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Abstract 

Reliability is one of the critical success factors for both passenger and freight rail 
service delivery. One major factor that significantly impacts reliability performance  is 
delays spanning over spatial and temporal dimensions. One way to increase 
reliability is to avoid systematic delay propagation through better timetable design to 
reduce the interdependencies between trains caused by route conflicts and train 
connections. In this paper, we aim to predict the propagation of delays on a railway 
network by developing a conditional Bayesian delay propagation model. In the 
model, the propagation satisfies the Markov property that determination of delay 
propagation for the future of the process is based solely on its present state, and that 
the history does not have an influence on the future. For the cases of delay caused 
by cross line conflicts and train connection, throughput estimation is considered in 
the model. The proposed model benefits from scalable computing time and 
complexity advantages over the Markov property. Implementation of actual 
operational data shows the feasibility and accuracy of the proposed model when 
compared to traditional probability models. The proposed model can be used for 
timetable evaluation and operations management decision support. 

1 Introduction 

Delay and its propagation is one of the major factors that seriously influence the 
railway systems performance. In scheduled railway traffic networks, a single delayed 
train may cause a domino effect causing secondary delays over the entire network, 
which is the main concern to planners and train controllers (Goverde, 2010). Despite 
the application of buffer times and systematic delays (which is highly related with 
timetable design), train delays are inevitable due to many stochastic factors (for 
instance, increasing passenger demand, equipment failures, passenger behaviour, 
asset failures, driver behaviour and other factors like weather conditions). In a 
complicated network system, delays are usually not solely contained to one train, 
station or line. They have a propagation effect that can spread throughout the 
network, which bring secondary delays and cause a series of traffic problems such 
as disordered operations of the railway network that results in reduced service 
quality, decreased punctuality and reliability. In general, delays can result in negative 
economic and social impacts that affect daily life. Therefore, it is important to analyse 
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delay factors, develop delay management and prediction strategies to maintain the 
reliability of the railway network system. 

In real-world train operations, delay prediction relies heavily on the experience and 
intuition of a local train controller rather than a network-wide computational 
instrument (Martin, 2016). Given the complex structure of a railway network and 
interdependent train operations between a large set of origins and destinations, a 
local train controller’s estimation of delays and the subsequent decisions are strongly 
dependent on the state of traffic on the network and generally limited to a local 
geographical area or line. Whereas in reality, not only the trains on same service line 
should be considered for secondary delays, but also the route conflict of crossing or 
merging lines, crew-relief, and train connections can all cause secondary delays. 
With the rapid growth of demand and the large and dense network structures in big 
cities, the domain knowledge and expertise of local train planners/controllers must 
be supported by an advanced computational tool that enables them to respond to an 
emergency in real time with optimal or approximate optimal solutions. 

In this paper, we aim to predict the propagation of delays on Sydney Trains railway 
network by developing a conditional Bayesian delay propagation Model. Creation of 
such a delay propagation model for a complex network like Sydney Trains has been 
hindered by two fundamental limitations. Firstly, it is a challenge to discover the 
delay patterns at the station level by collecting and incorporating the mass of train 
operational data from a big network. Secondly, there has been a lack of models 
capable of simultaneously taking the complex railway network structure and the 
delay dependencies among multiple trips into consideration for 
propagation/prediction tasks. To overcome these limitations, a conditional Bayesian 
model is proposed in this study. A Bayesian-based methodology is a 
representational tool meant to capture complex structures and “organize one’s 
knowledge about a particular situation into a coherent whole” (Darwiche, 2009). At 
the same time, it allows for the incorporation of massive historical data in identifying 
the contingencies between multiple events and updating the state of different 
variables given real-time data.  

