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Abstract

Antibiotic resistance genes (ARGs) in water environment have become a global health 

concern. Swine wastewater is widely considered to be one of the major contributors for 

promoting the proliferation of ARGs in water environments. This paper comprehensively 

reviews and discusses the occurrence and removal of ARGs in anaerobic treatment of swine 

wastewater, and contributions of antibiotics to the fate of ARGs. The results reveal that 

ARGs’ removal is unstable during anaerobic processes, which negatively associated with the 

presence of antibiotics. The abundance of bacteria carrying ARGs increases with the addition 

of antibiotics and results in the spread of ARGs. The positive relationship was found between 

antibiotics and the abundance and transfer of ARGs in this review. However, it is necessary 

to understand the correlation among antibiotics, ARGs and microbial communities, and 

obtain more knowledge about controlling the dissemination of ARGs in the environment. 
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1. Introduction

Antibiotics are the most effective agents used in pig farms to prevent and treat disease, 

as well as improve the growth of pigs (Li, 2017; Sarmah et al., 2006). Landers et al. (2012) 

reported that approximately 88% of growing pigs in the United States receive antibiotics in 

their feed for disease prevention and growth promotion purposes. In Japan, 175 tons of 

antibiotics were used as growth promotion to animals in 2001 (Li, 2017). Nearly half of the 

antibiotics consumed (162,000 tons in 2013) were used in animal husbandry (Zhang et al., 

2015b). However, most antibiotics are poorly absorbed by pigs and hence are excreted 

through faeces and urine of pigs in unchanged forms or as metabolites (Álvarez et al., 2016; 

Cheng et al., 2018b). Therefore, swine wastewater has been reported as an important 

reservoir of antibiotics due to the frequent use of antibiotics for controlling disease and in 

the growth of pigs (Apley et al., 2012; Chen et al., 2018; Sui et al., 2017). 

The high frequency and detection of ARGs in swine wastewater reflected the positive 

relationship between ARGs and their corresponding antibiotic concentrations (Wang et al., 

2016a).  He et al. (2016) states that ARGs in swine wastewater samples were at least 31 times 

higher than those in well water and fishpond water. Ben et al. (2017) investigated the ARGs’ 

encoding resistance to tetracycline antibiotics in nine swine feedlots located in Shandong 

Province of China. Results indicate that targeted ARGs were widely distributed in swine 

wastes, with the mean relative abundance (copies per 16S rRNA gene) ranging from 3.3 × 

10−5 (tetC) to 5.2 × 10−1 (tetO) in swine manure and from 7.3 × 10−3 (tetC) to 1.7 × 10−1 

(tetO) in swine wastewater.  Moreover, high levels of ARGs have been detected in soil and 

water environments adjacent to swine farms (Cheng et al., 2016; He et al., 2016; Hsu et al., 

2014; Wu et al., 2010). Wu et al. (2010) found that the absolute tetracycline resistance gene 

copies (sum of tetM, tetO, tetQ, tetW genes) in soils, which received pig wastes strongly 

correlated with the concentrations of tetracycline residues. Li et al. (2018b) explained that 
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antibiotics together with ARGs (i.e., qnrA, sul1, sul2, tetG, tetM, and tetO) discharged from 

swine feedlots through wastewater could disseminate into surrounding groundwater 

environments. The total relative abundance of ARGs also increased in the river water after 

receiving swine wastewater discharge (Jia et al., 2017). The presence of ARGs in the 

environment could pose a serious risk to aquatic and terrestrial life because of their spread 

in the environment through bacteria, and/or mobile genetic elements (Li et al., 2018a; Xie 

et al., 2016). As emerging environmental contaminants, ARGs have become one of the 

world’s most serious clinical and public health issues as indicated by the first global report of 

the World Health Organization (WHO) on antimicrobial resistance (WHO, 2014). According 

to the latest report, a new superbug, Staphylococcus epidermidis, which is resistant to all 

known antibiotics has been discovered by Australian scientists (Lee et al., 2018). The 

increased resistance, including multi-drug resistance, supports urgent research that the factors 

and hot spots involved in its diffusion and development should be better understood (Lupo et 

al., 2012). 

Anaerobic treatment technology is one of the main methods for treating swine 

wastewater with high organic pollutants, since biogas generated could be used as bioenergy 

for households and anaerobic digestion residue usually applied as organic fertilizers to 

facilitate the growth of crops (Jechalke et al., 2014; Skouteris et al., 2012; Sui et al., 2016). 

However, anaerobic treatment processes not only have limited capability to completely 

remove antibiotics and ARGs received from swine wastewater they can, in turn, create 

favorable conditions for ARGs development and transfer (Miller et al., 2016; Pu et al., 

2018; Zhang, 2016). Hence, products from the anaerobic treatment process have been 

regarded as the source of antibiotics, and ARGs brought into the environment (Sui et al., 

2016). 
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To date, previous studies have focused on factors contributing to the proliferation and 

spread of ARGs in anaerobic treatment processes, such as antibiotics, heavy metals, 

operational conditions, and microbial communities (Ma et al., 2011; Sun et al., 2016; Yin et 

al., 2017).  Exposure to antibiotics has been considered as the most important factor 

influencing the emergence and spread of ARGs (Allen et al., 2010; Gao et al., 2012b; Levy, 

2002). Therefore, it is necessary to focus on the contribution of antibiotics on ARGs in the 

anaerobic treatment of swine wastewater due to the significantly high concentrations of 

antibiotics in swine wastewater (Cheng et al., 2018b). Horizontal Gene Transfer (HGT) has 

been confirmed as a major contributor to the spread of ARGs, which have specific structures 

and ability to capture genes by a site-specific recombination system (Lopatkin et al., 2016a). 

