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ABSTRACT The digital revolution has substantially changed our lives in which Internet-of-Things (IoT)
plays a prominent role. The rapid development of IoT to most corners of life, however, leads to various
emerging cybersecurity threats. Therefore, detecting and preventing potential attacks in IoT networks have
recently attracted paramount interest from both academia and industry. Among various attack detection
approaches, machine learning-based methods, especially deep learning, have demonstrated great potential
thanks to their early detecting capability. However, these machine learning techniques only work well when
a huge volume of data from IoT devices with label information can be collected. Nevertheless, the labeling
process is usually time consuming and expensive, thus, it may not be able to adapt with quick evolving IoT
attacks in reality. In this paper, we propose a novel deep transfer learning (DTL) method that allows to learn
from data collected frommultiple IoT devices in which not all of them are labeled. Specifically, we develop a
DTL model based on two AutoEncoders (AEs). The first AE (AE1) is trained on the source datasets (source
domains) in the supervised mode using the label information and the second AE (AE2) is trained on the target
datasets (target domains) in an unsupervised manner without label information. The transfer learning process
attempts to force the latent representation (the bottleneck layer) of AE2 similarly to the latent representation
of AE1. After that, the latent representation of AE2 is used to detect attacks in the incoming samples in the
target domain. We carry out intensive experiments on nine recent IoT datasets to evaluate the performance
of the proposed model. The experimental results demonstrate that the proposed DTL model significantly
improves the accuracy in detecting IoT attacks compared to the baseline deep learning technique and two
recent DTL approaches.

INDEX TERMS Deep transfer learning, IoT, cyberattack detection, AutoEncoder.

I. INTRODUCTION
The Internet-of-Things (IoT) refers to connected devices,
sensors, an actuators used in vehicles, electronic appliances,
buildings, and structures. As the sensors, data storage, and the
Internet become cheaper, faster, andmore integrated together,
IoT devices will find more and more applications [1] (e.g.,
in smart buildings, smart city, intelligent transportation sys-
tems, and healthcare). The rapid development of IoT to most
corners of life, however, leads to various emerging cyberse-
curity threats. This is because IoT devices are often limited
in computing capability and energy, making them particu-
larly vulnerable to adversaries. IoT devices are more exposed
to and unfortunately more difficult to be protected from
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cyber attacks than computers [2], [3]. Consequently, detect-
ing attacks to protect IoT devices from malicious behaviors
is critical to broadening the applications of IoT [4]–[7].

IoT attack detection methods can be categorized into
signature-based and machine learning-based methods
[8]–[10]. The signature-based methods [11]–[14] seek to find
the signatures of IoT attacks in the incoming traffic. These
methods require a high prior knowledge of known IoT attacks
to define the signatures. The machine learning-based meth-
ods, on the other hand, attempt to learn the features of normal
and malicious data in the training/offline phase. In the pre-
dicting/online phase, these models are used to detect attacks
in the incoming traffic. Thanks to the capability to auto-
matically and progressively learn useful information/features
from collected data, machine-learning based methods can
early detect various IoT attacks [3], [9], [15]–[17].
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However, the machine learning-based methods only per-
form well under an important assumption, i.e., the distri-
butions of the training data and the predicting data are
similar [18]. Nevertheless, in many practical applications,
this assumption may not be always the case [19], [20].
Especially, in network security, new types of attacks (e.g.,
zero-day attacks) can be found on a daily basis [16]. As such,
the practical IoT data for machine learning models (in the
predicting/online phase) is usually very much different from
the data used during the training/offline phase. To alleviate
the above problem, a large volume of training data with
label from multiple IoT devices is often required. However,
manually labeling a huge volume of data is very time con-
suming and expensive [21], [22]. It, thus, limits the practical
deployment of machine learning-based methods in detecting
IoT attacks for various scenarios.

Given the above, this work proposes a novel deep trans-
fer learning (DTL) approach based on AutoEncoder (AE)
to enable further applications of machine learning in IoT
attack detection. The proposed model is referred to as Multi-
Maximum Mean Discrepancy AE (MMD-AE). MMD-AE
can be trained on a dataset including both labeled samples
(in the source domain) and unlabeled samples (in the target
domain). After training, MMD-AE is used to predict IoT
attacks in the incoming traffic in the target domain. Specif-
ically, MMD-AE consists of two AEs: AE1 and AE2. AE1
in trained with labeled data while AE2 is trained on the
unlabeled data. The whole model, i.e., MMD-AE, is trained
to drive the latent representation of AE2 closely to the latent
representation of AE1. As a result, the latent representation
of AE2 can be used to classify the unlabeled IoT data in the
target domain. The major contributions of this paper are as
follows:
• We propose a novel DTL model based on AEs,
i.e., MMD-AE, that allows to transfer knowledge,
i.e., labeled information, from the source domain to the
target domain. This model helps to lessen the problem
of ‘‘lack label information’’ in collected traffic datasets
from IoT devices.