The proposed conditional Bayesian model in this paper assumes that the 
propagation satisfies the Markov property, where if can determine delay propagation 
for the future of the process based solely on its present state, and the history do not 
have an influence on the future, despite one might know the process's full history. 
The introduction of the Markov assumption helps us to easily discover the delay 
dependency and reduce the model complexity. For the problem of complicated 
network structure, we divided the context of delay propagation into four types based 
on the following scenarios: The impact of delays on: (1) the current trip which caused 
the primary delays (self-propagation); (2) the following trips along the same service 
line (backward propagation); (3) the trips from cross service lines that interact with 
intersection stations of current trip (cross-line propagation); and (4) the trips which 
have train connection 1  of current trip (train-connection propagation). The four 
scenarios contain all the dependencies of different trips based on the railway 

                                            
1
 Train connection: A train will start a new trip after reaching the destination of one trip. We call there 

is a train connection between these two trips as they share the same train. The preceding trip’s delay 
will always cause the following trip’s secondary delay at the origin. 
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network and operation timetable, which further reduce the complexity of delay 
propagation. Therefore, our proposed model benefits from scalable computing time 
and simplified complexity over the Markov property. Implementation on Sydney 
Trains operation data has demonstrated the feasibility and accuracy of the proposed 
model comparing to traditional probability models. The proposed model can also be 
used for timetable evaluation. 

The rest of the paper is organised as follows: In Section 2, we summarise some 
related work about delay propagation analysis. In Section 3, we first describe some 
background knowledge and problem setting about delay propagation. Then, we 
discuss the details of our proposed model. In Section 4, we present a case study 
results of the method introduced in Section 3. Finally, we conclude our work in 
Section 5. 

2 Related works 

Several empirical methods have been studied in machine learning literature to model 
and analyse delay propagation. (Chen and Harker, 1990) improved empirical 
estimation method by taking the uncertainty in the actual train departure time 
explicitly into consideration. (Carey and Kwiecinski, 1994) developed a simple 
stochastic method to measure delay propagation by using stochastic simulation 
between trains and derive the relationships between scheduled headways and delay 
propagation. Although many methods have been studied and applied to the analysis 
of delay propagation, such methods have never been used successfully over a 
complex network. And some research has been conducted to solve this issue. (Florio 
and Mussone, 1998) proposed a solution which can be carried out for a real-world 
case with medium complexity of railway scheme.  

However, runtime delay and dwell delay is not taken into consideration in the model 
based on real operation data. (Goverde, 2001) introduced the use of regression 
analysis to predict departure delays from arrival delays and capture the variation of 
run-time and dwell time in the model. This method is easy to be implemented but 
cannot handle complex scenarios very well. (Yuan et al., 2002) proposed a 
stochastic model to forecast the distribution of departure delays based on the 
distribution of late arrival delays and dwell delays using Monte Carlo sampling 
method.  

Nevertheless, this method has its limitation with lack of dependence analysis of dwell 
delays on late arrival delays and scheduled dwell times. (Goverde, 2010) presented 
an advanced model which can be applied to the whole network to calculate the delay 
propagation of initial delays within a timetable period. The author also designed a 
graph algorithm to compute the propagation of train delays by storing the propagated 
delays in the bucket. But, this algorithm was designed based on a linear system 
without taking the distribution of run-time delay and dwell time delay into account. 
Recent work by (Cerreto et al., 2018) developed a clustering method to identify the 
delay patterns which can be used for big datasets generated by the railway signal 
system. However, the author used a hard assignment method (K-means), which 
cannot be interpreted in a probabilistic way and cannot be used to analyse and 
measure the delay impacts with conditions. (Wu et.al, 2019) further trailed deep 
learning methods such as LSTM in predicting primary delays, but the work is still 
preliminary and has not been tested on big data set. 
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3 Methodology 

The optimization of capacity utilization and timetable design requires the prediction 
of the reliability and punctuality level of train operations, which is determined by the 
train delays and delay propagation. The propagation of train delays is more likely to 
occur during the arrival/departure of trains at stations because the crossing or 
merging of lines and platform tracks are in most cases bottlenecks in highly used 
railway networks. In the following section, we will introduce the problem formulation 
of delay propagation and the related background, then a conditional Bayesian model 
will be proposed for delay propagation prediction. The model can be used for 
estimating future impact when a delay happened, not only for a single train but also 
the following trains, crossing-line trains and connected trains. 

3.1 Problem formulation and background 

3.1.1 Train delay 

Delay is defined as the variation time between actual time and scheduled time. In the 
railway networks, the delay can be further decomposed into different types according 
to different definitions as shown in Figure 1. In this paper we will consider both 
primary delay and secondary delay. We would divide them based on delay causes, 
then estimate the distribution of incremental delay on station level by using historical 
data, and finally give the accumulative delay and influences to the whole railway 
network. 

