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Abstract 

The proper treatment of swine wastewater with relatively high concentrations of antibiotics is 

very important to protect environmental safety and human health. Microbial fuel cell (MFC) 

technology shows much promise for removing pollutants and producing electricity 

simultaneously. A double-chamber MFC was investigated in this study. Synthetic swine 

wastewater with the addition of sulfonamides was used as the fuels in the anode chamber. 

Results indicated that COD could be effectively removed (>95%) and virtually not affect by 

the presence of sulfonamides in the MFC. A stable voltage output was also observed. The 

removal efficiencies of sulfamethoxazole (SMX), sulfadiazine (SDZ), and sulfamethazine 

(SMZ) in the MFC were in the 99.46% to 99.53%, 13.39% to 66.91% and 32.84% to 67.21% 

ranges, respectively. These totals were higher than those reported for a traditional anaerobic 

reactor. Hence, MFC revealed strong resistance to antibiotic toxicity and high potential to 

treat swine wastewater with antibiotics.  

Keywords: Swine wastewater, microbial fuel cell, sulfonamide antibiotics, biodegradation

1. Introduction

The occurrence and accumulation of antibiotics in the environment has led to  critical 

attention worldwide regarding their harmful effects on the ecosystem and contribution to 

antibiotic resistance (Singh et al., 2019). Such resistance can reduce or eliminate the 

effectiveness of antibiotics in the treatment of infectious diseases, since multidrug-resistant 

bacteria that can strongly resist various antibiotics could lead to untreatable diseases and 

endanger people’s health (Ma et al., 2018). The discovery of multidrug-resistant bacteria in 

the environment was recently reported (Lee et al., 2018). According to one report by the 

United States Centres for Disease Control and Prevention (US CDC), at least 23,000 people 

died due to infection by antibiotic resistant-bacteria every year in the United States (O’Neill, 

2014). The European Centre for Disease Prevention and Control (ECDC) also reported that 
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more than 25,000 deaths were caused by antibiotic resistance in Europe each year (O’Neill, 

2014). Antibiotics which make a major contribution to the development of antibiotic 

resistance, exert positive effects on the accumulation and spread of ARGs in the environment 

(Cheng et al., 2019). 

Swine wastewater is one of the major antibiotics’ sources in the environment, owing to 

large amounts of antibiotics used as drugs and feed additives in swine industries. 

Sulfonamides (SMs) constitute one of the oldest and widely employed antibiotics for swine 

farms considering their economic and relative efficacy in some common bacterial diseases 

(Broll et al., 2004). According to Cheng et al. (2018), the concentration of SMs in swine 

wastewater worldwide is up to 324.4 μg/L. As the global population increases and the demand 

for pig products also increases, the consumption of SMs will continue to rise in the future. 

Therefore, a variety of treatment technologies, including biological, physicochemical and 

bioelectrochemical systems, have been conducted by researchers to remove antibiotics from 

wastewaters (Homem & Santos, 2011). Of these technologies, the microbial fuel cell (MFC) 

is the subject of increasing attention due to its advantages of effective removal of organic 

matter, moderately expensive operating requirements, low sludge production, and ability to 

produce power (Lovley, 2008). The effectiveness of MFC for enhancing the removal of 

refractory organic pollutants such as pesticides, toluene, phenol, indole, and azo dye from 

wastewater has been proved in other analyses (Huang et al., 2011).

Although all SMs have the same mechanism of action, there are significant differences in 

activity and antibacterial spectrum due to the various physicochemical characteristics of 

SMs. Therefore, sulfonamide combinations are usually used as feed ingredients in swine 

production instead of individual sulfonamides, resulting in the residual of sulfonamide 

combinations in swine wastewater. Unfortunately, most current research only pays attention 

to the removal of individual sulfornamides in the MFC, while few studies have focused on the 

removal and degradation kinetic of the simultaneous sulfamethoxazole (SMX), 
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sulfamethazine (SMZ) and sulfadiazine (SDZ) from swine wastewater in the MFC (Wang et 

al., 2018; Wu et al., 2020). Moreover, combined antibiotics may inhibit more seriously the 

performance of bioreactors than individual ones (Cheng et al., 2018). Hence, this study aimed 

to explore the effect of different concentrations of sulfonamide combinations on the electricity 

generation and organic matter removal in a double-chamber MFC. The removal efficiency 

and degradation kinetics of sulfonamide combinations (SMX, SMZ and SDZ) in the MFC 

were also analyzed in the present study. 

