© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

Quantum Supremacy Circuit Simulation on
Sunway TaihuLight

Riling Li, Bujiao Wu, Mingsheng Ying, Xiaoming Sun, Guangwen Yang

Abstract— With the rapid progress made by industry and academia,
quantum computers with dozens of qubits or even larger size are
being realized. However, the fidelity of existing quantum computers
often sharply decreases as the circuit depth increases. Thus, an ideal
quantum circuit simulator on classical computers, especially on high-
performance computers, is needed for benchmarking and validation.
We design a large-scale simulator of universal random quantum circuits,
often called “quantum supremacy circuits”, and implement it on Sunway
TaihuLight. The simulator can be used to accomplish the following two
tasks: 1) Computing a complete output state-vector; 2) Calculating one
or a few amplitudes. We target the simulation of 49-qubit circuits. For
task 1), we successfully simulate such a circuit of depth 39, and for
task 2) we reach the 55-depth level. To the best of our knowledge, both
of the simulation results reach the largest depth for 49-qubit quantum
supremacy circuits.

Index Terms—quantum computing, quantum circuit simulation, Sunway
TaihuLight

1 INTRODUCTION

The concept of quantum computer was proposed almost
four decades ago [8]. But until recently it had been un-
known whether quantum computers can indeed exceed the
computing capability of their classical predecessors. Thanks
to the progress made by industry and academia in recent
years, practical quantum computing might become reality
soon. However, before a commercial quantum computer is
launched on market, many tests and verification need to be
done. One of the most important is to test the fidelity of
quantum circuit. One way to accomplish this is to simulate
quantum circuits by computing the ideal state amplitudes
on a classical computer. A quantum simulator on classi-
cal computer could also be used to verify correctness of
certain quantum algorithms and help the design of new
quantum algorithms. Besides, quantum circuit simulator
implemented on supercomputers benchmark the frontier
of “quantum supremacy”, which is the potential ability of

e R. Liand G. Yang are with the Department of Department of Computer
Science & Technology,Tsinghua University, Beijing, China.
E-mail: rl-1i16@mails.tsinghua.edu.cn, ygw@tsinghua.edu.cn.

e M. Ying is with Centre for Quantum Software and Information, Univer-
sity of Technology Sydney, Sydney, Australia.
E-mail: Mingsheng.Ying@uts.edu.au.

o B. Wu and X. Sun are with the Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China.
E-mail: wubujiao,sunxiaoming@ict.ac.cn.

quantum computing devices to solve problems that classical
computers practically cannot.

Quite a few implementations of quantum circuit simu-
lators have been developed in last few years [15-25]. And
[2, 26, 27] discuss complexity problems of random circuit
simulation. We design a simulator on Sunway TaihuLight,
which aims at 49-qubit circuits. Such circuits are hard to di-
rectly simulate on other supercomputers due to the limited
memory spaces, and it is widely believed that near-term
quantum device will first achieve quantum supremacy at
this scale. Our simulator can accomplish the following:

e Task 1: Computing a complete output state-vector
representing a quantum state output by the simu-
lated quantum circuit;

e Task 2: Sampling (i.e. calculating a small amount of)
the amplitudes of a quantum state output by the
quantum circuit.

For Task 1, we are able to solve the lattice of 7 x 7 qubits
with depth 39 ! in 4.2 hours using 131072 core groups, which
is around 80% of the computing resource of Sunway. As
to Task 2, our method can calculate one amplitude for 49-
qubit circuits of depth 55. Moreover, our method for Task
1 can also be directly extended to the lattices of 7 x §,
8 x 8, and 9 x 8 qubits for calculating a few amplitudes,
though the reachable depth of the random circuit would be
decreasing with the increasing of the qubits. Figure 1 shows
the maximal depth our simulator can reach for different
number of qubits.

1.1 Comparison with other quantum simulators

For Task 1, related works in recent years include [15-19]; in
particular:

e The simulator described in [17] can simulate a ran-
dom circuit with 5 x 9 qubits and depth 25 on the
Cori II supercomputer in less than 10 minutes, using
0.5 petabytes and 8192 nodes.

o Reference [18] reports a simulation of a 7 x 7 grid of
qubits with depth 27, which costs more than one day
on IBM Blue Gene/Q.

o The simulator discussed in [19] is also implemented
on Sunway. With the adaptive coding technique they

1. The first layer of Hadamard gates are not counted as the circuit
depth, we treat it as layer 0. So the circuit we simulate is from layer 0
to layer 39. This also holds for Task 2.

—*— Sunway
O IBM

40+

depth
w
S

20+

49 56 64 72
number of qubits

Fig. 1. The maximal circuit depth we can simulate in cases of different
number of qubits. Both our simulator and IBM [18] can calculate all
249 amplitudes for 49-qubit case. For 56- or more qubit cases, we only
calculate a slice of 232 amplitudes for purpose of demonstration.

can simulate circuits with up to 48 qubits, without
loss much accuracy. However, they does not use the
computing processing elements (CPEs) of Sunway,
hence unable to make most of the computing power
of it.

In contrast to these works, our method can simulatea 7 x 7
grid of qubits with depth 39. It is worth noting that the
task of simulating 7 x 8 grid of qubits with depth 23 was
not finished in [18] because 2°¢ amplitudes are too many to
calculate. We also calculate 2%? amplitudes for 7 x 8-qubit
circuits of depth 35, but only for demonstration. Table 1
compares our implementation and several previous works.
Our results of Task 1 reaches the largest depth for 49-qubit
circuit simulation to our knowledge.

Task 2 of sampling amplitudes can be used to estimate
the fidelity by computing the cross entropy, which usually
needs 10° ~ 10° samples [5]. The sampling target is to
calculate an amplitude «,, where 0 < z < 2" — 1 for
an n-qubit circuit. The most popular method for this task
is tensor network contraction [20-24]. In [20], the task of
solving one amplitude is finished on a single workstation
for 49-qubit circuits with depth 30. In [22], one amplitude
is calclulated in Ali Cloud distributed system for 49-qubit
circuit with depth 53. Though tensor network contraction
technique is very suitable for calculating one amplitude,
a drawback is that the performance is impacted by the
number of T gate in the circuit. While we have not used
the tensor network contraction, our method of calculating
the state-vector can also be directly applied to calculate a
small number of amplitudes without that drawback. More
precisely, we can get one amplitude for 7 x 7-qubit circuits
of depth 55 by calculating the inner product of two 49-qubit
state-vector, although this is rather expensive.

1.2 Technical contributions of this paper

The first contribution of this paper is that we introduce a
novel partition scheme via a technique called implicit de-
composition and a dynamic programming algorithm, which
enables us to save more time and space than [18]. This

[Reference | Platform | Qubits [Depth | Time |
ETH[17] Cori IT 45 25 10 minutes
IBM[18] Blue Gene/Q 49 27 2 days
Sunway Sunway TaihuLight 49 39 4.2 hours

TABLE 1
Several quantum circuit simulators implemented on supercomputers in
recent years. Our simulator reaches the largest number of qubits and
also the largest depth for 49-qubit circuits in the case of solving all
amplitudes of the final state (Task 1).

partition scheme needs a great amount of network commu-
nication, so we also propose an optimization strategy for
reducing it when implementing our method.

Our second contribution is some new local optimizing
techniques on a single node, which take the advantage
of the many-core heterogeneous processor of Sunway. Our
optimization greatly reduces the amount of memory access
while it only increases a small quantity of calculation as
shown in section 3.4. We also apply some standard opti-
mizations such as vectorization. By all of these techniques,
we can simulate a 28-qubit circuit on one core group very
quickly as shown in 3.4, which is significant for improving
the performance of 49-qubit circuit simulation.