Furthermore, ARGs are carried by microbes in anaerobic treatment processes, so changes in 

the structure of the bacterial community is the dominant mechanism responsible for the 

variation of ARGs and during anaerobic processes (Tong et al., 2016; Zhang et al., 2016). It 

should be noted that antibiotics in swine wastewater show significant effects on the microbial 

community in anaerobic processes (Akyol et al., 2016; Cheng et al., 2018a). It can be 

considered that the impacts of antibiotics on HGT and the microbial communities can also 

demonstrate diverse influences on ARGs. Therefore, the goal of this paper is to figure out 

the influence of antibiotics on ARCs through their impacts on HGT and the microbial 

communities related to ARGs. Although studies have focused on the removal of antibiotics 

and ARGs during the anaerobic process, the occurrence and spread of ARGs continues to 

be a problem (He et al., 2016; Sui et al., 2016; Sun et al., 2016). Understanding the 

contribution of antibiotics to the fate of ARGs during anaerobic treatment of swine 

wastewater is critical for reducing the spread of ARGs through the wastewater treatment 

process. Hence, this review is focused on the occurrence and removal of ARGs in swine 
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wastewater treatment by anaerobic processes, and the contributions of such antibiotics to 

the abundance and transfer of ARGs. 

2. Occurrence and removal of ARGs in the anaerobic treatment of swine wastewater 

Antibiotics in the class of tetracyclines, sulfonamides, and macrolides are known as the 

frequently used antibiotics in swine farms (Cheng et al., 2018b; Hsu et al., 2014). High 

concentrations of such antibiotics have been found in swine wastewater. As reviewed by 

Cheng et al. (2018b), antibiotics, such as sulfamethoxazole (SMX), sulfadiazine (SDZ), 

sulfamonomethoxine (SMN), tetracycline (TC), oxytetracycline (OTC), chlortetracycline  

(CTC) and tylosin, were detected at alarmingly high levels in swine wastewater with the 

average concentration of 316.5, 98.9, 45.4, 130.08, 16.25, 12.16 and 72 μg/L, respectively. In 

this case, ARGs, including tetracycline resistance genes, sulfonamide resistance genes, and 

macrolide resistance genes have been frequently detected in swine wastewater (Ben et al., 

2017; Yuan et al., 2018). The class 1 integron-integrase gene (Intl1) is part of class 1 

integrons that could capture ARGs as part of gene cassettes. The review paper by Gillings et 

al. (2015) suggested that Intl1 could be proposed as a good proxy for monitoring ARGs in the 

environment. Thus, Intl1 was linked to the dissemination of various ARGs (Aydin et al., 

2015b; Tian et al., 2016; Zarei-Baygi et al., 2019). As reported, Intl1is also prevalent in 

swine wastewater with a proportion of up to 30% (Yuan et al., 2018).   

All these ARGs were detected and highly abundant in swine wastewater. Their 

abundance in raw swine wastewater (1011-1014 copies/L) is much higher than that in drinking 

water sources (104–109 copies/L) (Su et al., 2018; Sui et al., 2016). Based on the various 

amounts of antibiotics used and the management of pig farms, the mean relative abundance 

of the selected ARGs in swine wastewater from pig farms is shown in Fig. 1 (Ben et al., 

2017; Cheng et al., 2013; Joy et al., 2014; Sui et al., 2016; Wang et al., 2016a). As can be 

seen from Fig. 1, the mean relative abundance of the selected ARGs in swine wastewater 
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ranges between 10 -3 and 10-1 copies/16S rRNA, which is higher than the abundance in global 

lakes (10-5 to 10-2) (Yang et al., 2018). In particular, tetracycline resistance genes tetC and 

tetO were the most detected ARGs in swine wastewater with the mean relative abundance of 

6.39 ×10-2 and 1.13×10-1 copies/16S rRNA, respectively (Cheng et al., 2016; Sui et al., 2016; 

Tao et al., 2014). Except to tetC, the abundance of the ribosomal protection protein genes 

(tetM, tetO, tetQ, tetW) were higher than the efflux protein genes (tetA, tetB, tetG) in swine 

wastewater. Two plasmid-borne genes, sul1 and sul2, were also highly detected in swine 

wastewater, with means of 5.48 ×10-2 and 3.23×10-2  copies/16S rRNA, respectively (Cheng 

et al., 2016; McKinney et al., 2010; Sui et al., 2016; Tao et al., 2014). The sul1 and sul2 are 

associated with sulfonamide resistance in gram-negative bacteria, which produce 

dihydropteroate synthetase and induce resistance against sulphonamides (Arabi et al., 2014). 

The macrolide resistance genes, such as ermB, ermF, and mefA, were also detected in swine 

wastewater with high abundance (Sui et al., 2016). Meanwhile, the mean relative abundance 

of intl1was 8.76 ×10-3 copies/16S rRNA in swine wastewater (Sui et al., 2016). 