2. Materials and methods

2.1 MFC construction and inoculation

A double-chamber MFC was employed in this study, and the anode and cathode chamber 

has the same effective volume of 0.35 L. A cylindrical graphite felt (3 cm in diameter and 6 

cm thickness) and a carbon-fiber brush (3 cm diameter and 3 cm length) served as the anode 

and cathode of MFC, respectively. Two chambers were separated by a cation exchange 

membrane (CEM) (CMI7000, Membranes International Inc., USA) and connected by a 

copper wire via a resistor of 1000 Ω. The anode chamber was inoculated by anaerobic sludge 

collected from a pilot scale anaerobic digester and fed with synthetic swine wastewater (3000 

mg/L COD, 223 mg/L NH4Cl, 66 mg/L of KH2PO4, 54 mg/L MgSO4·7H2O and 4 mg/L 

CaCl2·2H2O). The synthetic swine wastewater was adjusted to pH 7.5 ± 0.1 and purged with 

N2 gas for 15 minutes prior to feeding to the anode chamber. Meanwhile, distilled water was 

used to fill in the cathode chamber. The cathode chamber was continuously purging air to 

maintain DO concentration at around 6 mg/L. 

2.2 Experimental design and operation

In order to investigate the removal efficiency of SMs in the MFC and compare the 

different outcomes from the open-circuit mode, reactors in this study were conducted in 

closed-circuit mode (MFC) and open-circuit mode (OC) simultaneously. The OC disconnects 

2 g

to fi

t i

for 15 m

l i

O). The syn

t

mg/L

nth

cale an

NH4

1000 Ω

aerob

Mem

Ω  Th

Two cham

es In

diam

s w

rical gr

meter and

rap

and the a

felt



5

the anode and cathode chamber, which was regarded as the conventional anaerobic reactor. 

All reactors were conducted in batch running mode at room temperature (around 25℃). 

Synthetic swine wastewater was pumped into the anode chamber by a peristaltic pump and 

then self-circulated at a flow rate of 20 mL/min, which was replayed after each running circle 

(120 h). After the reactor achieved stable COD removal and voltage generation, three target 

SMs (SMX, SMZ and SDZ) (≥ 99.0%, supplied by Sigma-Aldrich, Australia) were dded into 

the synthetic swine wastewater simultaneously and pumped into the anode chamber. The 

initial concentration for SMX, SMZ and SDZ were 100 μg/L in the first operating circle.  

They were then increased to 200 and 300 μg/L in the sequential second and third operating 

circles. Duplicate samples were collected from the MFC and OC, respectively, at different 

operating times and filtered by a syringe filter (0.2μm) prior to testing. Their mean and 

standard deviation were calculated. 

2.3 Analytical methods

The concentrations of SMX, SMZ and SDZ in the collected sample were analyzed by 

using a triple quadrupole mass spectrometer LCMS-8060 (Shimadzu). The separation of 

antibiotics was achieved by a Phenomenex C18 column (Luna, 3.0 × 100 mm, 3 μm) with the 

mobile phase of water and acetonitrile (0.1% (V/V) formic acid) under a flow rate of 0.4 

mL/min. The detailed method has been reported in our previous study (Cheng et al., 2020). 

The COD analysis was performed by the Standard Methods (Federation and American, 2005). 

During the experimental period, the voltage generation of MFC was recorded through a 

universal digital meter (VC86E, Shenzhen City Station Win Technology Co. Ltd., Shenzhen, 

China).

3. Results and discussion

3.1 Impacts of SMs on power generation of MFC
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The voltage generation under different initial concentrations of SMs is presented in Fig.  

