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Abstract
A session-based recommender system (SBRS) sug-
gests the next item by modeling the dependen-
cies between items in a session. Most of existing
SBRSs assume the items inside a session are asso-
ciated with one (implicit) purpose. However, this
may not always be true in reality, and a session
may often consist of multiple subsets of items for
different purposes (e.g., breakfast and decoration).
Specifically, items (e.g., bread and milk) in a subset
have strong purpose-specific dependencies whereas
items (e.g., bread and vase) from different subsets
have much weaker or even no dependencies due
to the difference of purposes. Therefore, we pro-
pose a mixture-channel model to accommodate the
multi-purpose item subsets for more precisely rep-
resenting a session. To address the shortcomings
in existing SBRSs, this model recommends more
diverse items to satisfy different purposes. Accord-
ingly, we design effective mixture-channel purpose
routing networks (MCPRNs) with a purpose rout-
ing network to detect the purposes of each item
and assign them into the corresponding channels.
Moreover, a purpose-specific recurrent network is
devised to model the dependencies between items
within each channel for a specific purpose. The ex-
perimental results show the superiority of MCPRN
over the state-of-the-art methods in terms of both
recommendation accuracy and diversity.

1 Introduction
In real world, user requirements keep changing when the cor-
responding contexts evolve. This context-sensitive demand
nature inspires the recent interest on session-based recom-
mender systems (SBRSs) [Wang et al., 2019], which tackle
the gaps in the conventional static recommender systems
(RSs) that only recommend homogeneous items without con-
sidering the demand dynamics across sessions. Accordingly,
an SBRS recommends the next item for a session (as a con-
text) to a user who may be interested in by modeling the de-
pendencies between items in the session [Hidasi et al., 2018].

Most of existing SBRSs (e.g., [Twardowski, 2016; Wang et
al., 2017; 2018]) make recommendations by forming a ses-
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Figure 1: An example of two different approaches of SBRSs to
model a multi-purpose session, where dashed squares with differ-
ent colours indicate different purposes and thicker arrow lines show
stronger dependencies between items.

sion with a single purpose or goal (e.g, shopping for food
and beverage products in basket analysis). This often violates
the reality that a session may involve multiple types of items
where each type corresponds to one purpose. Taking the ses-
sion illustrated by Row 1 in Figure 1 as an example, Janet
first placed bacon into a cart for breakfast while she then was
attracted by a piece of lovely rose for decoration and added it
into the cart. She further chose eggs and bread for breakfast
and a vase for fitting the rose. Finally, she ended this shopping
session by picking up a bottle of milk. For this example, ex-
isting SBRSs would take a single-channel modeling approach
to implicitly associate the items purchased in the session as
a homogeneous item sequence, as shown in Row 2 in Fig-
ure 1. Obviously, such an approach fails to differentiate the
purpose-specific item dependencies (e.g., items for breakfast
vs. items for decoration) when the items in a session serve
multiple purposes.

The above example reveals significant gaps in two repre-
sentative types of state-of-the-art SBRSs, namely the single-
channel recurrent neural networks (RNN) based SBRSs and
attention-based SBRSs. RNN-based models [Hidasi et al.,
2018; Quadrana et al., 2017] assume a rigid sequential depen-
dency over any successive items within a session and hence:
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(Gap 1) it is easy to generate false dependencies as not all
items depend on each other in a multi-purpose session. In
addition, due to the memory decay along with the time steps,
those contextual items far from the target item will be over-
whelmed by the near ones, as a result, (Gap 2) an RNN-based
SBRS tends to recommend items biased to the most recent
purpose indicated by the nearest items. To reduce the in-
terference of irrelevant items, an attention mechanism has
been recently incorporated into shallow networks [Wang et
al., 2018], RNN [Li and et al., 2017] or memory networks
[Chen et al., 2018] to build SBRSs. The attention model tends
to assign salient weights on a very few significant items [Hu
et al., 2018], which makes the purpose of a session dominated
by these few items. Consequently, (Gap 3) an attention-based
SBRS tends to recommend items to satisfy the dominant pur-
pose while disadvantages others.