Figure 1

Considering high residuals of antibiotics and ARGs in swine wastewater, recent studies 

about the treatment of swine wastewater by anaerobic treatment processes not only 

considered the removal of common contaminants and biogas production, but also their 

efficiencies for removing antibiotics and ARGs (Ma et al., 2018; Sui et al., 2014; Sui et al., 

2016). The ARGs removal in anaerobic processes needs more attention due to the usual land 

application of products from the anaerobic process. As reports, the shift of ARGs in the 

anaerobic process was related to their resistance mechanisms and different operating 

conditions of anaerobic processes (Sui et al., 2016; Sui et al., 2017; Wang et al., 2017b). 
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Accordingly, the intrinsic resistance mechanism of the most detectable ARGs in swine 

wastewater, the main hosts of these ARGs in anaerobic processes, and their shift are 

summarized in Table 1 (Aydin et al., 2015b; Sui et al., 2016).

Table 1

As shown in Table 1, tetX encoding tetracycline inactivation enzyme did 

consistently decrease in the anaerobic treatment of swine wastewater (Chen et al., 

2015a; Cheng et al., 2013). The shift of macrolide antibiotic resistance genes (ermB and 

ermF), mainly documented as 23S rRNA methyltransferase genes, showed a similar 

trend with tetX after the treatment of anaerobic process (Yang et al., 2014). Whereas, 

the removal of the ribosomal protection protein genes (tetW and tetO) was variable in 

different operating conditions (Wang et al., 2017b; Wu et al., 2016). Temperature was 

essential for ARGs removal by anaerobic treatment, the removal rates of ARGs and 

intl1 increased with increasing the temperature. For instance, Wang et al. (2017b) stated 

that predominant ARGs (tetO, tetW, and tetX) almost reduced by one order of 

magnitude through mesophilic anaerobic digestion (37 °C). The removal rates of genes 

(tetO, tetX, tetW and intI1) could be enhanced when the temperature increased from 37 

to 55 °C, but quantities of some ARGs (tetA, tetO, and tetX) increased in anaerobic 

effluent under the temperature of 22 °C (Diehl & LaPara, 2010). Similar results have 

been concluded by Wu et al. (2016), who indicated that ARGs could be much more 

decreased in thermophilic digestion than that in mesophilic one.

However, the relative abundances of tetracycline resistance genes (tetA, tetG, tetC 

and tetM), as well as the sulfonamide resistacne genes (sul1 and sul2) increased after 

anaerobic treatment of swine wastewater (Cheng et al., 2016; Sui et al., 2016; Tao et al., 

2014). Ju et al. (2018) also observed the increase of the relative abundance of ARGs and 
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intI1 in the effluent of WWTPs. This might be due to proliferation of their host bacteria 

during the wastewater treatment process or horizontal transfer of the ARGs to other 

species (Hultman et al., 2018; Koike et al., 2007). For example, Hultman et al, (2018) 

demonstrated that the effluent of the wastewater treatment plants contained resistance 

genes in bacteria not carrying these genes in the influent. Anaerobic treatment processes 

with a high density of bacteria have been shown to be hotspots for ARGs transfer 

among different microorganisms through HGT (Lopatkin et al., 2016b; Miller et al., 

2016; Sørensen et al., 2005). HGT is the process of genetic movement among species, 

which is another major mechanism responsible for the spread of antibiotic resistance 

(Lopatkin et al., 2016b). As reported, tetA, tetC and tetG genes can easily spread among 

bacteria species. This is mainly because they are carried by main mobilizable vectors, 

self-transmissible transposon and smaller plasmids (Jiang et al., 2013). sul1 is often 

associated with Intl1, it was located in the 3 -conserved segment (3 -CS) of class 1 

integrons, while sul2 gene was usually related to small non-conjugative plasmids or 

large transmissible multi-resistant plasmids, which could facilitate their dissemination 

(Ma et al., 2018). Class 1 integrons were often used to represent the HGT as it can 

regulate the expression of exogenous genes. Although they cannot mobilize and transfer 

themselves between microbes, they are often associated with genetic elements which 

can, such as conjugative plasmids, transposons and insertion sequences (Berglund, 

2015). 

Rich nutrients in swine wastewater and relatively permissive conditions for the 

anaerobic bacteria also can explain the inability of the anaerobic process to substantially 

reduce such ARGs, because the spread of ARGs could be increased by the synergistic 

effect of the antibiotics and nutrients in wastewater. (Chen et al., 2010; Subirats et al., 
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2018).  For instance, the study by Subirats et al. (2018) found that the abundance of sul1 

and intI1 genes increased when bacterial communities exposed to both emerging 

contaminants and a high nutrient concentration (1, 25 and 1 mg/L of phosphate, nitrate 

and ammonium, respectively). In addition, antibiotics in swine wastewater 

demonstrated statistically significant correlations with the ARGs, in which their fate in 

the anaerobic treatment process was linked to the level of residual antibiotics (Cheng et 

al., 2016). Thus, it is difficult to give a general conclusion about the removal vs. 

enrichment of ARGs in anaerobic treatment processes. Exploring the impact factors on 

the fate and transfer of ARGs in anaerobic processes is significant in future research. 