Figure 1. Delay types under different standards
2
. 

 

Run-time and dwell time delay are considered as variation time with respect to run-
time and dwell time of a given train, respectively. The incremental run-time from 

Station 𝑖 to Station 𝑗 is defined as: 

𝑅𝑖𝑗 = 𝑡𝑗
𝑎 − 𝑡𝑖 (1) 

Where 𝑡𝑗
𝑎 is the arrival time at Station 𝑗 and 𝑡𝑖 is the departure time at Station 𝑖. Then 

the incremental run-time delay from Station 𝑖  to Station 𝑗 is computed by 

𝐴𝑐𝑡𝑢𝑎𝑙(𝑡𝑗
𝑎) − 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑(𝑡𝑖). Similarly, the incremental dwell time from Station 𝑖  to 

Station 𝑗 is: 

                                            
2
 Based on the dependency relationship, delay can be divided into primary delay and secondary 

delay. Here, we defined the earliest self-caused delay as primary delay, and all delays caused by this 
particular delay are called secondary delay. Based on delay causes, delay can be divided into run-
time delay and dwell time delay, which are defined as the variation time with respect to run-time and 
dwell time respectively. Delay can also divide into incremental delay and accumulative delay 
according to whether considering the stacking effect of delay of the same trains.  
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𝐷𝑗 = 𝑡𝑗 − 𝑡𝑗
𝑎 (2) 

Therefore, the incremental dwell time delay can be computed by 𝐴𝑐𝑡𝑢𝑎𝑙(𝑡𝑗) −

𝑆𝑐ℎ𝑒𝑑𝑢𝑒𝑙𝑑(𝑡𝑗) =  𝐴𝑐𝑡𝑢𝑎𝑙(𝑡𝑗 − 𝑡𝑗
𝑎) − 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑(𝑡𝑗 − 𝑡𝑗

𝑎).  

3.1.2 Delay propagation 

As discussed in the Introduction section, the delay can have a  domino effect and 
one delayed single trip (primary delay) can cause secondary delays to following 
trains and crossing-line trains, this phenomenon is defined as delay propagation as 
shown in Figure 2. Specifically, 4 typical scenarios have been specified to capture all 
the delay propagation possibilities as shown in Figure 3. 

 Self-propagation: If a train 𝑇1  has a delay at Station 3, the delay will 

propagate and influence  𝑇1 itself at the following stops. 

 Cross-line propagation: If a train 𝑇1 has a delay at Station 3, the delay may 
propagate and influence trains that are from cross lines arriving at Station 3 

during the time period that 𝑇1 parked at Station 3 unscheduled. 

  ackward propagation: If a train 𝑇1 has a delay at Station 3, the delay may 
propagate and influence the following trains that would arrive at Station 3 

during the time period that 𝑇1 parked at Station 3 unscheduled. 

 Train connection propagation: As trains always need to run round trips or 
connected trips each day, there is always train connection effects3: a train 
arrives late at the destination will cause a start delay for its next trip. 

Cross-line and backward effects of a train’s delay are also termed as route conflict 
effects. 

Figure 2. Delay propagation and impacts. 

 

 

 

                                            
3
 Beside train connection effect, crew caused delay also contributes to the start delay for the following 

trips. Crew caused delays are the delays that caused by the late arrival of drivers or guards. Based on 
our research, the late arrival of crew are always caused by the delay of preceding trains the crew stay 
aboard. 
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Figure 3. Four scenarios of delay propagation. 

 

3.2 Preliminary  

Delay propagation could cause a huge impact on daily railway network operations. 
Reliable prediction of delay propagation would support train planners/controllers’ 
operation decision making. A conditional Bayesian model incorporates with Markov 
property is developed to predict and estimate delay propagation, which can capture 
the complex real-world scenarios by including both run-time delay and dwell delay 
into the model. To better understand the model, we first give a brief introduction of 
the background knowledge, and then the detailed model design will be proposed. 