This paper addresses the above three gaps by propos-
ing mixture-channel purpose routing networks (MCPRN).
MCPRN first automatically detects the possible multiple pur-
poses in a session with a purpose routing network (PRN), and
then models a session with a mixture-channel recurrent net-
works (MCRN) where each channel (i.e., a purpose-specific
recurrent network (PSRN) built on purpose-specific recurrent
units (PSRUs) models the dependencies between items for a
specific purpose to build a purpose-specific embedding. Fi-
nally, a multi-purpose context (session) embedding is built
by integrating all the channels to rank the candidate items for
diverse purpose-sensitive recommendations.

Thanks to the PRN and MCRN, the different purposes in
a session are detected and then their item dependencies are
respectively modeled in different channels. As a result, the
item dependencies are modeled over specific purposes instead
of a coarse one, which enables our model to more concen-
tratedly capture purpose-driven user behavior. Consequently,
MCPRN leverages the current single-purpose SBRSs with
a more effective and robust mechanism to represent multi-
purpose sessions. By retaining and modeling the multiple
purposes in a session, MCPRN can recommend diverse items
satisfying different purposes, while existing methods tend to
recommend items for a single purpose only, as shown in Row
3 and Row 2 in Figure 1 respectively. The main contributions
of this work are summarized below:
• We propose multi-purpose modeling to capture user be-

havior in a session in a more reasonable way to fit real
cases. Accordingly, mixture-channel purpose routing
networks (MCPRN) are proposed to achieve this.
• In the MCPRN, the purpose routing network (PRN) is

devised to infer the purposes of each item and route them
into specific channels. Moreover, the purpose-specific
recurrent unit (PSRU) is the key component to serve as
the basic cells of the mixture-channel recurrent networks
(MCRNs) w.r.t. each channel.

2 Related Work
A variety of SBRSs including rule/pattern-based RSs [Yap et
al., 2012], neighbourhood-based RSs [Jannach and Ludewig,
2017], Markov chain-based RSs [Feng and et al., 2015] and
factorization machine-based RSs [Rendle et al., 2010] have

been developed. We briefly review two representative state-
of-the-art SBRSs: (1) RNN-based SBRSs, and (2) attention-
based SBRSs, which are the most relevant ones to our work.

Due to its strength in handling sequential data, RNN is
an intuitive choice to capture the complex intra-session de-
pendency in SBRSs. The first RNN-based SBRS, GRU4Rec
[Hidasi et al., 2016], employed gated recurrent unit (GRU)
to capture the long-term dependency within sessions. Later,
the performance of GRU4Rec was improved significantly by
introducing novel ranking loss functions tailored to RNNs in
the recommendation setting [Hidasi et al., 2018]. RNN is
easy to generate false dependencies due to the employed rigid
order assumption which assumes any adjacent items in a ses-
sion are highly sequentially dependent. However, this may
not be true in most real cases. In addition, RNN usually biases
to recent items while missing much information of previous
items in a session because of memory decay.

The attention mechanism [Vaswani et al., 2017] has been
employed to build more robust SBRSs by intensifying those
relevant and important items in a session context. [Li and
et al., 2017] proposed the Neural Attentive Recommendation
Machine (NARM), in which a hybrid encoder with an atten-
tion mechanism is employed to model the user’s sequential
behavior and the user’s main purpose in the current session
by differentiating more and less important items. [Wang et
al., 2018] designed an attention-based transaction embedding
model (ATEM) to build an attentive context embedding over
the session context without order assumption. Further, the
attention mechanism was used in a memory-augmented neu-
ral network for selectively reading out the external memory
matrix for next item recommendations [Chen et al., 2018].
However, the attention mechanism attempts to assign larger
weights on few significant items while downplaying others,
leading to bias to the main purpose indicated by those few
items. As a result, attention-based SBRSs often only cater
for the main purpose while ignoring others in a session.

