkun Yu, Yuan Feng, and Runyao Duan. 2013. Verification of quantum programs. Sci. Comput. Program.

78, 9 (2013), 1679ś1700. https://doi.org/10.1016/j.scico.2013.03.016

Li Zhou, Shenggang Ying, Nengkun Yu, and Mingsheng Ying. 2019a. Strassen’s theorem for quantum couplings. Theoretical

Computer Science (2019). https://doi.org/10.1016/j.tcs.2019.08.026

Li Zhou, Nengkun Yu, and Mingsheng Ying. 2019b. An Applied Quantum Hoare Logic. In Proceedings of the 40th ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2019). ACM, New York, NY, USA,

1149ś1162. https://doi.org/10.1145/3314221.3314584

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 21. Publication date: January 2020.

https://doi.org/10.4230/LIPIcs.CONCUR.2015.441
https://doi.org/10.4230/LIPIcs.CONCUR.2015.441
http://arxiv.org/abs/1710.09951
http://arxiv.org/abs/1710.09951
http://arxiv.org/abs/1811.03585
http://arxiv.org/abs/1811.03585
http://arxiv.org/abs/1811.03585
https://doi.org/10.1007/978-3-642-10622-4_7
https://doi.org/10.1007/978-3-642-10622-4_7
http://www.easychair.org/publications/paper/143661
http://arxiv.org/abs/1903.08357
http://arxiv.org/abs/1903.08357
https://arxiv.org/abs/quant-ph/0003101
https://doi.org/10.1007/978-3-540-24754-8_1
https://doi.org/10.1017/S0960129504004256
http://projecteuclid.org/euclid.aoms/1177700153
https://doi.org/10.1109/LICS.2019.8785779
https://doi.org/10.1145/3290346
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1016/j.scico.2013.03.016
https://doi.org/10.1016/j.tcs.2019.08.026
https://doi.org/10.1145/3314221.3314584

	Abstract
	1 Introduction
	2 Mathematical Preliminaries
	3 Quantum Couplings and Liftings
	3.1 Quantum Couplings
	3.2 Quantum Lifting
	3.3 Separable versus Entangled Liftings

	4 Quantum Programming Language
	5 Relational program logic
	5.1 Judgments and Satisfaction
	5.2 Basic Construct-Specific Rules
	5.3 Measurement Conditions
	5.4 Separability Conditions
	5.5 Entailment between Side-Conditions
	5.6 Auxiliary Rules for General Quantum Operations
	5.7 Soundness Theorem

	6 Examples
	6.1 Symmetry between Simple Programs
	6.2 Uniformity
	6.3 Quantum Teleportation
	6.4 Quantum One-Time Pad

	7 Reasoning about Projective Predicates
	7.1 Inference Rules
	7.2 Example: Quantum Walks

	8 Related work
	9 Conclusion
	Acknowledgments
	References