3.2.1 Bayesian inference 

A Bayesian inference framework is adopted in the proposed model. Bayesian 
inference has been studied in many empirical machines learning literature by 
applying Bayes' Theorem P(A ∣ B) = P(B ∣ A)P(A)/P(B) to model any random 
variables. The denominator in Bayes’ Theorem is also called evidence or normalising 
constant, so we normally rewrite the formula into P(A ∣ B) ∝ P(B ∣ A)P(A), where 

P(A ∣ B) is the posterior distribution and is proportional to the likelihood P(B ∣ A) times 
prior 𝑃(𝐴). Usually, the Bayesian inference framework is constructed in such a way 
that the prior is formed first and the posterior distribution is then computed using 
Bayes' Theorem. However, when conjugate priors are not applicable, it is necessary 
to compute the intractable integrals, which are not possible to compute the posterior 
distribution analytically. 

3.2.2 Markov property  

The Markov property is described as the independence of the future from the past, 

given the present. To be more formally, if we define a one-parameter process 𝑋 is a 
Markov process with respect to a filtration {ℱ}𝑡 when 𝑋𝑡 is adapted to the filtration, 
then for any 𝑠 > 𝑡 , 𝑋𝑠  is independent of ℱ𝑡  given 𝑋𝑡 , which can be expressed as 
𝑋𝑠 ⫫ ℱt ∣ 𝑋𝑡. The Markov property holds in train delay propagation cases because the 
self-propagation caused delays in any station are influenced only by the delay status 
of the immediate preceding station. More specifically, if a train at Station 1 has a 
primary delay and propagates the delay to Station 2, and Station 2 further 
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propagates delay to Station 3, the delay on Station 3 will only be considered being 

affected by the delay in Station 2. Formally, 𝑃(𝜏𝑖+1
𝑑𝑒𝑙𝑎𝑦

∣ τ𝑖
delay

, … , 𝜏1
𝑑𝑒𝑙𝑎𝑦

) = 𝑃(𝜏𝑖+1
𝑑𝑒𝑙𝑎𝑦

∣

𝜏𝑖
𝑑𝑒𝑙𝑎𝑦

).  

3.3 Conditional Bayesian delay propagation 

Herein we will propose our conditional Bayesian model for different delay 
propagation scenarios as introduced in Section 3.1.2. 

3.3.1 Delay self-propagation  

Delay self-propagation within a single trip is illustrated as Scenario ① in Figure 3. As 
shown in the figure, the delay of a trip at one station can be propagated to the next 
station. Therefore, it is obvious that the accumulative delay (secondary delay) at the 
next station is highly dependent on the delay at the preceding stations by following 
the Markov property. We use a delay example, which occurs at two consecutive 
stations, to explain how to model the delay propagation from one station to another 
from Bayesian theory perspective within a single trip and how it can be easily 
extended to the whole trip. 

If we define 𝑅12 as the normal runtime4 from Station 1 to Station 2, and 𝐷2 as the 
normal dwell time at Station 2. We assume both 𝑅12  and 𝐷2  follow normal 
distributions and can be learnt by using historical data, expressed as 

𝑅12 ∼  𝒩(𝜇12
𝑅 , 𝜎12

𝑅 ) and 𝐷2 ∼ 𝒩(𝜇2
𝐷 , 𝜎2

𝐷). 

If there is a primary/secondary delay occurred at Station 1 (departure delay of 

Station 1: Δ𝑡1), it will affect the driver’s behaviour (e.g. speed up to make up the 
delay in the following trip) and the passenger flow pattern (e.g. more passengers on 

the platforms) with arrival delay (Δ𝑡2
𝑎 ) of Station 2. Therefore, based on Markov 

property, the runtime and dwell time between Station 1 and 2 will follow: 

R12
′ =  R12 + (Δ𝑅12|Δ𝑡1),   

𝐷2
′ = 𝐷2 + (Δ𝐷2|Δ𝑡2

𝑎), 𝑤ℎ𝑒𝑟𝑒 Δ𝑡2
𝑎 =  Δ𝑡1 +  (Δ𝑅12|Δ𝑡1)  

In which, (Δ𝑅12|Δ𝑡1)  and (Δ𝐷2|Δ𝑡2
𝑎)  are the incremental delays caused by Δ𝑡1  for 

runtime and dwell time, respectively. 