• We introduce the MaximumMean Discrepancy (MMD)
metric tominimize the distance betweenmultiple hidden
layers of AE1 and multiple hidden layers of AE2. This
metric helps to improve the effectiveness of knowledge
transferred from the source to the target domain in IoT
attack detection systems.

• We experiment our proposed method using nine IoT
attack datasets and compare its performance with the
canonical deep learning model and the state-of-the-art
TL models [18], [31]. The experimental results demon-
strate the advantage of our proposed model against the
other tested methods.

The rest of paper is organized as follows. Section II high-
lights recent works on IoT attack detection. In Section III,
we define a DTL model and briefly describe the AE archi-
tecture. The proposed model is then presented in Section IV.
Section V discusses the experiment settings and Section VI

provides detailed analysis and discussion related to exper-
imental results. Finally, Section VII concludes with future
work.

II. RELATED WORK
There are two main directions for cyberattack detection,
i.e., signature-based and machine learning-based approaches,
e.g., [8]–[10], [21]. The signature-based methods maintain a
database of predefined signatures (i.e., patterns) that corre-
spond to IoT known attacks and perform the detection task
by comparing these to the incoming data stream [11]–[13],
[24]. Zhang and Green II [11] proposed a lightweight and
low-complexity algorithm to prevent Distributed Denial of
Service (DDoS) attacks in which each IoT working node has
a deep packet inspection to find attack signatures. If a sender
repeatedly sends requests with the same content, it will be
flagged as malicious requests. Dietz et al. [12] proposed a
solution to proactively block the spreading of IoT attacks
and isolate vulnerable IoT devices. Each IoT device is ver-
ified in two steps, i.e., scanning to open ports and services
and using predefined list of commonly known credentials to
check authentication. After that, a list of predefined rules is
used to isolate the vulnerable IoT devices. Nobakht et al. [13]
proposed a solution for IoT attack detection using Software
Defined Network with the OpenFlow protocol to address
malicious behaviours and block intruders from accessing
the IoT devices. This method incorporates a database of
all known in-home IoT devices along with the correspond-
ing patterns of potential security risks. Then, the detection
method simply maps the IoT traffic with the signatures of
security risks stored in the database. The advantage of the
signature-based methods is providing a low false positive
rate attack detection system [24]. However, they require
a prior human knowledge about the behaviours of known
IoT attacks to design the database of attack signatures. Thus,
the accuracy of these methods depends on the quality of
the signature databases. Moreover, if the size of databases
is increased, the processing time (i.e., search time) can be
excessive [24].

The machine learning-based methods first train the detec-
tion models from collected data samples in IoT networks.
Then, the trained models are used to classify the new incom-
ing IoT data samples into normal or attack data. The pop-
ular traditional machine learning algorithms for IoT attack
detection are Decision tree (C4.5), Support Vector Machine
(SVM), K-Nearest Neighbour, Bayes Classifier, Neural Net-
works [8], [24]. Recently, the deep learning approach is
widely used and achieved high performance in detect-
ing cyberattacks [3], [9], [15]–[17]. Among, deep learning
approaches, AE-based models project the original data to a
new latent representation space to improve the accuracy in
detection tasks [3], [15], [16]. Nevertheless, to train a good
machine learningmodel for detecting IoT attacks, it is usually
required to label a huge volume of training data as normal or
attack [24].Moreover, general machine learningmodels often
need to assume that the data distribution of training datasets
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is similar to the data distribution of predicting datasets. This
assumption, however, is usually not practical [19], [20], [25].