3. Contribution of antibiotics to the fate of ARGs in anaerobic processes

High concentrations of antibiotics in swine wastewater have great effects on the 

fate of ARGs in the anaerobic treatment processes, although some studies have reported 

that besides antibiotics, other influential factors also affect the fate of ARGs (He et al., 

2017; Li et al., 2010; Wang et al., 2016a). In most cases, antibiotics in swine wastewater 

were positively correlated with the prevalence of ARGs in the treatment process (Huang 

et al., 2017; Jia et al., 2017; Zhang et al., 2015a). For ARGs, these antibiotics pose 

strong selective pressures which facilitate their horizontal transfer among bacterial cells 

by plasmids or integrons during anaerobic treatment processes (Ghosh & LaPara, 2007; 

Looft et al., 2012). Previous literature indicated that antibiotics even in concentrations 

below the minimal inhibitory concentration can increase the abundance of ARGs 

(Aydin et al., 2015b; Gullberg et al., 2011). The appearance of antibiotics in anaerobic 

reactors could show a negative effect on the removal efficiencies of ARGs (Wang et al., 

2017b). Furthermore, the microbial community carrying ARGs could be influenced by 
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antibiotics, which would result in the change of ARGs in anaerobic processes (Luo et 

al., 2017; Tong et al., 2016; Wang et al., 2014a; Zhang et al., 2013a). 

3.1 Contribution of antibiotics to the abundance of ARGs 

3.1.1 Contribution of sulfonamides to their corresponding ARGs

The presence of antibiotics in the anaerobic treatment process exerts direct 

pressure in the accumulation of ARGs. Some reports indicated that the concentration of 

tetracycline and sulfonamide antibiotics correlate with their corresponding ARGs 

(Zarei-Baygi et al., 2019). That is, the abundance of ARGs increased with the increasing 

dose of antibiotics (Aydin et al., 2016; Cheng et al., 2018a; Zarei-Baygi et al., 2019). 

For instance, Jiang et al. (2013) found more sulfonamide resistance genes and 

tetracycline resistance genes in the water samples containing higher concentrations of 

total sulfonamide and tetracycline antibiotics. A significant increase of total ARG 

abundance, sul1 and ermF in particular was observed by the addition of SMX and the 

increment of its concentration from 10 to 250 μg/L (Zarei-Baygi et al., 2019). Aydin et 

al. (2015b) predicted that ARGs develop rapidly as they become stable in bacterial 

populations in reactors of higher or lethal antibiotic concentrations in comparison to 

reactors with lower or non-lethal antibiotic concentrations.  In particular, along with the 

swine wastewater treatment process, a strong positive correlation between the total 

relative abundance of sulfonamide resistance genes and the total sulfonamides 

concentration was observed (Ma et al., 2018; Wang et al., 2016a). In a constructed 

wetlands system for treating swine wastewater, the author also indicated that the 

increase of the relative abundance of tetW, tetO, tetM, sul1 and sul2 genes was mainly 

caused by SMZ and TC accumulation in the system (Cheng et al., 2018a). 
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These similar results were found in the conventional wastewater treatment plant 

and fish pond waters, as the increased quality of sul1 genes were observed in the 

samples with a higher concentration of sulfonamides (Gao et al., 2012b; He et al., 

2017). It is reported that the relatively high water solubility and stability of 

sulfonamides could promote the spread of antibiotic resistance (Chee-Sanford et al., 

2009). More explicitly, according to the transfer mechanism of sulfonamide resistance 

genes, the sul1 gene was usually accompanied by the presence of integrons as it 

contributes to the widespread of sul1 in the aquatic environment (Gao et al., 2012a). 

3.1.2 Contribution of tetracyclines to their corresponding ARGs

Compared with sulfonamides, tetracyclines can be easily absorbed into the 

anaerobic sludge through adsorption (Cheng et al., 2018b). Thus, the abundance of 

tetracycline resistance genes was reported as being higher in the residual sludge rather 

than those in the effluent wastewater (Aydin et al., 2016; Wu et al., 2016). Huang et al. 

(2015a) reported that in the anaerobic reactor with TC, almost all target tetracycline 

resistance genes (tetA, tetB, tetC, tetE, tetM, tetO, tetS) proliferated in the sludge more 

than those in the reactor without TC. Smith et al. (2004) also concluded that tetracycline 

resistance genes were positively selected after exposure to high levels of TC, the total 

abundance of ARGs was significantly increased at high TC levels. Therefore, the 

adsorption of tetracyclines in biomass during the treatment process plays an important 

role in increasing tetracycline resistance genes in the anaerobic sludge (Aydin et al., 

2016). The appearance of OTC in the anaerobic reactor also benefit the proliferation of 

ARGs. For example, there were more abundant tetracycline resistance genes presented 

in an OTC wastewater treatment system than those in sewage treatment systems (Liu et 

al., 2012). Interestingly, the abundance of efflux pump genes (tetA, tetB, and tetC) in 
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the reactor with OTC (2 mg/L) and TC were significantly higher than in the control 

reactor (He et al., 2017; Shi et al., 2017). This explains how most of the efflux pump 

genes could be acquired or transferred through mobile elements, which is the dominant 

mechanism for the dissemination of ARGs (Jiang et al., 2013; Wang et al., 2014b).