In summary, all the aforementioned SBRSs are single
channel-based, which are effective for one-purpose sessions
in which all items within a session are dependent on each
other. However, they cannot handle sessions with different
types of items for multiple purposes well. Inspired by the
great potential of mixture models in handling multiple kinds
of relations [Shazeer et al., 2017; Kang et al., 2018], we de-
vise a mixture-channel model for multi-purpose sessions.

3 Problem Statement
Given a session set S = {s1, ..., s|S|}, each session s =
{v1, ..., v|s|}(s ∈ S) consists of a sequence of items that
are interacted (e.g., clicked or purchased) sequentially by an
anonymous user in one transaction event. Here |S| denotes
the number of sessions in S and the subscripts in s indicate
the order of item occurrence. All the items occurring in all
sessions constitute the universal item set V = {v1, ..., v|V |}.
For a target item vt ∈ s, all the items that occurred prior to
vt in s together form the session context (called context for
short) of vt over s, represented as Cvt = {v1, ..., vt−1}. Each
item in Cvt is called a contextual item.

Given a context C with precedent t − 1 items, an SBRS
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Figure 2: (a) The MCPRN model consists of two main modules: Purpose Router and Mixture-Channel Recurrent Networks; (b) The PSRU
cell introduces a concentration gate (see the blue dash line square) to model purpose-specific transitions.

is built to recommend the tth item. Accordingly, MCPRN is
trained as a probabilistic classifier model that learns to predict
a conditional probability distribution P (vt|C). Once all the
parameters of the model are learned, the MCPRN is able to
recommend the next item by ranking all the candidate items in
terms of their conditional probability over the given context.

4 Mixture-Channel Purpose Routing
Networks

The architecture of MCPRN is illustrated in Figure 2 (a).
MCPRN mainly consists of two modules: (1) Purpose Router,
and (2) Mixture-Channel Recurrent Networks (MCRNs). The
purpose router is employed to route each item to a channel of
a specific purpose. Specially, we adopt a soft routing strategy
to assign each item embedding to all channels with different
purpose weights, so-called mixture channel networks. The
soft routing strategy enables to conduct any gradient-based
optimization for easing learning. In MCRNs, each channel
is equipped with a PSRN built on PSRUs to model the de-
pendencies between items for a specific purpose. The final
hidden states ht−1 from different channels are selectively in-
tegrated as a multi-purpose context embedding vC . The em-
bedding of target item vt conditional on vC is used to calcu-
late the probability of selection as the next item. Next, we
present more technical details of these components.

4.1 Purpose Router

Given all the items in a session context, a purpose routing
network (PRN) is employed in Purpose Router to extract the
purposes of selecting an item vi without any human prior
knowledge. First, we map each item v into a K-dimensional
embedding vector v ∈We, where We ∈ RK×|V | is the em-
bedding matrix of all items. Then, we input the embedding
vi of item vi into the PRN to identify the purposes of select-
ing vi. Wp ∈ RK×m denotes the purpose filtering parameter
of all purposes, where m is the number of possible purposes
(i.e., the number of channels) and it can be determined by
cross-validation. Then, the concentration score ai,j of item

vi w.r.t. the jth purpose pj is computed as follows:

ai,j = v>i Wp[:, j], j ∈ {1, ...,m} (1)

where Wp[:, j] denotes the jth column of Wp. Further, the
normalized concentration weight w.r.t. pj can be obtained in
terms of the following softmax function:

gi,j =
exp(ai,j/τ)∑m
h=1 exp(ai,h/τ)

(2)

where τ is a temperature parameter to tune. For high tempera-
tures (τ →∞), all purposes have nearly the same probability.
For a low temperature (τ → 0+), it tends to concentrate on
a single purpose (nearly a hard routing). In experiments, we
use τ = 0.1 which can produce the best performance.