Recently, DTL techniques have been used to handle the
above issues ofmachine learningmethodswhere training data
from a source domain and test data from a target domain are
drawn from different distributions. A DTL model attempts to
reduce the distribution divergence between the source domain
and the target domain [25]. As a result, the trained knowl-
edge of a learning task (e.g., classification) on the source
domain can be used to support the learning task on the similar
target domain [19], [25]–[27]. Gou et al. [28] applied an
instance-based DTL approach in network intrusion detec-
tion that requires label information from the target domain.
Zhao et al. [29] proposed the feature-based DTL technique
to project the source and the target domain into the latent
subspace via linear transformations, i.e., Principal Compo-
nent Analysis (PCA) for network attack detection. However,
PCA is a linear mapping technique that only works well with
a simple data feature set [30].

Our proposed DTL model in this paper, i.e., MMD-AE,
leverages a non-linear mapping, i.e., AE, to improve the
performance of IoT attack detection on the target domain.
The key idea of our proposed DTL (compared with previous
AE-based DTL methods [18], [31]) is that the knowledge
of features in every encoding layers (instead of the only
bottleneck layer in previous works) is transferred to the target
domain. This helps to force the latent representation of the tar-
get domain similarly to the latent representation of the source
domain. The experimental results illustrate the effectiveness
of our proposed DTL model on the IoT attack detection task
in the target domain.

III. FUNDAMENTAL BACKGROUND
This section presents the fundamental background of our
proposed model.

A. TRANSFER LEARNING
Transfer learning (TL) refers to the situation where what has
been learned in one learning task is exploited to improve
generalization in another learning task [33]. Fig. 1 compares
traditional machine learningmethods including deep learning
and TL models. In traditional machine learning, the datasets

FIGURE 1. Traditional machine learning vs. transfer learning.

and training processes are separated for different learning
tasks. Thus, no knowledge is retained/accumulated nor trans-
ferred from one model to another. In TL, the knowledge
(i.e., features, weights, etc.) from previously trained models
in a source domain is used for training newer models in a
target domain. Moreover, TL can even handle the problems of
having less data or no label information in the target domain.

TL is often used to transfer knowledge learnt from a source
domain to a target domainwhere the target domain is different
from the source domain but they are related data distributions.
We consider a TL method with an input space X and its label
space Y , two domain distributions are the source domain DS
and the target domain DT . Two corresponding samples are
given, i.e., the source sample DS = (XS ,YS ) = (x iS , y

i
S )
nS
i=1

and the target sample DT = (XT ) = (x iT )
nT
i=1. nS and nT are

the number of samples in the source domain and the target
domain, respectively. In this paper, the TL model based on
a deep neural network, i.e., deep transfer learning (DTL),
is trained on the labeled data in the source domain and the
unlabeled data in the target domain. After that, the trained
model is used for IoT attack detection in the target domain.

B. AUTOENCODERS
This subsection describes the structure and the training pro-
cess of an AutoEncoder (AE) that is fundamental for our DTL
model. The reason we develop the TL models based on AE is
that these models are proved as the most effective deep neural
network for IoT attack detection [2], [3], [15], [16]. Addi-
tionally, to prove the effectiveness of the proposed model,
we will compare our proposed model with the previous DTL
techniques that are also based on AE.

An AE is a neural network trained to reconstruct the
network’s input at its output [34]. This network has two
parts, i.e., encoder and decoder as shown in Fig. 2. Let
W , W ′, b, and b′ denote the weight matrices and the bias
vectors of the encoder and the decoder, respectively, and
X = x1, x2, . . . , xn is a training dataset. φ = (W , b) and
θ = (W ′, b′) are parameter sets for training the encoder and
the decoder, respectively. Let qφ denote the encoder and zi

denote the representation of the input data x i. The encoder
maps the input x i to the latent representation zi (as in (1)). The
decoder pθ attempts to map the latent representation zi back

FIGURE 2. Architecture of an AutoEncoder(AE).
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into the input space. Therefore, the output of the decoder is
formed as the input space, i.e., x̂ i (as in (2)).

zi = qφ(x i) = af (Wx i + b), (1)

x̂ i = pθ (zi) = ag(W ′zi + b′), (2)

where af and ag are the activation functions of the encoder
and the decoder, respectively. Fig. 2 shows an example of AE
with input dimension as n, number of layers as 5, bottleneck
layer size as 2.

The AE model is trained by minimizing a loss function
so called Reconstruction Error (RE). RE is the difference
between the input x i and the output x̂ i as in (3). This term
encourages the decoder to learn to reconstruct the original
data. If the decoder’s output does not reconstruct the data
well, it will incur a large cost in this loss term.