When antibiotics show different influences on various ARGs, the abundance of 

some ARGs could be improved while other ARGs were not affected. This explains the 

different responses of various ARGs to antibiotics (Wu et al., 2015). As reported earlier, 

although the abundance of efflux pump genes (tetA, tetB, and tetC) increased with the 

increase of OTC concentration, the enzymatic modification gene (tetX) did not fluctuate 

significantly (Shi et al., 2017). The reason might be that the resistance mechanism of 

efflux pump is only a self-protection mechanism of microbes, which cannot reduce 

antibiotic content, whereas the enzymatic modification gene is one of the main 

mechanisms of tetracycline degradation that can chemically modify tetracycline to 

inactivate it via synthetic oxidoreductase expression (Chopra & Roberts, 2001). In the 

anaerobic processes, Bacteroides spp. which carry tetX, modifies antibiotics and 

degrades it via the tetX protein (a flavin-dependent monooxygenase) (Yang et al., 

2004). According to the report by Wang et al. (2016b), the abundance of tetQ and tetW 

genes increased when OTC concentration also increased, while tetM and tetC genes 

decreased due to the OTC inhibition of microbes. 

3.1.3 Co-resistance and cross-resistance of antibiotics

Alternatively, some reports also concluded that the correlation between total ARGs 

and their corresponding antibiotics was not as significant as previously thought; other 

factors may also influence the abundance of ARGs in addition to the selection pressure 

of antibiotics (Ji et al., 2012; McKinney et al., 2010; Peak et al., 2007; Selvam et al., 
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2012; Wang et al., 2016a). For instance, Selvam et al. (2012) found that regarding the 

treatment of swine manure, in most cases, the copy number of ARGs in the reactor with 

antibiotics was higher than the control reactor. However, in some aspects, more ARGs 

were detected in control reactors compared with antibiotic spiked ones. As well, in both 

swine treatment lagoons and the municipal wastewater treatment plant, although a 

positive correlation was observed between total sulfonamide resistance genes and total 

sulfonamides in wastewater, no significant correlation was found between total 

tetracycline resistance genes and total tetracyclines (Gao et al., 2012b; Zhang et al., 

2013b). The reason might be that many other factors could also affect the spread of 

ARGs in wastewater at low concentrations of antibiotics, which would result in a weak 

correlation between antibiotics and their corresponding resistance genes throughout the 

wastewater treatment process (Gao et al., 2012b). Probably, other factors, for instance 

heavy metals and other types of antibiotics presenting in the wastewater, can result in 

co-selection and cross-selection of resistance, which may affect correlations between 

ARGs and their corresponding antibiotics (McKinney et al., 2010; Stepanauskas et al., 

2006). 

As reported by Ji et al. (2012), due to the coexistence of antibiotics and heavy 

metals, significant positive correlations were found between sulfonamide resistance 

gene and typical heavy metals (Cu, Zn and Hg), while the presence of ARGs was 

relatively independent of their respective antibiotic inducer. Li et al. (2015) also 

indicated that the correlation not only just occurred between ARGs and their 

corresponding antibiotics, but is still true for other types of antibiotics, for instance, the 

slufamerazine indicated a positive relationship with tetracycline resistance genes (tetB 

and tetC). In a landfill, OTC and TC showed positive correlations with tetO and sul1, 
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while SMX was not found to be associated with the ARGs investigated (Song et al., 

2016). Also, a high concentration of OTC could improve the relative abundance 

of drfA7, a sulfonamide resistance gene (Qian et al., 2016). All of the above may be due 

to the co-resistance and cross-resistance of the two classes of antibiotics.

During the anaerobic treatment process, the number of ARGs would reduce due to 

the effective degradation of antibiotics (Mohring et al., 2009). Aydin et al. (2015b) and 

Aydin et al. (2016) indicated that the concentration of tetracycline resistance genes was 

always higher than the erythromycin resistance genes in the reactor with tetracycline 

and erythromycin (ERY), even though the dosage of tetracycline was the same as that of 

ERY. This is mainly because the biodegradation of tetracycline could be lower than 

ERY in biological wastewater treatment. According to the report by Shi et al. (2017), 

OTC did benefit the proliferation and accumulation of ARGs in the anaerobic reactor, 

but the abundance of ARGs displayed a downward trend when the antibiotic selective 

pressure was removed. This also has been confirmed by the treatment of swine 

wastewater by constructed wetlands, which demonstrated that the higher influent TCs 

concentration selected more copy numbers of Intl1, tetA and tetW in the effluent. 

Thereafter, however, this selection effect was alleviated probably because of elevated 

antibiotics removal (Huang et al., 2015b).

Additionally, ARGs increased with an increased dosage of combined antibiotics 

(sulfamethoxazole-tetracycline-erythromycin (STE) and sulfamethoxazole-tetracycline 

(ST)) (Aydin et al., 2015a).  This outcome has been confirmed by Aydin et al. (2015b), 

who compared the proliferation of ARGs in the reactors with individual and combined 

antibiotics, respectively. These findings indicated that the presence of antibiotic 

combinations resulted in higher rates of ARG acquisition than individual antibiotics.  
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The author also stated that the effluent from the STE reactor had a higher number of 

ARGs than in the ST reactor due to the synergistic effects of ERY. He et al. (2017) have 

also concluded that the total relative abundance of ARGs in combined stresses exposure 

tanks (tetracycline-sulfanilamide, tetracycline-sulfanilamide-cefotaxime, tetracycline-

sulfanilamide-Cu, and tetracycline-sulfanilamide-Zn) was about 1.01–1.55 times more 

than the sum of their individual ones.