1.3 Organisation of the paper

Section 2 gives a brief introduction to Sunway TaihuLight.
Section 3 describe the simulation methodologies and opti-
mization techniques. Section 4 presents the numerical re-
sults of our implementation as well as verification of the
results. Section 5 discusses portability of our techniques
to other supercomputers as well as logical structure of
optimizations. Section 6 draws a conclusion and discusses
the problems to be solved in the future work.

2 THE SUNWAY TAIHULIGHT SUPERCOMPUTER

Released in June 2016, the Sunway TaihuLight Supercom-
puter [9] is so far the largest computing system China
has ever developed. The whole system consists of 40960
homegrown CPUs called SW26010, and is able to provide
a peak performance of 125 PFlops, a sustainable Linpack
performance of 93 PFlops, ranking No.1 for four times in
the TOP 500 list, in the year of 2016 and 2017.

Each of the SW26010 processor consists of four core
groups(CG) and 32 GB memory. Within one CG, there are
1 management processing elements (MPEs) corresponding
to the MPE, and 64 computing processing elements (CPEs)
corresponding to the CPEs. The 64 CPE cores are organised
as a 8 x 8 mesh. Each MPE has a 32 KB L1 data cache and a
256 KB L2 cache for both instruction and data, and each CPE
has a 64 KB scratch pad memory (SPM). Within a single CG,
all the SPMs are able to communicate with each other in a
few cycles, resulting in a very fast communication option for
fine-grained tunings.” In terms of the programming model,
a customised OpenACC is provided for directive-based
parallelisation and tuning, while a self-developed Athread
is provided for fine-grained tunings.

Since in our implementation, each CG corresponds to a
unique MPI process, we regard a CG instead of a SW26010
CPU as a single node in this paper to avoid some messy
and confusing description. That is, each node refers to one CG,

containing only 1 MPE and 64 CPEs and corresponding to only
one MPI process.

In the past years, the Sunway TaihuLight has been
adopted into various scientific applications, covering major
HPC areas such as climate changing[12], earthquake simu-
lations [11], deep learning [10], material [13], etc. Based on
the huge computing power as well as a set of sophisticated
scaling approaches, a lot of achievements has been achieved,
including the works [11, 12] that won the 2016 and 2017
ACM Gordon Bell Prizes, respectively. On the other hand, as
quantum computing is becoming a possible and promising
computing option, people are eager to see better simulation
results using the most powerful supercomputers, such as
the Sunway TaihuLight.

3 METHODOLOGIES AND OPTIMIZATIONS

Before describing our methods and optimizations, let us
recall some basic notions and notations.

The basic storage unit in a quantum computer is quan-
tum bit (qubit). Generally, we can use a 2"-length com-
plex vector to describe an n-qubit state, such as [¢)) =
(v, 1,4 ...agn,l)T. A practical quantum circuit consists of
single-qubit and 2-qubit gates. For example, a single-qubit

gate U* = Z on qubit k can be treated as an n-qubit

gate which acts as identity on the other n — 1 qubits, as

denoted by U = I®"k~1@UF®I®* where I is the identity

operator on a single qubit. In this paper, a superscript

indicates the qubit that the gate is performed on, and a

subscript is used as a gate label or an index of amplitude.
To perform U* on a state [¢p) = (ag, a1, -+ ,agn_1)T

, we
have:
a; \ _fa b a;
Oé;+2k B c d Q4 ok

for every ¢ = ip_1...1190 where i = 0. And the resulting
state is then [¢") = (af), o}, ...a%n_1)T = U¥|1)). The 2-qubit
gates used in this paper are mainly the controlled-gate: CZ.
A controlled-gate CU®" act on qubits ¢ and ¢, with the first
being the control bit and the second being the target bit. The
performance of a 2-qubit gate is similar to that of a single-
qubit gate with the only extra consideration of whether the
control qubit is in state |1); for more details, we refer to [14].

For a quantum circuit simulation, the initial state is usu-
ally the product state:

|0)®" =10) ® 0) @ ... ® |0).

n

If there is no 2-qubit gate in the circuit, the state will
persistently remain a product state and only O(n) space is
needed to describe the state. However, as the number of
two-qubit gates increases, the quantum state may become
highly entangled. In this case, the storage of the state will
require O(2") space. As n increases, the memory require-
ment becomes insupportable even for the most powerful
supercomputers. For example, the maximal qubit number of
a state vector that could be stored in the memory of Sunway
is 45 (46) using double (float), which requires 0.5 petabytes
of memory space. However, for a 2-qubit gate CU®!, we
can decompose it into CU = P§ ® I' + Pf ® U', where
Py = 10)(0] and P, = |1)(1], and go along two branching

3

path with respect to Fy and P;. deferring the entanglement
it brings. Until an appropriate stage we combine the branch-
ing paths, finishing the deferred entanglement. Essentially,
this idea comes from the notion of “Feynman path integral”
and appeared in [2, 18, 20].

A universal random quantum circuit has a 2D grid archi-
tecture [5]. The quantum gates used in this type of circuits
are H,X'/2 Y12 T and CZ. The 2-qubit gate CZ only
appears between two adjacent qubits in the grid. Since the
positions of CZ gates are fixed in each layer of n x m-
grid universal random circuit for arbitrary n,m, we can
find a very efficient partition scheme fitting the scale and
structure of simulated circuit. Our techniques for finding
this partition scheme are described in detail in the following
subsection.

3.1 Method for computing the complete state-vector
(Task 1)

The 2D grid architecture of universal random ciruits
makes circuit partition an appropriate method for simula-
tion. However, as the circuit depth increases, the number
of decomposed 2-qubit gates also increases. To increase the
depth of circuits that can be simulated, we propose two
optimizing techniques, which enable us to simulate 49-qubit
circuits of depth 39, computing the complete output state-
vector:

o Technique 1: We analyze the structure of universal
random circuits, exploit the diagonal properties of
CZ gates, and propose a technique, called implicit
decomposition, which can decompose extra 7 CZ gates
without requiring too much extra memory space, so
as to increasing the depth of simulated circuits by 8.

o Technique 2: We propose a dynamic programming
(DP) algorithm to find a good partition scheme for
a given simulation task. In contrast to the general
heuristic search method that usually takes a long
time, this DP algorithm is efficient and can find an
optimal partition scheme under certain constraints.
It also makes the simulation easier to optimize and
parallelize and thus improves the performance in
time-to-solution.

3.1.1 Implicit decomposition

Our partition scheme divides the target circuit into three
parts A, B and C, with each part requiring less memory
than the memory needed to store the entire 49-qubit state
vector. To save memory space as far as possible, we need
the qubit numbers of part A and part B to be not only close,
but also suitable for an efficient partition, so we choose part
A with 21 qubits and part B with 28 qubits instead of 24 and
25 qubits? respectively. Implicit decomposition further bal-
ances the memory requirement of these 3 parts, decomposes
extra CZ gates and increases the depth of circuits that could
be simulated.