`AE

(
x i, φ, θ

)
=

1
n

n∑
i=0

l
(
x i, x̂ i

)
, (3)

where l
(
x i, x̂ i

)
measures the difference between the input

x i and the output x̂ i. In the AE model, the mean squared
error (MSE) is commonly used [16].

C. MAXIMUM MEAN DISCREPANCY (MMD)
Maximum mean discrepancy (MMD) is a metric used to
estimate the discrepancy of two distributions. MMD is more
flexible than Kullback-Libler divergence (KL) [31] thanks to
its ability to estimate the nonparametric distance [35]. More-
over, MMD does not require to compute the intermediate
density of the distributions, thus avoiding the requirement
of using a sophisticated optimization [36]. The definition of
MMD of two datasets can be formulated as (4) [37].

MMD(XS ,XT ) =‖
1
nS

nS∑
i=1

ξS (x iS )−
1
nT

nT∑
i=1

ξT (x iT ) ‖H, (4)

where nS and nT are the number of samples of the source
and target domain, respectively. ξS and ξT denote the rep-
resentation of the source data, i.e., x iS , and the target data,
i.e., x iT , respectively. ‖ . ‖H represents the 2-norm operation
in Reproducing Kernel Hilbert space (RKHS) [37].

IV. PROPOSED TRANSFER LEARNING APPROACH
FOR IoT CYBERATTACK DETECTION
This section presents our proposed DTL models for IoT
attack detection. We first describe the overview of the sys-
tem structure. After that, the DTL model is discussed in
details.

A. SYSTEM STRUCTURE
Fig. 3 presents the system structure that uses DTL for IoT
attack detection. First, the data collection module gathers
data from all IoT devices. The training data consists of both
labeled and unlabeled data. The labeled data is collected from
some IoTs devices which are dedicated for labeling data.
The labeling process is usually executed in two steps [22]:

FIGURE 3. Proposed system structure.

each data sample is extracted from captured packets using
Tcptrace tool [38], then the data sample is labeled as a
normal sample or an attack sample by manually analyzing
the flow using Wireshark software [39]. Usually, the number
of labeling IoT devices is much smaller than the number of
unlabeling IoT devices. Second, the collected data is passed
to the DTL model for training. The training process attempts
to transfer the knowledge information learnt from the data
with label information to data without label information.
This is achieved by minimizing the difference between latent
representations of the source data and the target data. After
training, the trained DTL model is used in the detection
module that can classify incoming traffic from all IoT devices
as normal or attack data. The detailed description of the DTL
model is presented in the next subsection.

B. TRANSFER LEARNING MODEL
The proposed DTL (i.e., MMD-AE) model includes two
AEs (i.e., AE1 an AE2) that have the same architecture as
Fig. 4. The input of AE1 is the data samples from the source
domain (x iS ) while the input of AE2 is the data samples
from the target domain (x iT ). The training process attempts
to minimize the MMD-AE loss function. This loss function
includes three terms: the reconstruction error (`RE) term,
the supervised (`SE) term and the Multi-Maximum Mean
Discrepancy (`MMD) term.
We assume that φS , θS , φT , θT are the parameter sets of

encoder and decoder of AE1 and AE2, respectively. The first
term, `RE including RES and RET in Fig. 4, attempts to
reconstruct the input layers at the output layers of both AEs.
In other words, the RES and RET try to reconstruct the input
data xS and xT at their output from the latent representations
zS and zT , respectively. Thus, this term encourages twoAEs to
retain the useful information of the original data at the latent
representation. Consequently, we can use latent representa-
tions for classification tasks after training. Formally, the `RE
term is calculated as follows:

`RE(x
i
S , φS , θS , x

i
T , φT , θT ) = l(x iS , x̂

i
S )+ l(x

i
T , x̂

i
T ), (5)
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FIGURE 4. Architecture of MMD-AE.

where l function is the MSE function [16], x iS , x̂
i
S , x

i
T , x̂

i
T are

the data samples of input layers and the output layers of the
source domain and the target domain, respectively.

The second term `SE aims to train a classifier at the latent
representation of AE1 using labeled information in the source
domain. In other words, this term attempts to map the value
at two neurons at the bottleneck layer of AE1, i.e., zS , to their
label information yS . This is achieved by using the softmax
function [33] to minimize the difference between zS and
yS . It should be noted that, the number of neurons in the
bottleneck layer must be the same as the number of classes
in the source domain. This loss encourages to distinguish
the latent representation space from separated class labels.
Formally, this loss is defined as follows:

`SE(x
i
S , y

i
S , φS .θS ) = −

C∑
j=1

yi,jS log(zi,jS ), (6)

where ziS and y
i
S are the latent representation and labels of the

source data sample x iS . y
i,j
S and zi,jS represent the j− th element

of the vector yiS and z
i
S , respectively.