4.2 Mixture-Channel Recurrent Networks
Then, the item embedding and its purpose concentration
weight are input into each channel of MCRN as shown by
the green and purple arrow lines respectively in Figure 2 (a).
Each channel is modeled by a PSRN composed of t−1 PSRU
cells to model the purpose-specific sequential dependency
over a sequence of t − 1 items. The working mechanism of
each channel is similar to a normal RNN whereas the cells are
equipped with our designed PSRU cells in PSRNs. The PSRU
cells in one channel are identical while cells in different chan-
nels share an identical structure but different parameters. We
present PSRU in detail in the following subsection.

Purpose-Specific Recurrent Units
RNN cells like long short-term memory (LSTM) or GRU do
not consider the degree of membership of items in a sequence.
In MCRNs, each channel contains all items in a session but
their purpose concentration weights, i.e. the degree of mem-
bership, on this purpose are different. Hence, LSTM and
GRU are not ready for modeling such purpose-specific de-
pendencies in a channel given the concentration weights.

As a result, we designed the purpose-specific recurrent unit
(PSRU) to serve as the cell for each PSRN. Different from
GRU or its variants, which usually compute a gate value by
only using the current input and the last hidden state without
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any additional information, PSRU introduces a concentration
gate to selectively integrate the item information in the tran-
sitions w.r.t. a specific purpose.

The structure of a PSRU cell is given in Figure 2 (b). Com-
pared to the traditional GRU cell, an additional gate, namely
concentration gate (see the blue dash line square), is added
to decide to what extent the current state should be involved
into the purpose-specific transitions according to the purpose
concentration weight gi,j . The PSRU cell at the ith time step
in channel cj takes the last hidden state hi−1, the embedding
of the current item vi and the concentration weight gi (here
subscript j is omitted from gi when the channel cj is given)
of vi as the input, and outputs the candidate hidden state h̃i
of current time step. More specifically, the candidate hidden
state h̃i can be computed as follows, with the reset gate vector
ri and the update gate vector zi:

ri = σs(Wr[hi−1,vi]) (3)

zi = σs(Wz[hi−1,vi]) (4)

h̃i = σt(Wh[ri ∗ hi−1,vi]) (5)
where σs and σt are activation functions and are specified as
sigmoid and tanh respectively. Further, we obtain the concen-
tration gate vector ui as below:

ui = σc(gi, zi; ε) = δc(gi ≥ ε) ∗ gi ∗ zi (6)

where the Delta function δc = 1 if gi ≥ ε and 0 otherwise. ε
is a threshold parameter to eliminate noisy items in modeling
the transitions of a session. That is, it will bypass the item
with a small concentration weight less than ε. We empirically
set ε = 0.01 in our experiment.

As a result, the hidden state of current step, hi, can be
determined by ui in terms of previous state hi−1 and current
candidate state h̃i:

hi = (1− ui) ∗ hi−1 + ui ∗ h̃i (7)

For example, if item vi majorly concentrate on a single pur-
pose p1, i.e., gi,1 ≈ 1 while gi,j ≈ 0 (j 6= 1). Due to gi,j < ε
for (j 6= 1), item vi will be ignored in the transitions for all
other channels except Channel 1, i.e. hi = hi−1.

4.3 The Probability of Selection
Once the session context C has been input into MCPRN, the
final hidden states ht−1 of all m channels are integrated to-
gether to build a multi-purpose context embedding vC :

vC =
m∑
j=1

ĝt,j ∗ hjt−1 (8)

where ĝt,j is the concentration weight of target item v̂t w.r.t.
purpose pj . ĝt,j weights target purpose to construct the con-
text embedding vC that probably output the target item v̂t.

Then, we feed the context embedding vC together with the
embedding of the candidate item into the output layer for the
target item prediction. Specifically, a score that quantifies the
relevance of the target item v̂t w.r.t. the given context C is
computed using the inner product to capture the interaction
between them.