For a better understanding of Technique 1, let us first
consider a circuit example shown in Fig. 2. The partition

2. Part A with 24 qubits and part B with 25 qubits will result in a
much more complicated partition scheme and be less memory-efficient
because the partition lines will cut more CZ gates, and the implicit
decomposition cannot be applied in this case.

cirguit_ex2.pdf

Fig. 2. Example of a 4-qubit circuit. In this example, there are 2 CZ gates being decomposed. Note that the second decomposed CZ gate only
doubles the space consumption of part A, because after this CZ gate there is no gate in part B performed on qubit 2, thus we call it implicit

decomposition.

scheme for simulation is illustrated by the blue dotted line
and yellow dotted line. The dotted lines cut two CZ gates,
and partition the circuit into 3 parts: A, B and C. We use |¢)
and |€) to describe the initial states in the two subsystems.
Because there are two CZ gates being decomposed (cut by
dotted lines), four branching paths in total are generated.
Let |¢7"],) be the resulting state after performing the gates
in part A, and [y and Iy denote the indices of qubit 2 in
two different time. State |£7%]) is similar to [¢7"]). Then

l1,l2
we have®:
t
971,)
where [; and [l5 denote the indices of qublt 2 when de-

composing the cutting CZ gates, thus CZ = I' and
Czy L' — 71 Furthermore, we have:

&0, = XOPET2C 22 PR O HA)

where P is a projection operator: P;|i) = |i) and P;|1—i) = 0
for i = 0, 1. The starting state of part C is:

W) = 16p,) @ 1€,)

l1,l2

= Xxcz™ytczi 'z HOH ¢)

We perform the remaining gates in part C, and the eventu-
ally state |¢)°%') is:

")

There are 2* = 16 amplitudes to calculate for [1)'") (or
|1°“t)). But we do not need to conserve all 16 amplitudes
once in memory(not counting memory space for |¢) and |£))
to accomplish the calculation. Note that in part C there are
gates only performed on qubit 1 and qubit 2, and no gate on
qubit 0 and qubit 3. So [1)*™) can be divided into 4 blocks by
enumerating the indices of qubit 0 and qubit 3. Let [¢)]'2)

20,3

denote the reduced state of qubit 1 and qubit 2 with qubit

— Y1X20Z1’2X2|’l/)in> (2)

0 at |ig) and qubit 3 at |i3). Then ['") = D, i | fgﬁf)
Equation (2) turns into:
wout @ |w;301f§;qu¢h
10713
= Pixrez Xyl 3)
00,13

Now we know that if all the results of part A and B are
calculated and stored in memory, there only needs extra
space for 22 = 4 amplitudes in part C. From now on we
set an amplitude as a basic storage unit (8 + 8 = 16 bytes),
and the total space consumption is S4 + Sp + 4 instead of
Sa+S5p+16, where S4 and Sp are the space consumption
of part A and B, respectively.

From the above analysis, we know Sy = Sp =
16. However, Sp can be halved without introducing extra

22+2 —

3. The order of performing gates in circuit is from left to right, while
the matrix-vector multiplication is from right to left.

Fig. 3. Implicit decomposition applied to 49-qubit universal random
circuits. In this figure and all following figures, two adjacent black blocks
represent a CZ gate. And the blocks in red represent the CZ gate that
could be implicit decomposed. Because part A has 21 qubits and part B
has 28 qubits, without implicit decomposition Sp = 228+7,5 4 = 22147,
After we use implicit decomposition on these seven cut CZ gates at
the second and third layer, the ultimate space consumption of part B
is sy = Sp/27, and now Sy = S’.

computation. Note that after the second cut CZ (in red) gate
being decomposed, there is no any gate performed on qubit
2 in part B, so for any amplitude of [£7"]), letitbe &;, ij i, 1
where 75 and i3 are the indices of qublt 2 and qubit 3. We
have

§i27i37l1;1275i2 - O, fOI' l2 = O’ 1

Thus, the index l5 could be absorbed into index i, and we
only need to store 7). This means that when we finish the
calculation of part B, only 272 = 8 amplitudes need to be
stored, while in part A there are still 22%2 = 16 amplitudes
to be stored. Because the second cut CZ gate is decomposed
but the space consumption need not be doubled for control
part (part B in this example), we call this technique implicit
decomposition.

The implicit decomposition is useful when the space
consumption of part A and B is not balanced, say there need
space S4 to store part A and some fewer space Sp to store
part B, we could apply implicit decomposition to part A,
and only making the space of part A to S’y while leaving
the space of B unchanged, until S/, and Sg are almost in the
same magnitude.

For a universal random quantum circuit of m x n grid, the
implicit decomposition works well when m or n is odd. Our
main target is 7 x 7-qubit circuits. At first, the two cutting
lines are at the same position and partition the circuit into
two parts: part A with 21 qubits, part B with 28 qubits. Then
we apply this technique to part B, as shown in Fig. 3.

3.1.2 Dynamic programming

To reduce the total space consumption and make the sim-
ulator easier to optimize, we avoid decomposing CZ-gates
between part C and parts A, B. At first two splitting line
overlap. When the two splitting lines separate, they start
to walk around the CZ gates and will not cut-off any one
of them. A feasible partition scheme also requires the total
space consumption less than the memory space. To find an
optimal partition scheme under these constrains, we design
a dynamic algorithm for state compression.

I I'_- ™ | 17

Fig. 4. A illustrative example of legal transition between two adjacent
layers. From layer t to ¢ + 1, the position of upper splitting line (in blue)
transforms from (0, 1,0,1,0,1,0) to (1,1,...,1). Since (1,1, ...,1) does
not cut any CZ gate at layer ¢ + 1, this is a legal transition. So f(¢ +
17 17 17 il 1) = mzn{f(t + 17 17 17 RaS] 1)7 f(tv Oy 17 07 1707 17 0)}

Let f(t,41,%2,13,14,15,l6,47) denote the minimal space
consumption (exponential in f) of part A when the partition
scheme reaches layer ¢t and the position of upper splitting
line is (i1,12,...,97). Here, (i1,42,...,17) is used to indicate
the distance between the current position and the initial
position. Initially, the upper splitting line is beneath the
third row of qubits, and f(1,0,...,0) = 21. Note that
£(7,0,0,...,0) =21 +3 =24 and f(8,0,0,...,0) =214+3+
4 = 28. Since we have a restriction that no CZ gate between
part A and B could be decomposed, f(t,i1,%2,...,i7) will
be illegal when (i1, iz, ...,i7) # (0,0, ...,0) and (i1, 2, ..., i7)
splits some CZ gate at layer ¢.

Algorithm 1: Pseudocode of the Dynamic Program-
ming

Input: f(t)

Output: f(t+ 1)

1 for 0 < iq,49,...,77 < 3 do

2 f(t+1ai1,i27"'7i7) = 00y

3 if position (41,12, ..., i7) is not illegal then
4 | continue;

5 end

6 cutnum =

number of CZ gates splitting by (iq, ...,i7);

7 | for0<j; <11,0 < g2 <ig,...,0< g7 < iz do

8 f(t + 1,017,099, ..yi7) = min{f(t,jl,jg, ...,j7) +
cutnum, f(t + 1,41,42,...,07) };

9 end

10 end

Similarly, let g(¢,41,...,i7) denote the target function of
part B. Then ¢(1,0,0,...,0) = 28 and ¢(8,0,0,...,0) = 35.
The recursion from g(t — 1) to g(¢) is similar to f, and
the only difference is that when (iy, 42, ...,97) first leaves
the initial position it has a chance of applying implicit
decomposition.