The third term `MMD is to transfer the knowledge of the
source domain to the target domain. The transferring process
is executed byminimizing theMMD distances between every
encoding layers of AE1 and the corresponding encoding lay-
ers of AE2. This term aims to make the representations of the
source data and target data close together. The `MMD loss
term is described as follows:

`MMD(x iS , φS , θS , x
i
T , φT , θT )

=

K∑
k=1

MMD(ξ kS (x
i
S ), ξ

k
T (x

i
T )), (7)

where K is the number of encoding layers in the AE-based
model. ξ kS (x

i
S ) and ξ kT (x

i
T ) are the encoding layers k-th of

AE1 and AE2, respectively, MMD(, ) is the MMD distance
presenting in (4).

The final loss function of MMD-AE combines the loss
terms in (5), (6), and (8) as in (7).

` = `SE + `RE + `MMD. (8)

Algorithm 1 presents the pseudo-code for training our
proposed DTLmodel. The training samples with labels in the
source domain are input to AE1 while the training samples
without labels in the target domain are input to AE2. The
training process attempts tominimize the loss function in (8)).
After training, AE2 is used to classify the testing samples in
the target domain as in Algorithm 2.

Algorithm 1 Training the Proposed DTL Model
INPUT:
xS , yS : Training data samples and corresponding labels in
the source domain
xT : Training data samples in the target domain
OUTPUT: Trained models: AE2.
BEGIN:
1. Put xS to the input of AE1
2. Put xT to the input of AE2
3. ξk (xS ) is the representation of xS at the layer k of AE1
4. zS is the representation of xS at the bottleneck layer of
AE1
5. ξk (xT ) is the representation of xT at the layer k of AE2
6. Training the TL model by minimizing the loss function
in (8)
return Trained models: AE1, AE2.
END.

Algorithm 2 Classifying on the Target Domain
INPUT:
xT : Testing data samples in the target domain
Trained AE2 model
OUTPUT: yT : Label of xT
BEGIN:
1. Put xT to the input of AE2
2. zT is the representation of xT at the bottleneck layer of
AE2
3. yT = softmax (zT )
return yT
END.

Our key idea in the proposed model, i.e., MMD-AE, com-
pared with the previous DTL model [18], [31] is to transfer
the knowledge not only in the bottleneck layer but also in
every encoding layer from the source domain, i.e., AE1,
to the target domain, i.e., AE2. In other words, MMD-AE
allows to transfer more knowledge from the source domain
to the target domain. One possible limitation of MMD-AE
is that it may incur the overhead time in the training process

VOLUME 8, 2020 107339



L. Vu et al.: DTL for IoT Attack Detection

TABLE 1. Description of IoT datasets.

since the distance between multiple layers of the encoders in
AE1 and AE2 is evaluated. However, in the predicting phase,
only AE2 is used to classify incoming samples in the target
domain. Therefore, this model does not lead to increasing the
predicting time compared to other AE-based models.

V. EXPERIMENTAL SETTING
This section presents the datasets, the performance metrics,
the hyper-parameter settings and the sets of the experiments
in our paper.

A. DATASETS
To evaluate the performance of MMD-AE we used nine
IoT attack detection datasets from Meidan et al. [3]. These
datasets were collected from nine commercial IoT devices
in their lab. Each IoT dataset includes five or ten DDoS
attacks based on types of IoT devices, such as Scanning the
network for vulnerable devices (scan), Sending spam data
(Junk), UDP flooding (udp), TCP flooding (tcp), and Sending
spam data and opening a connection to a specified IP address
and port (combo). Each dataset is divided into a training set
(70% benign data samples and two random types of attacks)
and the testing set (30% benign data samples and the rest
of attacks). Thus, many attack types are not included in the
training data. Each data sample has 115 attributes extracted
from the packet stream. The number of training and testing
datasets is presented in Table 1.