δt(C) = v̂>t vC (9)

Algorithm 1 MCPRN parameter learning procedure

1: B ← Get mini-batch from all context-target item pairs
2: N ← Sampling n negative items, S−t , for each target

item vt ∈ B
3: Compute mini-batch loss using Eq. 11:
LB ← 1

|B|
∑
<s,S−>∈<B,N> L(s+, S−)

4: Update parameters: Θ← Θ− ΓAdam(∇ΘLB)

Finally, the conditional probability q(v̂t|C; Θ) to select the
item v̂t is obtained in terms of the score δt(C):

q(v̂t|C; Θ) =
1

1 + e−δt(C)
(10)

where Θ is the set of model parameters that need to be learned
over all sessions.

4.4 Optimization and Training
We train our model by using a mini-batch gradient descent on
the cross-entropy loss. Given the conditional probability q of
selection, the loss function is:

L(s+, S−) = −[log(qs+) +
∑
s∈S−

log(1− qs)] (11)

Given a session context C, we build a contrastive pair by
taking the true next item vt as the positive sample s+ and
then randomly sample n items from the item set I \ vt as
the negative sample set S−. The loss from the positive sam-
ple and each negative sample are log(qs) and log(1 − qs)
respectively. They together form the loss of a contrastive pair
〈s+, S−〉. The model parameters Θ are learned by minimiz-
ing L(s+, S−). Specifically, negative sampling [Goldberg
and Levy, 2014] is employed for efficient training.

Our model is implemented using Tensorflow. Due to the
limited space, only a brief scheme of the learning procedure
on a mini-batch is listed in Algorithm 1, where ΓAdam de-
notes Adam [Kingma and Ba, 2015]-based gradient descent
optimizer and the batch size is set to 50.

5 Experiments and Evaluation
5.1 Data Preparation
Three real-world transaction datasets are used for experi-
ments: (1) Yoochoose-buys1 released by RecSys Challenge
2015, which records the purchased items in each session on
Yoochoose.com; (2) Tmall2 released by IJCAI-15 competi-
tion, which records the purchased items in each transaction
on Tmall online shopping platform; and (3) Tafeng3 released
on Kaggle, which contains the transaction data of a Chinese
grocery store.

First, a set of sessions is extracted from each original
dataset by putting all items in one transaction together to form
a session. Those sessions containing less than three items are
removed since at least two items should be used as the context

1https://2015.recsyschallenge.com/challenge.html
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
3https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-

dataset
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Yoochoose-buy Tmall Tafeng

MRR@5 MRR@20 nDCG@5 nDCG@20 MRR@5 MRR@20 nDCG@5 nDCG@20 MRR@5 MRR@20 nDCG@5 nDCG@20

iGRU4Rec-BPR 0.1150 0.1271 0.1314 0.1662 0.1849 0.1920 0.1994 0.2198 0.0101 0.0124 0.0135 0.0214
iGRU4Rec-CE 0.1538 0.1715 0.1776 0.2268 0.2247 0.2318 0.2424 0.2623 0.0145 0.0188 0.0185 0.0308
NARM 0.1514 0.1734 0.1768 0.2387 0.4213 0.4246 0.4532 0.4618 0.0754 0.0862 0.0882 0.1198
MANN 0.1653 0.1893 0.1986 0.2655 0.4166 0.4227 0.4520 0.4610 0.0171 0.0288 0.0318 0.0625
Caser 0.1604 0.1825 0.1918 0.2444 0.2317 0.2513 0.2646 0.2735 0.0155 0.0206 0.0261 0.0335
ATEM 0.1212 0.1324 0.1768 0.2026 0.2012 0.2195 0.2238 0.2412 0.0216 0.0312 0.0282 0.0310

MCPRN-S 0.1680 0.1861 0.1859 0.2410 0.3552 0.3634 0.3907 0.4121 0.0446 0.0572 0.0581 0.0931
MCPRN 0.2191 0.2332 0.2547 0.2927 0.4657 0.4694 0.4947 0.5098 0.1017 0.1047 0.1112 0.1218

Improvement (%) 32.49 23.19 28.25 10.24 10.54 10.55 9.16 10.39 34.88 21.46 26.08 1.67

Table 1: Recommendation accuracy on three datasets

Statistics Yoochoose-buy Tmall Tafeng

#Sessions 83,928 144,936 19,538
#Items 7,428 27,863 5,263
Avg. session length 5.13 4.09 7.41
#Item category n.a 786 793