Incremental runtime delay: 

When there is a delay occurred at a Station 1 ( Δ𝑡1), the driver tends to accelerate 
the train by turning on more power in order to make up the delay in the following trip, 
hence influencing the actual runtime to the next station (Station 2). For different 

values of Δ𝑡1, the incremental runtime delay could be different. If Δt1 is small, the 

driver can easily catch up with no delay at Station 2, while when Δt1 is very large, 
there is no way for the driver to overtake the delay at Station 2 even if the train will 

be running at full speed. Therefore, in our proposed model, we will divide Δt1 into 

several bins: (1) Δ𝑇1: 0 < Δt1 ≤ 3𝑚𝑖𝑛𝑠 ; (2) Δ𝑇2: 3mins < Δt1 ≤ 5𝑚𝑖𝑛𝑠 ; 

(3)Δ𝑇3: 5mins < Δt1 ≤ 10𝑚𝑖𝑛𝑠; and (4) ΔT4:  Δt1 > 10𝑚𝑖𝑛𝑠. For different bins, we will 

learn different normal distribution to fit them respectively, i.e. (Δ𝑅12|Δ𝑡1) =

(Δ𝑅12|Δ𝑇𝑖)~𝒩 (𝜇12
Δ𝑇𝑖

, 𝜎12
Δ𝑇𝑖

). 

                                            
4
 Normal runtime means the runtime with no delay happened at the departure/arrival stations. 
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Therefore, the incremental runtime delay by giving Δt1 can be re-written as: 

R12
′ ~𝒩(𝜇12

𝑅 , 𝜎12
𝑅 ) +  𝒩 (𝜇12

Δ𝑇𝑖
, 𝜎12

Δ𝑇𝑖
) = 𝒩 (𝜇12

𝑅 + 𝜇12
Δ𝑇𝑖

, √(𝜎12
𝑅 )2 + (𝜎12

Δ𝑇𝑖
)

2
) 

Incremental dwell time delay: 

When there is an arrival delay happened at a Station 1 

(arrival delay of Station 2: Δ𝑡2
𝑎), the number of passengers will increase and therefore 

influence the actual dwell time when the delayed train arrives at Station 2. Based on 
the historical train running data of Sydney Trains, we found that there was a good 
linear relationship between the actual dwell time and the increasing passengers to 
some extent. From Figure 4, we can see that the strong linear relationship exists 
when the dwell time is between 30 seconds and 60 seconds (30 seconds is the 
scheduled dwell time for most stations in Sydney Trains Timetable).  This fact 
inspired us to develop and train a piecewise function to fit the relation: 

(Δ𝐷2|Δ𝑡2
𝑎) =  {

𝛼2(Δ𝑡2
𝑎) + 𝛽2, Δ𝑡2

𝑎 < 60𝑠,

𝑐2,         Δ𝑡2
𝑎 ≥ 60𝑠.

 

Figure 4. The relationship between dwell time and average passenger flow on three stations. 
(Based on our experiments, we found that most of other stations have similar patterns.) 

 

Therefore, the incremental runtime delay by giving Δt1 can be re-written as: 

𝐷2
′  ~𝒩(𝜇2

𝐷, 𝜎2
𝐷) + (Δ𝐷2|Δ𝑡2

𝑎) =  {
𝒩(𝜇2

𝐷 + 𝛼2(Δ𝑡2
𝑎) + 𝛽2, 𝜎2

𝐷), Δ𝑡2
𝑎 < 60𝑠

𝒩(𝜇2
𝐷 + 𝑐2, 𝜎2

𝐷), Δ𝑡2
𝑎 ≥ 60𝑠.

  

Accumulative departure delay: 

In the process of delay propagation in a single trip, we only consider the 
accumulative delay at each station rather than the incremental runtime/dwell time. 

On the other hand, Δ𝑡1 always follows a normal distribution propagated from 
preceding stations rather than fixed values when Δ𝑡1 is a secondary delay, i.e. 