To find a good partition scheme for circuit of depth ¢,
we can traverse f(t) and g(t) to find an optimal combi-
nation of f(t,iy,1s,...,47) and g(¢, j1, jo, --., j7) which min-
imizes S4 + Sp + Sc, where Sy = 2/ (bivsiz,in) G —
29(t:1:42:37) and S = 2> 1<k<7(6FI) | Geveral partition
schemes are illustrated in Fig. 5,6 and 8. There need space
Sa = Sp = 235, S = 228 to execute the simulation for
depth 27, while S4 = Sp = 22 for depth 35 and 39. The
maximal number of qubits that could be simulated on one
node is 28. This indicates that from depth 35 to depth 39,
there will be a drop in performance, which is shown in
section 4.3.

S5
B a2 S

Fig. 5. Partition scheme for 49-qubit circuit of depth 27.

Fig. 6. Partition scheme for 49-qubit circuit of depth 39. The scheme for
depth 35 is exactly the front 35 layers of this figure, except for that at
layer 35 two splitting lines are still straight as in layer 34 and cut 6 extra
CZ gates (See the last layer of partition scheme for 49-circuit of depth
27 in Fig. 5). Note that the CZ gates at the last layer would not impact
the probabilities and could be removed because they diagonal. Thus the
number of CZ gates being cut (the implicit decomposed CZ gates and
CZ gates cut at the last layer are not included) is 14 for both depth 35
and 39, located in layer 7 and layer 14. But in the case of depth 35
Sc = 228 and in the case of depth 39 S = 242.

3.1.3 Summary

The two techniques proposed above not only work for
universal random circuit. For circuit of an arbitrary 2-D grid
structure, our method can find a proper partition scheme to
reduce the time and space complexity of simulation. Table
3 gives an algorithmic comparison of our partition scheme
and the partition scheme in [18].

Obviously, 7 x 7-qubit circuits of depth 39 and of depth
40 have different difficulties in physical preparation and op-
eration. We provide an evidence showing that our method
might reach depth 40 if the target circuit is a “lucky circuit”
(i.e., with enough T gates in special positions at layer 40).
For example, using the tensor slice technique in [18], if
there is at least one T gate in the four single-qubit gates
on qubit 0, 2, 4, 6 at layer 40, the size of a slice is at most 24°,
which could be directly simulated on Sunway. Though the
performance will further drop from depth 39 to depth 40.

Depth | 27 35 39
SA 235 242 242

SB 235 242 242
SC 228 228 242
TABLE 2
The space consumption of parts A,B,C for 49-qubit circuit of different
depth.

[Reference [Depth | Space [Computation amount]

IBM[18] 27 64 TB 299210 1 ()

Sunway 27 1TB 2927 + ne)

IBM[18] 39 N/A N/A

Sunway 39 256 TB 219211 1 n()
TABLE

An algorithmic comparison of our partition scheme and the partition
scheme in [18] for 49-qubit circuits. Space means the least memory
needed to execute the simulation. n¢ is the number of gates in part C,
usually several hundred. The computation amount means the number
of float-point operations. No partition scheme for depth 39 is given in
[18]. This table shows that the combination of techniques 1 and 2
produces a more efficient algorithm.

N .|

Fig. 7. Tensor slicing technique in [18]. This is a example that two T
gates appears in the four positions, thus 5 qubits in total could be sliced.

Because X!/2Y1/2 T appears randomly at the positions
for single-qubit gates, the probability that a 49-qubit and
40-depth universal random circuit could be simulated on
Sunway is:

p=1-(2/3)* =65/81

3.2 Calculating one or a few amplitudes (Task 2)

The method in section 3.1 can be used to compute the
complete state-vector for 49-qubit circuits. For circuits of
56 qubits or larger size, it is difficult to calculate all the
amplitudes due to limited time and space. However, to test
the fidelity of a real quantum circuit, one only needs to
sample (i.e. calculate a small number of) amplitudes, usually
ranging from 10 to 10°[5]. Our method can finish this task

Fig. 8. Partition scheme for 56-qubit circuits of depth 35. The method
for solving a part of amplitudes from this circuit is exactly the same as
computing a complete state-vector for 49-qubit circuits. Note that S4 =
Sp = 248 here, which already exceed the memory limit of Sunway. Thus
a little space-time tradeoff [2] is needed. The space-time tradeoff, which
is also needed for 64-qubit circuits with depth 30 and 72-qubit circuits
with depth 27, can be achieved by simply enumerating the first several
decomposed CZ gates [21].

6

very efficiently because all the amplitudes of eventually
states in part A and B are stored in memory. For example, in
the cases of 7 x 8 qubits with depth 35, or 8 x 8 qubits with
depth 30 it is easy to calculate a large amount of (e.g. > 2%°)
amplitudes (in less than 1 hour). Figure 8 in the appendix
shows the partition scheme for 56-qubit circuits with depth
35. The schemes for 64-qubit and 72-qubit circuit are similar.

When focusing on a 7 x 7-qubit circuit, we will introduce
a special and straight method to calculate an amplitude of
the final state. The target is to calculate

Ay = <x|uci'rcuitH®49|OO"'O>

for 0 < z < 2% — 1. Since we could calculate the complete
state-vector for a 7 x 7-qubit circuit of depth 27, we can
also sample one amplitude for a circuit of depth 55. Let
Ucircuit = Usldy in which U; has 27 layers and Uy has 28
layers, |¢)) = Uy H®*9)00...0) and |) = U] |z), we have:

Oy = <§0|¢>

Thus, we simultaneously calculate |¢) and |¢), during the
calculation we computing the inner product of every two
corresponding blocks of 22® amplitudes of |¢) and |t/). Sum
all 22! inner products and we get a,. Because the least
space consumption of simulating a circuit of depth 27 is
O(23%), this method can be parallelized to calculate more
amplitudes.

3.3 Optimization for reducing communication amount

The method presented above mainly concerns the memory
space limitation of Sunway. Another issue is network com-
munication, as the network bandwidth of Sunway is limited
while the communication amount needed for this method is
huge. In this subsection we describe a related method to
reduce the communications of a key step in our simulation.
We will first explain why such amount of communication is
needed and then describe how to optimize it.

Recall that equation (3) is the final step to compute the
complete state-vector, and this step can be divided into
2" /S subtasks which could be paralellized, where n is the
number of qubits in the whole circuit and S¢ is the space
consumption of part C. For 49-qubit circuits of depth 27 and
depth 35, (3) can be rewritten as:

|,l/)out> _ @ IwOUtaq147q157~~-vq41 >
10,81 5--+,913,142,%43,---,048
10,81 5---,913,142,%43,---,048
_ @ (u |wg14¢1157~--,¢I41 >) @)
c 205%15---5213,242,%43,-.-,248

50,81 5-++,813,842,%43,...,848

where Uc denotes the unitary operation for part C. Note

. out,q14,415,---,441 : : :
that calculating ;"5 091) in equation (4) is

essentially the same as simulating a 28-qubit circuit, which
could be finished in a single node. Now the remaining
problem is to efficiently prepare [y 7% % o) for
each set of possible values of (ig, i1, ..., %13, %42, %43, ..., 148),

where i, € {0,1}. Note that

‘ q14,915,---,441 > —
20,21 5--+,213,242,243,--,248

l1,l2, .0, 021 022, 027
(‘¢?Wﬂ14,{1157~-7(120 o) >®
10,01,5--,813,01,02,. 11,821 822,00 027
K?”t_‘]zu@;---ﬂm o] >) (5)
142,943,..,348,l1,02,..., 0,821,922, 027

where ¢ is the number of decomposed CZ gates,
t = 7 for depth 27, and ¢ = 14 for depth 35.
|¢§’L:§1q14"f;?’171’2({2° Lovioy inm....iny) 15 @ 27-length state-vector,
where the indices of qubit 0-6 are ig, 11, ..., %6, the indices
of control qubits of ¢ decomposed CZ gates are Iy, 15, ...,1;,
and the indices of control qubits of 7 implicit decomposed
CZ gate are 199, ..., i27.