3.2 Contribution of antibiotics to the transfer of antibiotic resistant genes 

One of important factors for the proliferation and transfer of ARGs is the HGT 

with MGEs, as they have specific structures and the ability to capture genes by a site-

specific recombination system (Hershberg, 2017). Anaerobic treatment processes with a 

high density of bacteria have been shown to be hotspots for ARGs transfer among 

different bacteria through HGT (Lopatkin et al., 2016b; Miller et al., 2016; Sørensen et 

al., 2005). The transfer of ARGs among bacteria mainly include three pathways: 1. 

Bacteria transformation; 2. Bacteria transduction; 3. Bacteria conjugation (see Fig. 2). 

The figure explains how the process of transformation, naked DNA and ARG-

harbouring mobile genetic elements (MGEs) released by the donor cell and taken up by 

bacteria and incorporated into the genome (Chen & Dubnau, 2004). While in 

transduction, phages can act as vectors for genetic exchange, whereby ARGs are carried 

by phage particles from a donor bacterial cell to a recipient cell (Balcazar, 2014). 

Figure 2

Previous studies reported that antibiotics could contribute to antibiotic resistance 

by enhancing their spread among the bacterial community under non-lethal 

concentrations (Beaber et al., 2004; Jutkina et al., 2018; Úbeda et al., 2005). Thus, it 
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was believed that the selective pressure from antibiotics could accelerate the ARGs’ 

transmission in the sensitive bacteria (Li et al., 2009). For example, Aydin et al. (2015b) 

concluded that high levels of antibiotics have shown abilities to increase and stimulate 

HGT, and activate MGEs among the bacterial community. The study by Jutkina et al. 

(2018)  also concluded that SMX (1 mg/L) and gentamicin (0.1 mg/L) significantly 

increased the transfer frequency of antibiotic resistance. Therefore, the transfer of ARGs 

could be enhanced by the presence of antibiotics in anaerobic processes. 

3.2.1 Contribution of antibiotics to transfer through conjugation

Conjugation plays an important role in the association of ARGs with MGEs, which 

occurs either through plasmid transfer or transmission of chromosomally integrated 

conjugation elements, including conjugative transposons (Aminov, 2011; Frost et al., 

2005; Wozniak & Waldor, 2010). As reported in one study, the abundance of 

sulfonamide resistance genes significantly correlated with the abundance of plasmids 

(Tao et al., 2016). In addition, most efflux protein tetracycline resistance genes, such 

as tetA, tetB, tetC and tetG, can easily spread among bacteria species. This is mainly 

because they are carried by main mobilizable vectors, these being self-transmissible 

transposon and smaller plasmids (Jiang et al., 2013). In addition, tetW, tetO, tetS, sul2 

and sul3 are commonly found on conjugative plasmids or chromosomes transferred 

horizontally between microbial communities (Billington et al., 2002; Wu et al., 2016). 

Due to the high prevalence and the broad host ranges of plasmids, as well as the ARGs 

carried by many plasmids, conjugation is thought to be responsible for the majority of 

antibiotic resistance spread (Lopatkin et al., 2016b)

Some studies supposed that antibiotics could promote HGT through conjugation. 

They can the increase the conjugation efficiency through activating the excision of 

hor

to

zontally 

nd

are commo

sma

arried by m

r pl

G, can ea

mai

n, mo

sil

s repo

ificantly

ux

rted 

ansposon

one

on of A

ff chromo

i

gat

ARG

ion

s.

nsfer 

 tly 

of ARGs



17

transferrable genes from the host chromosome and/or by inducing the expression of 

conjugation machinery (Beaber et al., 2004; Stevens et al., 1993). The study by Scornec 

et al. (2017) indicated that some ribosome-targeting antibiotics could increase the 

conjugation frequency of a specific conjugative transposon more than a thousand-fold. 

Lopatkin et al. (2016b) showed that antibiotics determine conjugation dynamics 

primarily by serving as a selective driver in a broad range of conjugative systems. 

Tetracycline and SMX have been reported as potent inducers of conjugation by recent 

researches (Jutkina et al., 2018; Jutkina et al., 2016). However, the effect of antibiotics 

on HGT by conjugation is still controversial. For instance, antibiotics ciprofloxacin CIP 

and ERY have no inductive effects on conjugal transfer (Lopatkin et al., 2016a; López 

et al., 2007). In particular, antibiotics can promote and suppress HGT dynamics, 

depending on how antibiotics affect growth rates of populations undergoing conjugation 

(Lopatkin et al., 2016b). Lu et al. (2017) investigated the effect of antibiotics on 

conjugational transfer of a mobilizable gentamicin resistance plasmid, and concluded 

that the conjugation-promoting ability of antibiotics was controlled by the quorum 

sensing. The study by Lopatkin et al. (2016a) also indicated that the contribution of 

antibiotics to the promotion of conjugation might be over-estimated. The reason is that: 

firstly, the efficiency of conjugation antibiotics was not significantly increased by 

antibiotics, and secondly, antibiotics might reduce the frequency of conjugation by 

reducing the population sizes of either or both parental populations, which would negate 

the effect of positive selection for the transconjugant. 