B. EVALUATION METRIC
To evaluate the effectiveness of the proposed model,
we use a popular performance metric, i.e., Area Under the

Curve (AUC) score. The advantage of AUC includes two
aspects. First, it is scale-invariant. In other words, the AUC
score measures how well predictions are ranked, rather
than their absolute values. Second, AUC is classification-
threshold-invariant. It measures the quality of the model’s
predictions irrespective of what classification threshold is
chosen [40].

The AUC score is created by plotting the True Positive
Rate (TPR) or Sensitivity1 against the False Positive Rate
(FPR)2 at various threshold settings. The space under the
ROC curve is represented as the AUC score [40]. This mea-
sures the average quality of the classification model at differ-
ent thresholds.

C. HYPER-PARAMETERS SETTING
The same configuration is used for all AE-based models in
our experiments. This configuration is based on the AE-based
models for detecting network attacks in the literature [2], [3],
[15], [16]. As we integrate the `SE loss term to MMD-AE,
the number of neurons in the bottleneck layer is equal to the
number of classes in the IoT dataset, i.e., 2 neurons in this
paper. The number of layers including both the encoding lay-
ers and the decoding layers is 5. The ADAM algorithm [41]
is used for optimizing the models in the training process. The
ReLu function is used as an activation function of AE layers
except for the last layers of the encoder and decoder where
the Sigmoid function is used. For all datasets, we select 10%
of training data as the validation sets for early stopping. This
technique helps to stop training process automatically. The
performance of each model is evaluated on the validation set
at the end of each 10 epochs. If the the AUC score is reduced,
the training procedure will be stopped.

D. EXPERIMENTAL SETS
We carried out three sets of experiments in this paper. The
first set is to investigate how effective our proposed model
is at transferring knowledge from the source domain to the
target domain. We compare the MMD distances between the
bottleneck layer of the source domain and the target domain
after trainingwhen the transferring process is executed in one,
two, and three encoding layers. The smaller MMD distance,
the more effective transferring process from the source to the
target domain [42].

The second set is the main result of the paper in which
we compare the AUC scores of MMD-AE with AE and two
recent DTL models [18], [31]. All methods are trained using
the training set including the source dataset with label infor-
mation and the target dataset without label information. After
training, the trained models are evaluated using the target
dataset. The methods compared in this experiment include
the original AE (i.e., AE), and the DTL model using the

1TPRmeasures the proportion of actual positive samples that are correctly
identified.

2FPRmeasures the ratio between the number of negative samples wrongly
categorized as positive samples (false positives) and the total number of
actual negative samples.
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KL metric at the bottleneck layer (i.e., SKL-AE), the DTL
method of using the MMD metric at the bottleneck layer
(i.e., SMD-AE), and our model (MMD-AE).

The third set is to measure the processing time of the
training and the predicting process of the above evaluated
methods. The detailed results of three experimental sets are
presented in the next section.

VI. RESULTS
This section presents the result of three sets of the experi-
ments in our paper.

A. EFFECTIVENESS OF TRANSFERRING
INFORMATION IN MMD-AE
MMD-AE implements multiple transfer between encoding
layers of AE1 and AE2 to force the latent representation of
AE2 closer to the latent representation of AE1. In order to
evaluate if MMD-AE achieve its objective we conducted an
experiment in which, IoT-1 is selected as the source domain
and IoT-2 is the target domain. We measured the MMD
distance between the latent representation, i.e., the bottleneck
layer, of AE1 and AE2 when the transfer information is
implemented in one, two and three layers of the encoders.
The smaller distance is, the more information is transferred
from the source domain (AE1) to the target domain (AE2).
The result is presented in Fig. 5.

FIGURE 5. MMD of latent representations of the source (IoT-1) and the
target (IoT-2) when transferring task on one, two, and three encoding
layers.

The figure shows that transferring task implemented on
more layers results in the smaller MMD distance value.
In other words, more information can be transferred from
the source to the target domain when the transferring task is
implemented on more encoding layers. This result evidences
that our proposed solution, MMD-AE, is more effective than
the previous DTL models performing the transferring task
only at the bottleneck layer of AE.

B. PERFORMANCE COMPARISON
Table 2 represents the AUC scores of AE, SKL-AE, SMD-AE
and MMD-AE when they are trained on the dataset with

FIGURE 6. Training and testing of AE, SKL-AE, SMD-AE, and MMD-AE
when the source domain is IoT-2 the target domain is IoT-1.

label information in the columns and the dataset without
information in the rows and tested on the dataset in the rows.
In this table, the result of MMD-AE is printed in bold face.
We can observe that AE is the worst method among the tested
methods. Apparently, when an AE is trained on an IoT dataset
(the source) and evaluating on other IoT datasets (the target),
its performance is not effective. The reason for this ineffective
result is that the predicting data in the target domain is far
different from the training data in the source domain.