Because of implicit decomposition, for each value set

; ; ; out,q21,422,---,442
of in1, 422, ..., 027, |&; o a1 ise....iap) Das oDy
214 non-zero amplitudes. Thus, (5) can be rewritten as:

| 914,915;,--+,941
10,81 ,--+,913,842,%43 -+

a= 2 (D

I1,l2,..,l¢ i21,i22,...,027

|¢0ut,Q147Q157 g0) >®

10,81 5086,501502, ., 11 ,821,822,...,027

|§?ut 428,429,442] . >) (6)
142,.--,048,01,-.,l¢,q21=121,...,q27=1l27

out,q14,915,---,920
where |¢; " - .
ere ¢10,21,» yi6,01,l2,. . le,001,022,.. 127

27-1ength but ‘é‘;’;t qzzzzlgf, 7qlﬁqzl:imwu
is of 2!*-length.

Now we consider how to realize equation (6). The data
from part A have 2/*7 complex numbers (amplitudes), and
the data from part B have 2/*1* complex numbers. Thus, for
the case of depth 35, the data from part B have 21421 = 235
complex numbers. Directly calculating (6) needs 27 nodes to
communicate (e.g. an MPI_Gather is feasible). This is very
inefficient, because there are 249728 = 2,097, 152 entities of
(6) to calculate, and each entity needs an MPI_Gather in 128
nodes.

However, we can slightly change the form of (6) to:

= B X

)(|¢) for short) is still of
,q27=1t27 > (‘€> for ShOI‘t)

| 414,915;---,941
20,81,..-,913,842,%43,.-

121,822,..,827 l1,l2,...,0¢
l(bow‘ 14145915 5--+,420 >®
10,81 5086,501,02,.. 11,821,822, 027
|§0ut 14285929 - --,G42 >))
71427~~~7'L48»l17~~-»ltvq21:1217---7(127:127

Note that for each element in the bracket, the data from part
A and B have 2%! and 2%® complex numbers, respectively.
This means the calculation in the bracket can be finished
in a single node and the length of result is 2%!. We further
append |¢) with qubit 7-13 so that |¢) also becomes a 2!4-
length vector:

190 = 160
Now [¢) ® [€) is of 2%8-length and can still be calculated
in a single node. Actually, it can be regarded as a 28- qubit
state: |¢¢I77 420,928 7Q41> Our target is |¢q14, 927,928,941
This can be done by performing an MPI_Alltoall on every
group of 128 consecutive nodes. Assume again that we
have 2% free nodes to work for MPI_Alltoall. Then in each
group, only 221715 = 64 rounds of MPI_Alltoall needs to be
performed.

Solving (6) for 49-qubit circuit of depth 39 is essentially
the same as the case of depth 35. Table 4 shows the im-
provement in network communication that the optimization
brings.

lt7i217i227~~;i27>

3.4 Single node optimizations

In this subsection, we introduce our optimization for the
quantum circuit simulation at the single node (single core
group) scale. The optimization for every single node is very

Optimization Main work Overall time | Speedup
without 22T MPI_Gathers | 1021.9 min 1
with 214 MPI_Alltoall 17.8 min 57.4

TABLE 4
The comparison of network communication amounts for computing Eq.
(6) with and without optimization. Every single MPI_Gather or
MPI_Alltoall is within 128 nodes, so they can be executed in parallel.
The overall time is under the condition of using 32768 nodes for
network communication. For network communication without
optimization the overall time is only an estimation since we only
executed 215 MPI_Gathers, and multiplies by 64 the execution time,
which is 15.96 minutes.

important for improving the overall performance of our
method, which needs a huge amount of 28-qubit circuit
simulation according to the analysis in section 3.1 and 3.3.

As agreed in section 1, one node represents a core group
in Sunway, and it has 1 MPE and 64 CPEs. Each node has
8GB main memory, shared by both MPE and CPEs. The
maximum qubit number that could be simulated on one
node is 28 if we use two doubles to represent an amplitude,
since 228 x 16B = 4GB. To obtain full power of Sunway
TaihuLight, one must allocate most of the computing tasks
to CPEs. Each CPE has a 64kB private and separate high-
bandwidth storage unit called local data memory (LDM)
(also known as scratch pad memory in section 2). To fullfill
high-speed calculations a CPE must fetch data from the
main memory to its own LDM and keeps it in LDM for
calculation as long as possible (like cache). This fetching-
data behavior is usually called direct memory access (DMA).
To get high DMA bandwidth, it usually requires the data
fetched consecutive.

If LDMs fetch data from the main memory for every
gate performed, and put the data back to main memory
when the calculation is finished, the simulation will be
inefficient due to low flop-to-Byte ratio*. In our experiments,
the average execution time is 0.32s per gate in such way,
thus the performance is bounded by DMA speed®. However,
we can take advantage of the data locality in a better way
to reduce the DMA amount. For example, if each CPE has
fetched from the main memory 16KB data in its LDM, that
is, 21471 = 219 amplitudes. For any gate performed on those
qubits with their ranks lower than 10 (0 is the lowest rank),
the calculation can be executed in this 16 KB data, i.e. «; and
oy ok are in the same LDM. Thus we can perform a bunch of
gates acting on low-rank qubits once instead of performing
the circuit gate by gate. We call these 10 qubits with lowest
ranks local qubits, and other 18 qubits are global qubits®.

This idea is similar to the gate fusion techniques in [16],
which deals with the gates on low-rank qubits in cache.
However, gate fusion is one-off, which can only be applied
at the start of the circuit.

To make the above procedure repeatable, we also adopt
the qubit reordering method. Qubit reordering are used in

4. A 2 x 2 complex matrix multiplying a 1 X 2 complex vector needs
14 float-point operations. For a 28-qubit circuit, each non-diagonal gate
requires 228~1 x 14 float-point operations and 4G DMA get and put

5. The DMA get bandwidth and put bandwidth are both less than
25GB/s in our experiments

6. This is different to [15, 17]. Their distinction of ‘global” and local’ is
at the multi-node and single-node level. While our ‘global’ corresponds
to main memory, and "local” corresponds to LDM

Depth | 25 | 30 | 34 | 38
Swaps | 6 7 8 9
TABLE 5
Frequency of swaps for 28-qubit universal random circuits with different
depth, in the case that the number of local qubits is 10.

LDM_figure.pdf

Fig. 9. Register communication. There are 8 row communication buses
and 8 column communication buses in a core group. In this figure only
row communication buses are plotted, since in our experiments only
row communication is used. In fact, the row communication is used to
achieve the swap between qubits of rank 8-10 and qubits of rank 11-13.
Register communication has very high bandwidth, more than 200GB/s
in total for 8 row communication buses. So the cost of this step is very
small, and we can treat 8 LDMs in a row as new a composite LDM. Thus
the number of local qubits turns into 14.