Δt1~𝒩(𝜇1, 𝜎1). Therefore, (Δ𝑅12|Δ𝑡1) and (Δ𝐷2|Δ𝑡2
𝑎) are the delay components that 

we should consider. They can be expressed under Bayesian theory as: 

𝑃(𝛥𝑅12|𝛥𝑡1) = ∑ 𝒩(𝛥𝑅12 ∣ 𝜇12(𝑏), 𝜎12(𝑏))𝑃(𝑏 ∣ 𝛥𝑡1)

4

𝑏=𝛥𝑇1

, 𝑤ℎ𝑒𝑟𝑒 𝑏 = {𝛥𝑇𝑖, 𝑖 = 1,2,3,4} 

𝑤ℎ𝑒𝑟𝑒 𝑎𝑖 < ΔTi ≤ 𝑏𝑖 𝑎𝑛𝑑 𝑃(ΔTi|Δ𝑡1) = ∫
1

𝜎1√2𝜋

𝑏𝑖

𝑎𝑖

exp (−
(𝑥 − 𝜇1)2

2𝜎1
2 ) 𝑑𝑥 

And,  
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𝑃(𝛥𝑡2
𝑎) = 𝑃(𝛥𝑡1 + ( 𝛥𝑅12 ∣∣ 𝛥𝑡1 )) = ∑ 𝒩(𝜇1 + 𝜇12

4

𝑏=𝛥𝑇1

(𝑏), √(𝜎1)2 + (𝜎12(𝑏))2𝑃( 𝑏 ∣∣ 𝛥𝑡1 ) 

𝑤ℎ𝑒𝑟𝑒 𝑏 = {𝛥𝑇𝑖, 𝑖 = 1,2,3,4} 

(Δ𝐷2|Δ𝑡2
𝑎)~𝒩(𝛼2(Δ𝑡2

𝑎) + 𝛽2, 𝜎2
𝐷)𝑃(Δ𝑡2

𝑎 < 60𝑠) +  𝒩(𝑐2, 𝜎2
𝐷)𝑃(Δ𝑡2

𝑎 ≥ 60𝑠), 

Where  𝑃(Δ𝑡2
𝑎 < 60𝑠) =  ∫ 𝑓(𝑥)

60

0
𝑑𝑥 , 𝑃(Δ𝑡2

𝑎 ≥ 60𝑠) =  ∫ 𝑓(𝑥)
+∞

60
𝑑𝑥  and we have 

𝑓(𝑥) =  
1

𝜎1√2𝜋
exp (−

(𝑥−𝜇1)2

2𝜎1
2 ). 

Finally, with the given departure delay of Station 1: Δt1~𝒩(𝜇1, 𝜎1), the departure 

delay of Station 2 Δt2 is: 

Δt2 = Δ𝑡1 +  (Δ𝑅12|Δ𝑡1) + (Δ𝐷2|(Δ𝑡1 +  (Δ𝑅12|Δ𝑡1))) 

Any delay propagation between two consecutive stations for a single trip can be 
calculated by using the above equation. 

3.3.2 Cross-line propagation, backward propagation and train connection 
propagation 

The other delay scenarios have a common delay propagation structure: delay can be 
propagated from unscheduled arrival time from a preceding train (cross-line train, 
preceding train or itself with round-trips). Because of this common delay propagation 
structure, cross-line, backward and train connection propagation can share the same 

model. Note that Train 𝑗 and Train 𝑘 (from a different origin to Station 2) may have 
conflict area at Station 2 and in the scheduled timetable, Train 𝑗 arrives at Station 2 
prior to Train 𝑘. To estimate the delay propagation from Train 𝑗 to Train 𝑘, we have: 

 Train 𝑗 

o Scheduled Departure time at Station 2: 𝑡2
𝑗
 

o Delay propagation from Station 1a to Station 2:  

𝛥𝑡2
𝑗

= 𝛥𝑡1
𝑗

+ ( 𝛥𝑅12
𝑗

∣∣ 𝛥𝑡1
𝑗

) + ( 𝛥𝐷2
𝑗

∣∣ 𝛥𝑡2
𝑎,𝑗

) 

o Estimated Departure time at Station 2: 𝑡2
𝑗

+ 𝛥𝑡2
𝑗
 

 Train 𝑘 

o Scheduled Arrival time at Station 2: 𝑡2
𝑎,𝑘

 

o Delay propagation from Station 1b to Station 2:  

Δt2
𝑎,𝑘 =  Δ𝑡1

𝑘 + (Δ𝑅12
𝑘 |Δ𝑡1

𝑘) 

o Estimated Departure time at Station 2: 𝑡2
𝑎,𝑘 + 𝛥𝑡2

𝑎,𝑘
 

We then have 𝑍 = |𝑡2
𝑎,𝑘 + 𝛥𝑡2

𝑎,𝑘 − 𝑡2
𝑗

− 𝛥𝑡2
𝑗
|, which is the absolute value of variation 

time between estimated Departure time at Station 2 of Train 𝑘  and estimated 

Departure time at Station 2 of Train 𝑗. We also define 𝑆 as the minimum interval time 

between Arrival time at Station 2 of Train 𝑘 and Departure time at Station 2 of Train 𝑗 
to guarantee Train 𝑘 can run smoothly through Station 2 not being affected by Train 
𝑗. This value can be computed from historical statistics.  