1. The stable voltage output was achieved before SMs were added into the MFC with the 

average value of 551.1 mV, which indicates the enrichment of exoelectrogenic bacteria on the 

anode surface and the successful start-up of the MFC. From Fig. 1, the average voltage was 

555.1 mV and 536.4 mV after the injection of 100 μg/L and 200 μg/L of SMs into the MFC in 

successive operating cycles. Stable voltage production was observed during the operating 

period, which reflected that microorganisms in the anode chamber have a strong tolerance to 

SMs. A slight increase in voltage production (average of 583.6 mV) was observed by further 

increasing the initial concentration of SMs to 300 μg/L. Wu et al.’s (2020) research also 

discovered that the presence of SMX in the anode of MFC: firstly, enhanced the abundance of 

exoelectrogens; and secondly, increased the power density by 18%. The study by Wen et al. 

(2011) revealed that adding ceftriaxone into the MFC had positive effects on the production 

of electricity. It is clear that the electricity production in the MFC system occurred through 

the oxidation of organic matter through the biocatalysis of microorganisms. During this 

process, the produced electrons were transferred from the cell to the anode electrode and then 

flowed to the cathode through an external circuit to produce electricity. Therefore, the 

electricity generation in the MFC was determined by the activity of exoelectrogenic bacteria 

and the transfer of electrons between bacterial cells and the electrode. Based on this kind of 

mechanism for producing electricity, it is suggested that the addition of SMs to 300 μg/L in 

the MFC might improve the activity of exoelectrogenic bacteria and/or the ability of electrons 

to transfer from microbe cell to the anode. 

Inset Fig. 1

3.2 Impacts of SMs on COD removal in the MFC

Referring to practical application, the MFC’s performance in removing organic matter 

from swine wastewater and the effect of antibiotics on their removal were also critical. Hence, 

the removal efficiency of COD in the MFC and OC under different SMs concentrations was 
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monitored and the results are illustrated in Fig. 2. As observed from Fig. 2 (a), the degradation 

rate of COD declined by increasing the initial concentration of SMs, which reflected the fact 

that the larger concentrations of antibiotics showed more inhibition to the anaerobic microbes. 

This finding is consistent with previous reports (Cheng et al., 2018). High COD removal 

efficiencies were achieved in both MFC (98.85%) and OC (94.21%) before the addition of 

SMs into the reactor (Fig. 2 (b)). By adding 100, 200 and 300 μg/L of SMs into the reactor, 

the overall removal efficiency of COD in the MFC remained quite stable (95.28% - 98.66%) 

while its removal in OC fell significantly to 58.72%, 51.65% and 18.82%, respectively. The 

high and stable degradation efficiency of organic matter in MFC systems was also found by 

adding other types of antibiotics in the MFC (Wang et al., 2018; Wen et al., 2011; Zhou et al., 

2018). This finding indicated that the MFC could eliminate the toxicity of SMs to 

microorganisms, which has great potential for treating wastewater containing antibiotics. The 

high and stable removal efficiency of COD in the MFC with the addition of SMs was 

consistent with the electricity production, which was also stable. 

Inset Fig. 2

3.3 Degradation of SMs in the MFC

The concentration change and removal efficiency of SMX, SMZ and SDZ in the MFC 

and OC under the initial concentrations of 100, 200 and 300 μg/L are presented in Fig. 3. It is 

observed that the MFC revealed higher and faster removal of all the SMs than those in OC 

under all the initial concentrations. Xue et al. (2019) and Song et al. (2018) documented the 

rapid removal of SMX and SDZ in the MFC and their low residual concentrations in the 

MFC’s effluent in comparison with the effluent originating from OC. One possible 

explanation for this is that the stimulation of electron transfer could enhance the growth of 

microorganisms and the microbial metabolisms in the MFC anode (Cao et al., 2015; Zhang et 

al., 2017). Based on the previous study, the removal of SMs in anaerobic reactors is attributed 

to the biodegradation of microorganisms (Cheng et al., 2020). The degradation of SMX, SDZ 
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and SMZ in the MFC followed the first-order kinetic reaction model and the parameters are 

summarized in Table 1. 