3.2.2 Contribution of antibiotics to transfer through integrons

An integron is a typical gene capture and dissemination system. Integrons are 

ubiquitous in chromosomes and MGEs, like plasmids and transposons (Chen et al., 
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2015b; Guerin et al., 2009). They play a key role in the dissemination of ARGs by 

facilitating horizontal transfers of ARGs between microbes through combination with 

mobile gene platforms and/or incorporating ARGs into microbial chromosomes 

(Gillings et al., 2015; He et al., 2016). Class 1 integrons were often used to represent the 

HGT as it can regulate the expression of exogenous genes. Although they cannot 

mobilize and transfer themselves between microbes, they are often associated with 

genetic elements which can, such as conjugative plasmids, transposons and insertion 

sequences (Berglund, 2015). The most detectable antibiotics in swine wastewater and 

class 1 integrase genes have been considered to be key markers of HGT in the anaerobic 

process (Ghosh et al., 2009; Ma et al., 2011; Miller et al., 2013). Intl1 is part of class 1 

integrons which could capture ARGs as part of gene cassettes, thus Intl1 was linked to 

the transfer of ARGs (Aydin et al., 2015b; Tian et al., 2016). 

For example, for ARGs in the treatment of swine wastewater when utilizing the 

anaerobic process, tetA, tetC, tetG, tetQ, tetX, sul1, ermB, and dfrA1 were found to be 

positively correlated with Intl1 (Chen et al., 2015b; Cheng et al., 2013; Liu et al., 2012; 

Sui et al., 2017; Wu et al., 2016). Specifically, sul1 gene was located in the 3 -

conserved segment (3 -CS) of class 1 integrons, while sul2 gene was usually related to 

small non-conjugative plasmids or large transmissible multi-resistant plasmids (Ma et 

al., 2018). Although tetracycline resistance genes have not been found as gene cassettes 

in class 1 integrons, they have been associated with class 1 integrons on self-

transferable plasmids in both gram-positive and gram-negative bacteria (Agersø & 

Sandvang, 2005). Significant correlations between Intl1 and tetO, tetW and sul3 were 

also found in fish tanks water with exposure to antibiotics (He et al., 2017). Such 

correlation indicated that these ARGs could have been on conjugative plasmids and 
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could transfer among microbes using the class 1 integron as a carrier, which means that 

Intl1 plays an important role in the propagation of ARGs (Agersø & Sandvang, 2005; 

Bennett, 2008; Wang et al., 2017a). 

The relationship between the abundance of Intl1 and the concentration of 

antibiotics has been studied previously (Chen et al., 2015b; Subirats et al., 2018). Chen 

et al. (2015b) demonstrated that the relative abundance of Intl1 was significantly 

correlated with the total concentration of antibiotics, and the higher concentration of 

antibiotics resulted in the greater abundance of Intl1 gene in both water and sediment 

samples. Subirats et al. (2018) also indicated that bacterial communities exposed to 

antibiotics resulted in higher copy numbers of sul1 and Intl1 genes than those not 

exposed. To some extent, the increase in the relative abundance of sul1 may be related 

to integron mobilization since this gene is usually linked to class 1 integrons (Gillings et 

al., 2015). This has been confirmed by He et al. (2017) and Rafraf et al. (2016), who 

found a significant correlation between sul1 gene and Intl1 genes when exposed to 

sulfanilamide. Furthermore, the combination of antibiotics and metals in swine 

wastewater may provide a stronger selection for realized horizontal gene transfer among 

the microbial community than either alone (Baker-Austin et al., 2006; Zhu et al., 2013).

3.3 Impacts of antibiotics on the host of ARGs in anaerobic processes

In anaerobic processes, the bacterial community is significantly correlated to the 

fate of ARGs (Song et al., 2018; Tong et al., 2016). The bacterial community drives the 

distribution of ARGs during anaerobic digestion, and the level of ARGs in anaerobic 

processes is attributed to the survival or death of antibiotic resistant bacteria (Miller 

et al., 2016; Tao et al., 2016). Previous reports have conducted that most ARGs are 

carried by the function bacteria in anaerobic processes, which belong to the phylum of 
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Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria and Spirochaetes (Aydin et 

al., 2015b; Forsberg et al., 2014; Resende et al., 2014; Sun et al., 2016). Hence, 

understanding the effect of antibiotics on the above functional bacteria is important 

for exploring the contribution of antibiotics to the fate of ARGs during anaerobic 

processes. 