Next, we can define delay propagation from Train 𝑗 to Train 𝑘 as: 

( 𝛿𝑡 ∣∣ 𝛥𝑡2
𝑎,𝑘 ) ∼ 𝑃(𝑍 − 𝑆 < 0) 

                      = 𝑃(|𝑡2
𝑎,𝑘 + 𝛥𝑡2

𝑎,𝑘 − 𝑡2
𝑗

− 𝛥𝑡2
𝑗
| − 𝑆 < 0) 
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Now, we can incorporate estimated delay propagation from Train 𝑗 to Train 𝑘 into 
departure delay estimation equation and get estimated accumulative departure delay 

at Station 2 of Train 𝑗 as the equation below (we eliminate notation 𝑗 to keep the 
formula clear): 

𝛥𝑡2 = 𝛥𝑡1 + ( 𝛥𝑅12 ∣∣ 𝛥𝑡1 ) + ( 𝛥𝐷2 ∣∣ 𝛥𝑡2
𝑎 ) + ( 𝛿𝑡 ∣∣ 𝛥𝑡2

𝑎,𝑘 ) 

4 Case study 

In this section, we predict the delay propagations by using the proposed conditional 
Bayesian model for different scenarios introduced in Section 3.1.2 and compare 
them with the observed values. When a primary delay at the given station is 
specified, the predicted means and confidence intervals of secondary delays for the 
impacted following, cross-line, and connected trips are calculated.  

In Figure 5, we show the predicted delay propagation pattern (the blue line is the 
mean and the blue band is the confidence interval) and the actual running records of 
the trip (the red line). The dots represent the predicted/actual dwell time at stations, 
and the stars indicate the predicted/actual runtime between two consecutive stations. 
The model is applied from the beginning of the trip (by taking the starting time as the 
input of the proposed model and predicting the dwell/running time for the following 
stations). It can be seen that when there is no delay, the proposed model can be 
used for normal running/dwell time prediction (the accumulated delay can be 
considered as the noise to the scheduled running/dwell time), the means of the 
predicted values are similar to the actual ones. When we specified a delay happened 
between Kings Cross and Martin Place (a runtime delay), we just updated the input 
of the model and re-run it for the following stations. The predicted delay propagation 
pattern matches the actual one well, and the difference between actual and 
predicted mean at the trip destination (Central Station) is less than 30 seconds, 
which demonstrates the reliability of the proposed model. Similar performance can 
be found for other delay scenarios. Figure 6 and 7 show the predicted delay 
propagation on the cross-line trip/ following trip. Figure 6 shows that the cross line 
trains would be affected by the primary delay (left figure) occurred at Station Milsons 
Point and the predicted delays of the cross-line trip (right figure) were close to the 
actual ones, with difference within 10 seconds (the difference between actual values 
and predicted means). Figure 8 shows the start delays (right figure) caused by the 
train-connection delay (left figure). The delay of the preceding trip was propagated to 
the following trip as the two trips were using the same train. 

Figure 5. Delay self-propagation.  
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Figure 6. Delay cross-line propagation. 

 

Figure 7. Delay backward propagation. 

 

Figure 8. Delay train-connection propagation. 

 

5 Conclusion: 

In this paper, we proposed a conditional Bayesian delay propagation model. The 
model takes Markov property into consideration and handles complex realistic 
application scenarios. Based on the case study results, it can be seen that the 
proposed model can not only provide reliable predicted secondary delays for the 
impacted following, cross-line, and connected trips when a primary delay is captured. 
The model can also give the confidence intervals of the predicted values for railway 
operation managers and site controllers to better understand the potential influence 
of the delay and handle it properly. 
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