Inset Fig. 3 and Table 1

High removal efficiency of SMX can be achieved in the MFC (>99%) at all tested 

concentrations, and its degradation rate was faster than the degradation of SDZ and SMZ, 

with a much higher degradation rate constant (K) and less time for the degradation of 50% 

SMs (DT50) (Table 1). The MFC’s effective performance for removing SMX was also 

reported by Xue et al. (2019) and Wu et al. (2020), and these authors indicated that SMX 

could be completely degraded into less harmful byproducts without affecting the performance 

of MFC and its removal was less affected by the initial concentration. Comparatively, the 

removal efficiency of SDZ and SMZ was in the 13.39% to 66.91% and 32.84% to 67.21% 

ranges at the studied concentrations. The research by Harnisch et al. (2013) also reported the 

complete removal of SMX and only partial removal of SDZ in the MFC. This phenomenon 

demonstrated that the degradation of SMs by microorganisms in the MFC has substance-

specific properties. With the increase in the initial concentration of SMs from 100 to 200 

μg/L, the efficiencies in removing SDZ and SMZ in the MFC fell from 66.91% to 13.39% and 

67.21% to 32.84%, and the DT50 increased from 129.81 to 693.1h and 78.68 to 228.77 h, 

respectively. This phenomenon might be due to the reduced bioactivity of the degrading 

microorganisms in the anode compartment. Conversely, the SDZ removal efficiency 

recovered to 40.1% by further increasing the addition concentration to 300 μg/L, and a slight 

increase for SMZ (38.25%) was also observed. This outcome suggested that microorganisms 

in the MFC might have gradually adapted to the presence of SMs to some extent and became 

more active after a period of acclimation. Wang et al. (2016) also stated that the ability of 

microbes to degrade recalcitrant chemicals could be enhanced by a long acclimation period. 

This result agrees with the improved voltage generation at 300 μg/L of SMs. Compared to the 

removal of individual SDZ in a MFC as reported previously, its removal efficiency in this 
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study was quite low (Wang et al., 2018). Probably due to sulfonamide combinations are more 

toxic to their degrading microorganisms than the individual antibiotic (Cheng et al., 2018).

4. Conclusion

Large quantities of organic matter in swine wastewater could be removed in the MFC 

and was slightly affected by the presence of SMs. Moreover, stable voltage was generated 

continuously in the MFC by feeding it with synthetic swine wastewater. The addition of SMs 

might increase the electricity production through the improved activity of exoelectrogenic 

bacteria after a period of domestication and/or the enhanced ability of electrons transfer from 

microbe cell to the anode. The simultaneous removal of SMX, SDZ and SMZ in the MFC was 

higher than those in the conventional anaerobic reactor.
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Figure Captions

Fig. 1 The voltage generation under different initial concentrations of SMs in MFC

Fig. 2 The removal efficiency of COD in MFC and OC under different SMs concentrations

Fig. 3 The concentration change and removal efficiency of SMs in MFC and OC at 

different initial concentrations.

Table Captions 

Table 1. Fitting Results of SMX, SDZ and SMZ degradation in MFC using the first-order 

kinetic model
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Fig. 1 The voltage generation under different initial concentrations of SMs in MFCntrations 
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Fig. 2 The removal efficiency of COD in MFC and OC under different SMs concentrationsSMs concen
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Fig. 3 The concentration change and removal efficiency of SMs in MFC and OC at different 
initial concentrations.

removal effi
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Table 1. Fitting Results of SMX, SDZ and SMZ degradation in MFC using the first-order 

kinetic model

Kinetic formula Antibiotic

Initial 

concentration 

(μg/L)

K R2 DT50 (h)

100 0.045 0.999 15.79

200 0.045 0.996 15.44SMX

300 0.033 0.953 20.88

100 0.0053 0.864 129.81

200 0.001 0.906 693.15SDZ

300 0.0049 0.993 142.04

100 0.00889 0.975 78.68

200 0.00309 0.970 228.76

���� =― 	1 ∙ �
 ↔��= �0 ∙ � ― 	1 ∙ �

(Chen et al., 2017)

SMZ

300 0.00399 0.992 177.28

C0 is initial concentration of SMs; Ct is SMs concentration at time t; k is the degradation rate 

constant. DT50 is time for the degradation of 50% SMs (DT50=ln 2/k) (Chen et al., 2017).
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