Table 2: Statistics of experimental datasets

to form a multi-purpose session context and one as the target
item. Second, we do three training-test splits on the session
set by randomly selecting 20%, 30%, 40% of the sessions
from the last 30 days respectively for testing. Our method
achieved similar performance on all the three splits and sta-
bly outperformed all the baselines and thus only the results
from the 30% split is shown. Finally, to build the training-
test instances of format 〈C, vt〉, for one session s, each time
one item from the third to the last item in s is picked up as the
target item vt and all those items before vt constitute its corre-
sponding context C. Subsequently, for a session s containing
|s| (|s| ≥ 3) items, |s| − 2 instances are built in total. The
characteristics of experimental datasets are shown in Table 2.

5.2 Experimental Settings
Three commonly used metrics: Mean Reciprocal Rank
(MRR), normalized Discounted Cumulative Gain (nDCG)
and Recall, are applied to evaluate the recommendation ac-
curacy [Chen et al., 2018; Wang et al., 2018], together with a
newly-designed diversity measure to evaluate the diversity.

Comparison Methods
To demonstrate the efficacy of mixture channels for multi-
purpose modeling, we implemented two versions of our
method: (1) full model of MCPRN proposed in this work;
and (2) single channel network (MCPRN-S) with only one
channel retained from MCPRN. The following representative
state-of-the-art SBRSs built on various frameworks including
RNN, attention model, memory network, convolutional neu-
ral network (CNN) and shallow network, are selected to be
the baselines:

• iGRU4Rec-BPR: An improved version of a typical
RNN-based SBRS which models a session using RNNs
built on GRU. It takes Bayesian Personalized Ranking
(BPR) as the loss function [Hidasi et al., 2018].

• iGRU4Rec-CE: Similar to iGRU4Rec-BPR except that
it replaces the loss function BPR with cross entropy [Hi-
dasi et al., 2018].

• NARM: A hybrid encoder with an attention mechanism
to users’ sequential behavior and capture users’ main
purpose in a session [Li and et al., 2017].

• MANN: A memory-augmented neural network which
employs an attention model to read out historical infor-
mation explicitly stored in the external memory matrix
[Chen et al., 2018].

• Caser: A convolutional sequence embedding model
which embeds a sequence of items into an “image” and
then learns sequential patterns as local features using
convolutional filters [Tang and Wang, 2018].

• ATEM: A shallow and wide network with the attention
mechanism incorporated to learn an attentive embedding
of a session context [Wang et al., 2018].

Parameter Settings
We initialize all the baseline models with the parameter set-
tings in the corresponding papers and then tune them on our
datasets for best performance for a fair comparison. The sizes
of item embeddings and hidden states in PSRU are set to 128.
The number of channels m is set to 3 by tuning on the valida-
tion data. The initial learning rate for Adam is set to 0.001.

5.3 Recommendation Accuracy Evaluation
Extensive experiments are conducted to answer the following
questions:

• Q1: How does our approach compare to the state-of-the-
art SBRSs in terms of recommendation accuracy?

• Q2: How do the mixture-channel networks compare to
the single channel network?

Result 1: Comparison with Baselines w.r.t. Accuracy
To answer question Q1, we compare the recommendation ac-
curacy of our method MCPRN and those of the six state-of-
the-art SBRSs. Table 1 reports the MRR and nDCG. The first
two methods are built on GRU-based RNN, which can eas-
ily generate false dependencies due to the overly strong se-
quentially dependent-based assumption and bias to the most
recent purpose. Therefore, they do not perform well on multi-
purpose session data. NARM and MANN achieve better per-
formance by incorporating the attention mechanism into an
RNN-based and memory network-based SBRS respectively
to emphasize the relevant information and reduce noise. But
they are easy to bias to the main purpose in a session due to
the attention weighting mechanism. Caser does not perform
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Figure 3: Recalls of MCPRN and other compared methods