Conversely, the results of three DTL models are much
better than that of AE. For example, if the source dataset
is IoT-1 and the target dataset is IoT-3, the AUC score is
improved from 0.600 to 0.745 and 0.764 with SKL-AE and
SMD-AE, respectively. These results prove that using DTL
helps to improve the accuracy of AEs on detecting IoT attacks
on the target domain.

More importantly, our proposed method, i.e., MMD-AE,
usually achieves the highest AUC score in almost all IoT
datasets.3 For example, the AUC score is 0.937 compared to
0.600, 0.745, 0.764 of AE, SKL-AE and SMD-AE, respec-
tively, when the source dataset is IoT-1 and the target dataset
is IoT-3. The results on the other datasets are also similar to
the results on IoT-3. These results demonstrate that imple-
menting the transferring task in multiple layers of MMD-AE
helps the model to transfer the label information from the
source to the target domain more effectively. Subsequently,
MMD-AE often achieves better results compared to AE,
SKL-AE and SMD-AE in detecting IoT attacks in the target
domain.

C. PROCESSING TIME ANALYSIS
Fig. 6 shows the training and the predicting time of the
tested model when the source domain is IoT-2 and the target
domain is IoT-1.4 In this figure, the training time is measured
in hours and the predicting time is measured in seconds.
It can be seen that, the training process of the DTL methods

3The AUC scores of the proposed model in each scenario is presented by
the bold text style.

4The results on the other datasets are similar to this result.
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TABLE 2. AUC scores of AE, SKL-AE, SMD-AE, and MMD-AE on nine IoT datasets.

(i.e., SKL-AE, SMD-AE, and MMD-AE) is more time con-
suming than that of AE. One of the reason is that DTLmodels
need to evaluate the MMD distance between the AE1 and
AE2 at every iteration while this calculation is not required in
AE. Moreover, the training time of MMD-AE is even much
higher than those of SKL-AE and SMD-AE since MMD-AE
needs to calculate theMMDdistance between every encoding
layers whereas SKL-AE and SMD-AE only calculate the
distance metric in the bottleneck layer.

However, it is important to note that the predicting time of
all DTL methods is mostly equal to that of AE. The reason is
that the testing samples are only fitted to one AE in all tested
models. For example, the total of the predicting time of AE,
SKL-AE, SMD-AE, and MMD-AE are 1.001, 1.112, 1.110,
and 1.108 seconds, respectively, on 778, 810 testing samples
of the IoT-1 dataset.

VII. CONCLUSION
In this paper, we have introduced a novel DTL-based
approach for IoT network attack detection, namely MMD-
AE. This proposed approach aims to address the problem
of ‘‘lack of labeled information’’ for the training detection

model in ubiquitous IoT devices. Specifically, the labeled
data and unlabeled data are fitted into two AE models with
the same network structure. Moreover, the MMD metric is
used to transfer knowledge from the first AE to the second
AE. Comparing to the previous DTL models, MMD-AE can
operate at all the encoding layers instead of only the bottle-
neck layer.

We have carried out the extensive experiments to evaluate
the strength of our proposed model in many scenarios. The
experimental results demonstrate that DTL approaches can
enhance the AUC score for IoT attack detection. Further-
more, our proposed DTL model, i.e., MMD-AE, operating
transformation at all the level of encoding layers of the AEs
helps to improve the effectiveness of the transferring process.
Thus, the proposed model is meaningful when having label
information in the source domain but no label information in
the target domain.

One limitation of the proposed model is that it requires
more time to train the model. However, the predicting time
of MMD-AE is mostly similar to that of the other AE-based
models. In the future, one can extend our current work
in several directions. First, we will distribute the training
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process to the multiple IoT nodes by using the federated
learning technique to speed up this process. Second, the cur-
rent DTL model is developed based on AutoEncoder. In the
future, we will attempt to extend this model based on other
neural networks such as Deep Adaptation Network (DAN),
Adversarial Discriminative Domain Adaptation (ADDA),
Maximum Classifier Discrepancy (MCD), and Conditional
Domain Adversarial Network (CDAN) [43].
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