[15] and [17] to reduce the network communications. Here,
our aim is to maintain the data locality and reduce the
amount of memory access. That is, only diagonal gates,
or non-diagonal gates on local qubits are calculated. To
accomplish this, we need to execute two types of qubit rank
swaps:

e Swap the qubits of rank 0-9 and qubits of rank 11-20
e Swap the qubits of rank 14-20 and qubits of rank 21-
27

With a gate scheduling preprocessing program, which also
utilizes the diagonal properties of gate T' and C'Z, we
get the amount of swaps for 28-qubit quantum supremacy
circuit: We achieve fast swaps of qubit rank with the help
of CPEs. Since a vector with dimension 2" can be denote
as a 2"/2 x 2"/2? matrix, swapping the qubits of rank 0-9
and qubits of rank 10-19 is essentially a transpose of the
corresponding complex matrix, where the dimension of this
matrix is 219 x 210 and 228720 = 256 matrices in total
need to be transposed. Swapping the qubits of rank 14-20
and qubits of rank 20-27 is similar, which is equivalent to a
transpose of a 28 x 28-dimensional matrix, but each element
of this matrix contains 2!? amplitudes.

Register communication is a unique function in Sunway CPU,
designed for fast data transmission between LDMs. The
qubit reordering can be further optimized using this feature.
Because the CPEs in a row can send/receive messages in a
communication bus, we can treat a row of 8 separate LDMs
as a composite LDM, while the data exchange between these
8 LDMs is fulfilled by register communication. If each CPE
fetches 32kB consecutive data from the main memory to its
LDM, there will be 11 local qubits. But when considering a
composite LDM formed by a row of LDMs, the number of
local qubits turns into 14. Thus we only need to execute one
type of qubit swap:

e Swap the qubits of rank 0-13 and qubits of rank 14-27

This is simply a transpose of a 2!* x 2!4-dimensional com-
plex matrix, which can be quickly accomplished by CPEs.
Because of the high bandwidth of register communication,
the time consumed on register communication is very small,
so as to improving the overall performance of single node
case.

Depth 18 26 34 42 50
Gates 258 375 492 609 726
Swaps 3 4 5 6 7
Time 154s | 22.6s | 29.6s | 36.7s | 44.3s
Speedup | 7.04 6.95 6.96 6.95 6.88
TABLE 6

Performance of simulating 28-qubit circuits with different depth on a
single node. The number of global qubits is 14. Speedup is the
speed-up ratio to method of performing gate by gate without any
optimization but using the CPEs to accelerate.

Depth 18 26 34 42 50
Before 30.7s | 46.4s | 61.2s | 759s | 89.9s
After 154s | 22.6s | 29.6s | 36.7s | 44.3s
Speedup | 1.99 2.05 2.07 2.07 2.03
TABLE 7

The comparison of 28-qubit simulation with/without standard optimizing
techniques, while keeping all other single node optimizations applied.
The results in this table show that about a 2x speed up is achieved by

these standard optimizing techniques such as vectorization and
instruction Reordering.

3.5 Other standard optimizations

In this subsection we briefly introduce some other standard
optimizations provided by Sunway TaihuLight, which can
be exploited for our simulation of quantum circuits. Table 7
gives an evaluation of these techniques.

3.5.1

Sunway TaihuLight provides many 256-bit data types. In
our simulation the type doublev4 is adopted for vectoriza-
tion. The data stored in LDM is a complex number array
with one double as the real part of a complex number
and another double as its imaginary part. To vectorize the
double-precise float-point calculation, we put four ampli-
tudes into two doublevd registers v,,v; once. However,
the real parts of these amplitudes are not consecutive, the
imaginary parts neither. We use the instruction vshuffle to
solve this problem.

Vectorization

352

Another optional optimization is instruction pipeline. The
put and store operations, together with the multiply-add
operations, can form a pipeline to further reduce the calcu-
lation time, especially when the data dependency between
adjacent instructions is little. This optimization further im-
proves the computational efficiency.

Instruction Reordering

4 NUMERICAL EXPERIMENTS AND RESULTS
4.1 Setup of Experiments

Sunway TaihuLight is one of the most powerful super-
computer with over 100 Pflops computing capacity [1]. To
test the limitation of our simulator on Sunway, we used
131072 nodes (32768 cpu processors), which is around 80%
of computing resource of the whole machine with nearly
1PB main memory in total. To avoid misunderstanding, we
recall that in this paper 1 node = 1 CG (and in section 2 one
SW26010 processor consists of 4 nodes). We implemented
our simulator in C++ for MPE managing programs and

C for CPE computing programs. We use MPI for inter-
node communications. To facilitate the most of computing
capacity of Sunway we have used the athread library [9].
According to previous analysis, a simulation task in our
implementation has two stages:

o stage 1: computing the results for part A and B and
store them in the memory;

o stage 2: using the the results in stage 1 to generate
the input and compute the results for part C, so as to
solving all the amplitudes;

Stage 1 can be finished in 10 minutes if there is enough
space to store the results for part A and B. Stage 2 thus is
the bottleneck of the whole task. As illustrated in section
3.3, stage 2 could be evenly divided into 64 rounds, mak-
ing it convenient to parallelize and providing good strong
scalability.

Stage 2 has two computing kernels: the first one is gener-
ating the input for part C, more precisely, computing the
entities of eq(6); the second one is simulating a 28-qubit
circuit on single nodes. We call the first kernel tensor because
it calculates the tensor product of two complex vectors and
sums them. We call the second kernel sim.

4.2 Performance Measurement

The performance is usually computed in two ways:

e Manually counting all double-precision arithmetic
instructions in the assembly code;

o Using the hardware performance monitor of Sunway,
PERF, to get the amount of double-precision arith-
metic instructions retired on the CPE cluster.

Both ways provide similar results of counting the arithmetic
operations. We employ the second way (PERF) in our study.
And we obtain the sustained performance of two kernels:
Kernel tensor achieves 92.8 GFlops per core group; kernel
sim achieves 37.1 GFlops per core group. The performance
of these two kernels fits the overall performance when
simulating a 49-qubit circuit of depth 39.

Table 6 shows the performance of kernel sim and speedup
under cases of 28-qubit circuits with different depth. The
number of global qubits is 14. Speedup is the speed-up
ratio to the method of performing gate by gate without any
optimization but using the CPEs to accelerate.

4.3 Time-to-solution

For the task of simulating a 49-qubit circuit of depth 35
and computing the complete state-vector, it takes around
3.7 hours. The bottleneck is (6), because solving 22! entities
of (6) needs 221t7+35 = 203 times of complex number
multiplication. This step occupied around 90% of the run-
time in the simulation of 35-depth circuit. For the task of
simulating a 49-qubit circuit of depth 39, it takes around 4.2
hours. The reason for causing this drop in performance is
that part C has 42 qubits in the case of depth 39, while part
C only has 28 qubits in the case of depth 35. Thus in the case
of depth 35, the calculation in part C are all within single
nodes. While calculating a block of part C in the case of
depth 39 is essentially simulating a 42-qubit circuit of depth
15, which needs one all-to-all communication on 2!* nodes

9

[17]. Because there are 249742 = 128 blocks to calculate, the
amount of communication increases a lot.

The sustained performance is 4.92 PFlops for the case of
depth 35 and 4.3 PFlops for the case of depth 39. 4.3 PFlops
is around 3.44% of the peak performance of Sunway. There
are two reasons for this low efficiency: 1) we only use 131072
nodes, which is just around 80% of the whole computing
resource of Sunway; 2) for the cases of depth 35 and depth
39, the kernel tensor is the bottleneck. However, during the
simulation only half of the nodes are used for kernel tensor
due to the limited memory space of each node’. If we can
find a better method for memory allocation we might let all
131072 nodes work for kernel fensor, doubling the overall
performance roughly.