well either as it is hard for the pooling operation in CNN to
capture the long-range dependencies. ATEM usually biases
to the main purpose as other attention-based SBRSs do. By
modeling each purpose independently with a recurrent chan-
nel, our MCPRN not only treats each purpose equally but also
keeps the sequential dependencies within each purpose. As a
result, MCPRN achieves the best performance on all datasets.
Particularly, MCPRN demonstrates over 20% improvement
over the best existing method in terms of MRR@5, MRR@20
and nDCG@5 on the last two datasets (cf. Table 1). The re-
call (cf. Figure 3) on two datasets (due to the limited space)
shows MCPRN leads the baselines with a clear margin.

Result 2: Mixture Channels vs. Single Channel
To demonstrate the efficacy of mixture-channel structure, we
compared MCPRN with MCPRN-S. It is clear that MCPRN
achieves much higher accuracy than MCPRN-S as shown in
Table 1 and Figure 3. The MRR, nDCG and Recall@5 of
MCPRN are at least 20% higher than that of MCPRN-S,
proving the superiority of the mixture-channel architecture.

5.4 Recommendation Diversity Evaluation
Diversity evaluation has been introduced to make up the lim-
itation of accuracy [Hu and et al., 2017; Yao et al., 2019b].
Experiments are conducted to answer the following question:
• Q3: How does our approach compare to the state-of-the-

art SBRSs in terms of recommendation diversity?
Intuitively, the more disperse distribution over the item cat-

egories of the recommendations means the larger diversity
can be produced by the model. As a result, the category distri-
bution of recommendations can be measured by the entropy
to quantify the diversity, according to the information theory
[Zhang et al., 2016; Yao et al., 2019a].

Diversity@k = −
k∑
i=1

Pri log2 Pri (12)

where k is the number of top-rank items in the recommenda-
tion list while Pri is the probability of the category to which
item vi belongs and is estimated by the frequency.

Result 3: Comparison with Baselines w.r.t. Diversity
Figure 4 shows that MCPRN achieves higher diversity than
compared methods, especially on the Tafeng dataset where
MCPRN achieves up to 13.01% and 11.61% improvement
w.r.t. Diveristy@5 and Diveristy@10 respectively compared
to the best baseline method. The reasons are that the baseline
methods usually recommend items that only satisfy either the
recent purpose (e.g., RNN-based SBRSs) or the main purpose
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Figure 4: Diversities of MCPRN and other compared methods
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Figure 5: Purpose concentration weights w.r.t. two sampled sessions
containing 10 items, where the first 9 items serve as the contextual
items and the last one corresponds to the target item.

(e.g., attention-based SBRSs) due to their single channel-
based design. In contrast, MCPRN easily diversifies the rec-
ommendation list by modeling multiple purposes in a parallel
way. Diversity evaluation is not applicable to Yoochoose-buy
as its category information is unavailable (cf. Table 2).

5.5 Purpose Concentration Visualization
To get a deep insight into how the items for different purposes
in a session are detected and accordingly routed into different
channels in MCPRN, we visualize the concentration weights
(cf. Eq. 2) of two sessions randomly sampled from the test
set of Yoochoose-buy dataset in Figure 5.

Two observations can be made from Figure 5: (1) Items
in one session are usually for multiple purposes and thus are
put into different channels, as illustrated by the various dis-
tributions of different items on all the three channels; (2) The
true target item vt may have purposes different from either
the most recent purpose or the main purpose in a session.

6 Conclusions
To effectively detect and model the multiple purposes embed-
ded within a session and thus to recommend corresponding
diverse items to satisfy those different purposes, which can-
not be addressed by existing session-based recommender sys-
tems, in this paper, we have proposed mixture-channel pur-
pose routing networks (MCPRN). MCPRN harness a purpose
routing network to detect the possible purposes of each item
in a session and multiple channels to model the item depen-
dencies within different purposes independently. Empirical
evaluations on the real-world transaction data show the supe-
riority of MCPRN in addressing the gaps in the state-of-the-
art methods.
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