Bacteroidetes and Clostridium were the dominant hosts of tetracycline and 

sulfonamide resistance genes (Cetecioglu et al., 2016; Huang et al., 2015a; Sun et al., 

2016). Specifically, Bacteroidetes were reported as the important hosts of 

tetC, tetM, tetQ, tetX, ermB, ermF and sul1 (Tao et al., 2016). Aydin et al. (2015b) 

reported that almost 50% of the tetracycline resistance genes were located in 

the Clostridium genus. Their abundance were reported to be increased with the increase 

of TC and SMX concentrations in the anaerobic reactor (Cetecioglu et al., 2016; Xiong 

et al., 2017). Wang et al. (2017c) demonstrated that the presence of CTC in anaerobic 

reactors might promote the growth of species in family of Moraxellaceae and 

Pseudomonadaceae because of their strong resistance to CTC. It is known that 

Moraxellaceae and Pseudomonadaceae belong to the phylum of Proteobacteria, which 

had significant positive correlations with all ARGs and integrase genes, except for tetW 

and tetX (Sun et al. 2016, Wu et al. 2016). According to the report of Aydin et al. 

(2016), the number of Actinobacteria and Fusobacterium rose significantly with the 

increasing concentration of tetracycline and erythromycin, due to these phyla possibly 

acquiring antibiotic resistance and disseminating easily across the phylum. The authors 

also stated that the Acinetobacter-related populations and Bacteroidetes-related 

population in the anaerobic reactor played a functional role in the elimination of 

tetracycline and erythromycin antibiotics, and the acquisition of resistance genes. 
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In the methanogenic phase, more diverse microbial community structure and more 

potential microbes could contain ARGs, because most of ARGs were observed to 

rebound significantly and increase in this stage (Wu et al., 2016). Therefore, an 

abundance of bacteria carrying ARGs might be increased with the addition of antibiotics 

into the anaerobic reactor. In other word, failure to maintain the stability of bacteria in 

anaerobic processes would result in the increasing occurrence of ARGs. 

4. Future perspectives

It is clear that antibiotics in swine wastewater can affect the proliferation of ARGs 

in the anaerobic treatment process. Although most research studies have proved the 

positive correlation between antibiotics and their corresponding genes, other analyses 

still concluded differently due to the probable co-selection and/or cross-selection of 

other factors in swine wastewater (McKinney et al., 2010; Stepanauskas et al., 2006). In 

order to better characterize and understand their correlations to further explore the 

contribution of antibiotics to the fate of ARGs in the anaerobic treatment process, 

additional studies with respect to the selection pressure of present antibiotics in swine 

wastewater on the occurrence and accumulation of ARGs are needed. Similarly, HGT is 

an important mechanism for the transmission of ARGs among different 

microorganisms. Antibiotics have been believed to accelerate the horizontal transfer of 

ARGs (Aydin et al., 2015b; Li et al., 2009). However, it is still necessary to study the 

effect of antibiotics on mechanisms of HGT in the future.

In anaerobic treatment processes, microorganisms show an important responsibility 

for the fate of ARGs, but it is very difficult to clearly understand their relationship with 

ARGs. The microbial community in anaerobic treatment processes is very complex and 

most microorganisms are uncultivated. As well, the microbial structure could vary 
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depending on different operation conditions of the anaerobic treatment process (Tao et 

al., 2016; Tian et al., 2016). Thus, to further clarify the correlation between ARGs and 

microbial communities and provide more information on the treatment of ARGs by 

anaerobic treatment processes, it is necessary to learn more about ARGs profiles as well 

as microbial community composition during the swine wastewater treatment process. 

Currently, metagenomic sequencing or qPCR were usually used to detect ARGs in 

the environment (Guo et al., 2017; He et al., 2016; Tao et al., 2014). However, as 

reported by Tian et al. (2016), metagenomic sequencing or the qPCR method cannot 

distinguish ARGs from live or dead cells in anaerobic treatment processes, which could 

result in partially distorting the temporal and spatial patterns of the detected ARGs. In 

order to evaluate the removal efficiency of ARGs in a treatment process and their 

abundance in different environmental media, the more accurate method need to develop. 

In addition, it is difficult to evaluate whether the treatment technology is safe for the 

treatment of ARGs because there is no standard for their discharge, although they were 

proposed as emerging contaminants more than 10 years ago (Pruden et al., 2006). 

Therefore, more and suitable studies on the risk of ARGs are needed to draft a discharge 

standard for ARGs in swine wastewater treatment plants in future research. Finally, as 

reported by Lopatkin et al. (2017), ARGs could act to stabilize and persist for many 

years in the environment even in the absence of antibiotics. That is why treatment 

technologies are urgently requires to remove antibiotic and ARGs effectively from q 

much higher than that in drinking water sources and lakes. The removal or enrichment 

of ARGs in anaerobic treatment processes is difficult to give a general conclusion. 

Antibiotics in swine wastewater showed a positive effect on the abundance of ARGs, 

the transfer of ARGs, and the abundance of bacteria carrying ARGs and Intl1. 
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Understanding the contribution of antibiotics to the proliferation of ARGs is significant 

to control their dissemination in the environment. Further studies are necessary to 

explore the correlation among antibiotics, ARGs and microbial communities.
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Figure Captions

Fig. 1 Mean relative abundances of ARGs in swine wastewater 

Fig. 2 Mechanisms of horizontal gene transfer among bacteria

Table Captions 

Table 1 Intrinsic resistance mechanisms and hosts of ARGs and their shift in anaerobic 

treatment processes
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Fig. 2 Mechanisms of horizontal gene transfer among bacteria (modified from Furuya 

and Lowy (2006))
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