4.4 Improvement over previous works

To show the improvement that our method brings, we first
compare the overall performance between our work and the
IBM’s work [18], in the case of 49 qubits with depth 27.
In principle, simulating the circuit with such a depth only
needs 1024 nodes using our method. Increasing the nodes
will decrease the time-to-solution. For a fair comparison, the
performance of machine should be taken into consideration.
We choose the result using 16384 node for comparison. It is
10.24% of Sunway. And the improvement is shown in Table
8. The main reason for such improvement is also given.

Another reason for the speedup in Table 8 is our single
node optimizations, which make better use of the machine
performance. To make this claim more convincing, we com-
pare our single node optimizations with the ETH’s work
[17], in which their single node case is highly optimized
too. Again, to make comparison fair, we should consider a
rather similar benchmark. Because the bottleneck of quan-
tum circuit simulation in single node case is memory access,
we consider the memory bandwidth of one node in either
machine. See Table 9.

The comparison with the ETH’s work is not absolutely
fair, but at least demonstrates that our single node optimiza-
tions are also very efficient to deal with the large amount
of memory access even in nodes without high memory
bandwidth.

4.5 Scalability

Figure 10 shows the strong scaling behavior for circuits of
different depth. As the stage 1 of computing results for part
A and B usually takes a few minutes, this causes the drop of
parallel efficiency especially when each node executes few
rounds of stage 2. Note that the time consumption of stage 1
for the case of depth 27 is much less than that for the case of
depth 35 and depth 39, so the parallel efficiency for the case
of depth 27 is slightly better the other two cases. Moreover,
simulating a circuit of depth 35 or depth 39 requires at least
65536 nodes.

7. In our implementation at current stage, 1/4 of the nodes need to
store the results for part A, another 1/4 of the nodes need to store the
entities of eq(6), they can not participate in the computation of kernel
tensor.

Work Qubits | Depth Rmax (TFlop/s) Time-to-solution | Speedup
IBM 49 27 17,173.2 > 24 hrs 1
Sunway 49 27 9,524.7 (16384 nodes) 1.49 hrs > 29
TABLE 8

10

The performance comparison between our work and IBM simulator [18]. RMAX means the maximal sustained pen‘ormance [1]. 10.24% of Sunway

has the Rmax of 9, 524.7 TFlop/s. The speedup is calculated by: speedup =

IBM_timexIBM_Rmax

that in [18], 10 CZ gates are decomposed in the case of 49 qubits with depth 27.
benefiting from implicit decomposition and dynamic programming techniques.

Sunwa

_time X Sunway_Rmax’

The main reason for such speedup is

hile in our method there are only 7 decomposed CZ gates

Platform | Local qubits | Depth | Gates | Time-to-solution | Time per gate | Memory access per gate | Single node bandwidth | Speedup
Cori Il 30 25 369 9.58 s 0.026 s 16 GB 460 GB/s 1
Sunway 28 26 375 22.6s 0.060 s 4 GB 27 GB/s 1.84
TABLE 9

Analysis of two highly optimized simulators in the single node cases. We compare their average performance per unit memory bandwidth (say 1
GB/s). We reemphasize that in this article, one single node only means one core group of Sunway. While a SW26010 CPU has 4 core groups, its

memory bandwidth quadruples, which is more than 100GB/s. Counting in the memorgl/access and average time per gate, we get an approximate

(ETH_time_per_gatex ETH_MA_per_gate

Cori_single_node_bandwidth

=1.84

speedupi SpeeduP = (Sunt

ideal
+ depth 27: 99.7%
depth 35: 95.6% X
X depth 39: 94.7%

speedup

o

« i i i i i i
1064 2048 4096 8192 16384 32768 65536 131072

number of process

Fig. 10. Strong scaling behaviour for the cases of depth 27, 35 and 39.
The parallel efficiency under these three cases is also illustrated in the
figure.

20 s 0 5 0 s a5 25 20 5
Log(Na) LogiNa)

Fig. 11. Histograms of log-transformed outcome probabilities for 49-
qubit circuits, compared to theoretical Porter-Thomas distribution [5].
The left side is the result of simulating a circuit of depth 35. The right
side is the result of circuit of depth 39. Red lines mean the theoretical
Porter-Thomas distribution, and blue lines represent the distribution of
our experimental results. Both results fit the theoretical distribution well.

5 DISCUSSIONS

In this section, we further discuss several issues about how
our techniques presented in the previous sections can be
applied or generalized to other simulators.

5.1

As our simulator implemented on Sunway TaihuLight
which has a many-core heterogeneous architecture, one
might ask whether the optimizing techniques in this paper
are portable to other supercomputers. The answer is yes.
The implicit decomposition and dynamic programming in
section 3.1 are used for reducing the memory consumption,

Portability to other supercomputers

way_time_per_gateX Sunway_M A_per_gate)/Sunway_single_node_bandwidth

global
implicit decomposition optimization
&

dynamic programming

network communication

e arn tensor kernel

single node
optimization

Fig. 12. Logical structure of different part of optimizing techniques.

and the optimizing techniques in section 3.3 are used for
reducing the network communication time. They can be
directly applied on other supercomputers with different
architectures such as x86 architecture. Actually, the only one
requirement is over 0.5 PB memory for a supercomputer to
simulate a 49-qubit universal random circuit with depth 35
or 39 when these optimizing techiniques are applied.

Applying the single node optimization on other super-
computers is a little different. Nevertheless, it is still feasible
with appropriate modification. The core idea of single node
optimization is making the most of data locality. In our
simulator, the LDM plays a substituted role for cache. As
other supercomputers usually have cache instead of LDM,
we could use cache to store a length of amplitudes and then
handle a bunch of low-level gates in one step. But to maxi-
mize the speedup effect we must realize the corresponding
cache structure such as cache size or how many ways(4-
way or 8-way) it has, and perhaps practical single nodes
experiments are needed.

5.2 Logical structure of optimizations

When applying these techniques on a supercomputer (not
only on Sunway), the order of applying them extremely mat-
ters. For a given universal random circuit, we first apply the
circuit partition techniques in section 3.1 to minimize mem-
ory consumption. Next, we apply network communication
optimization. The communication alternate with the tensor
kernel but they cannot overlap, as detailedly explained in

section 3.3. Finally, we apply single node optimizations in
section 3.4 to accelarate the calculation of part C.

6 CONCLUSION AND FUTURE WORKS

This paper describes our method and implementation of
quantum circuit simulator on Sunway TaihuLight. The re-
sults indicate that for current universal random circuits,
49 qubits with depth 39 is reachable. To find a proper
bound of quantum supremacy in terms of universal random
circuits, one might 1) increase the depth or qubits of the
circuits; or 2) modify the structure of current universal
random circuits. Whatever, classical computers have their
limits on simulating quantum circuits. We believe there
will be one day that quantum computer can solve certain
problems which classical computers cannot. Before that day
comes, simulating quantum circuits on classical computers,
especially on supercomputers, is crucial to understand the
power and limit of quantum computers. Even after that day,
a simulator of quantum circuits on a classical computer will
still be helpful for design, synthesis, testing and verification
of quantum circuits.

Follow-up work of this paper includes further optimiza-
tions of our simulator and adding some new functions
to it, e.g. (1) quantum circuit testing and verification; (2)
simulation of real circuits with quantum noise, and (3) sim-
ulation, debugging and verification of more sophisticated
quantum algorithms and quantum programs (with control
flows) [30]. Another line of research is to consider how to
extend to our work when EB-scale supercomputers come
out, as more powerful supercomputers will help more in
testing, verification and simulation of large-scale quantum
circuits.

ACKNOWLEDGEMENT

The authors are very grateful to Haining Yu, Wei Zhang,
Shupeng Shi, Hongsong Meng, Hongkun Yu, Wenlai Zhao
and the whole team at the National Super Computing
Center in Wuxi for their kind helps. Special thanks go to
Zhao Liu and Lin Gan, who have given us a lot of useful
suggestions and assistance. This work is partially supported
by the National Natural Science Foundation of China and
the National Supercomputing Center in Wuxi.

11

REFERENCES

[1] “top500 list june 2017” [Online]. Available:
https:/ /www.top500.0org/lists /2017 /06 /.

[2] Scott Aaronson and Lijie Chen. Complexity-theoretic
foundations of quantum supremacy experiments. 32nd
Computational Complexity Conference (CCC 2017), 2017.

[3] Markov I L, Shi Y. Simulating quantum computation
by contracting tensor networks. SIAM Journal on Com-
puting, vol. 38, no. 3, pp. 963-981, 2008.

[4] George F Viamontes, Igor L Markov, John P Hayes
Quantum circuit simulation, New York, NY, USA:
Springer, 2009.

[5] Sergio Boixo et al., Characterizing quantum supremacy
in near-term devices. Nature Physics 14.6 (2018): 595.

[6] Davide Castelvecchi. IBM’s quantum cloud com-
puter goes commercial. Nature News, 2017 Mar
9;543(7644):159.

[7] Chao Song et al., 10-qubit entanglement and parallel
logic operations with a superconducting circuit. Phys.
Rev. Lett., 119:180511, Nov 2017.

[8] Richard P Feynman. Simulating physics with comput-
ers. International Journal of Theoretical Physics, 21:467—
488, 1982.

[9] Haohuan Fu et al., The sunway taihulight supercom-
puter: system and applications. Science China Informa-
tion Sciences, 59(7):072001, Jun 2016.

[10] Jiarui Fang et al, swdnn: A library for accelerat-
ing deep learning applications on sunway taihulight.
in IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2017, pp. 615-624.

[11] Haohuan Fu et al. 18.9-pflops nonlinear earthquake
simulation on sunway taihulight: enabling depiction
of 18-hz and 8-meter scenarios. in Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, 2017, Art. no. 2.

[12] Chao Yang et al. 10m-core scalable fully-implicit solver
for nonhydrostatic atmospheric dynamics. in Proceed-
ings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2016, pp.
57-68.

[13] Jian Zhang et al., Extreme-scale phase field simulations
of coarsening dynamics on the sunway taihulight su-
percomputer. Proceedings of the International Conference
for High Performance Computing, Networking, Storage and
Analysis, 2016, Art. no. 4.

[14] Michael A Nielsen and Isaac Chuang. Quantum Compu-
tation and Quantum Information, Cambridge University
Press, 2000.

[15] K De Raedt et al., Massively parallel quantum com-
puter simulator. Computer Physics Communications,
176(2):121-136, 2007.

[16] Mikhail Smelyanskiy, Nicolas Sawaya, and Alan As-
puruguzik. ghipster: The quantum high perfor-
mance software testing environment. arXiv preprint
arXiv:1601.07195, 2016.

[17] Thomas Haner and Damian S. Steiger. 0.5 petabyte sim-
ulation of a 45-qubit quantum circuit. Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, 2017, Art. no. 33.

[18] Edwin Pednault et al., Breaking the 49-qubit barrier

(19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

in the simulation of quantum circuits. arXiv preprint
arXiv:1710.05867 (2017).

H. De Raedt et al., Massively parallel quantum com-
puter simulator, eleven years later. Computer Physics
Communications, vol. 237, pp. 47-61, 2019.

Boixo, Sergio, Sergei V. Isakov, Vadim N. Smelyanskiy,
and Hartmut Neven. Simulation of low-depth quan-
tum circuits as complex undirected graphical models.
arXiv preprint arXiv:1712.05384 (2017).

Z. Chen et al., 64-qubit quantum circuit simulation.
Chinese Science Bulletin, vol. 63, pp. 964-971, 2018.

J. Chen et al.,, Classical Simulation of Intermediate-
Size Quantum Circuits. arXiv preprint arXiv:1805.01450
(2018).

Markov, 1. L., Fatima, A., Isakov, S. V., & Boixo, S.,
Quantum supremacy is both closer and farther than
it appears. arXiv preprint arXiv:1807.10749 (2018).
Villalonga B et al., A flexible high-performance simula-
tor for the verification and benchmarking of quantum
circuits implemented on real hardware. arXiv preprint
arXiv:1811.09599 (2018).

Chen, M. C., Li, R, Gan, L. et al. Quan-
tum Teleportation-Inspired Algorithm for Sampling
Large Random Quantum Circuits. arXiv preprint
arXiv:1901.05003 (2019).

Biamonte], Morales M E, Koh D E, et al. Quantum
Supremacy Lower Bounds by Entanglement Scaling.
arXiv preprint arXiv:1808.00460 (2018).

Bouland A et al. On the complexity and verification
of quantum random circuit sampling. Nature Physics,
2019, 15(2): 159-163.

Krysta M Svore, A Geller, M Troyer, | Azariah,
C Granade, B Heim, V Kliuchnikov, M Mykhailova,
A Paz, and Dave and Roetteler, Martin Wecker. Qf#:
Enabling scalable quantum computing and develop-
ment with a high-level dsl. Proceedings of the Real World
Domain Specific Languages Workshop, 2018.

Dave Wecker and Krysta M Svore. Liqui|): A software
design architecture and domain-specific language for
quantum computing. arXiv preprint arXiv:1402.4467,
(2014).

Mingsheng Ying. Foundations of Quantum Programming,
Morgan Kaufmann, 2016.

Riling Li is currently working toward the PhD
degree in the Department of Computer Science
and Technology, Tsinghua University. His re-
search interests include quantum programs and
quantum circuits.

12

Bujiao Wu is currently working toward the PhD
degree in the CAS Key Lab of Network Data
Science and Technology, Institute of Computing
Technology, Chinese Academy of Sciences. Her
research interests include quantum computing
and algorithm complexity.

Mingsheng Ying received the graduation de-
gree from Fuzhou Teachers College, Jiangxi,
China, in 1981. He is a Distinguished Profes-
sor at the Centre for Quantum Software and
Information, University of Technology Sydney,
Australia, Cheung Kong Professor at the De-
partment of Computer Science and Technol-
ogy, Tsinghua University, China, and a Research
Professor at the Institute of Software, Chinese
Academy of Science. His research interests are
quantum computation, programming theory and

logical foundations of artificial intelligence. He is the author of the books
Topology in Process Calculus: Approximate Correctness and Infinite
Evolution of Concurrent Programs (SpringerVerlag, 2001) and Founda-
tions of quantum programming (Elsevier, 2016).

Xiaoming Sun received the PhD degree in Ts-
inghua University, Beijing, China. He is a pro-
fessor in the CAS Key Lab of Network Data
Science and Technology, Institute of Computing
Technology, Chinese Academy of Sciences. His
research interests include theoretical computer
science, algorithms and quantum computing.

Guangwen Yang received the PhD degree in
Harbin Institute of Technology, Heilongjia, China.
He is a professor in the Department of Computer
Science and Technology, Tsinghua University,
and the director of the Centre of High perfor-
mance Computing in Tsinghua. His research
interests include parallel computing and earth
system simulation.

