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Adversarial Attacks and Detection on reinforcement
learning-based Interactive Recommender Systems

Anonymous Author(s)∗

ABSTRACT
Adversarial attacks pose significant challenges for detecting adver-
sarial attacks at an early stage. We propose attack-agnostic detec-
tion on reinforcement learning-based interactive recommendation
systems. We first craft adversarial examples to show their diverse
distributions and then augment recommendation systems by de-
tecting potential attacks with a deep learning-based classifier based
on the crafted data. Finally, we study the attack strength and fre-
quency of adversarial examples and evaluate our model on standard
datasets with multiple crafting methods. Our extensive experiments
show that most adversarial attacks are effective, and both attack
strength and attack frequency impact the attack performance. The
strategically-timed attack achieves comparative attack performance
with only 1/3 to 1/2 attack frequency. Besides, our black-box detec-
tor trained with one crafting method has the generalization ability
over several crafting methods.
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1 INTRODUCTION
Interactive recommendation systems capture dynamic personal-
ized user preferences by improving their strategies continuously
[7, 12, 13]. They have attracted enormous attention and been applied
in leading companies like Amazon, Netflix, and Youtube. The tra-
ditional methods to model user-system interactions include Multi-
Armed Bandit (MAB) or Reinforcement Learning (RL). The former
views action choices as a repeated single process, while the latter
considers immediate and future rewards to model behavors’ long-
term benefits. RL-based systems employ a Markov Decision Process
(MDP) agent that estimates the value based on both actions and
states, rather than merely on actions as done by MAB.

However, reinforcement learning-based models can be fooled by
small disturbances on the input data [3, 11]. Small imperceptible
noises, such as adversarial examples, may increase prediction error
or reduce reward in supervised and RL tasks—the input noise can
be transferred to attack different parameters even different models,
including recurrent network and RL [2, 5]. Besides, the embedding
vectors of users, items and relations are piped into RL-based rec-
ommendation models, making it challenging for humans to tell the

Unpublished working draft. Not for distribution.SIGIR ’20, July 25–30, 2020, Xi’an, China
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

true value or to dig out the real issues in the models. Attackers
can easily leverage such characteristics to disrupt recommendation
systems silently, making defending adversarial attacks a non-trivial
task for RL-based recommendation systems.

In this work, we aim to develop a general detection model to
detect attacks and increase the defence ability, which provides a
practical strategy to overcome the dynamic ‘arm-race’ of attacks
and to defend in the long run. We make the following contributions:

• We systematically investigate adversarial attacks and de-
tection approaches with a focus on reinforcement learning-
based recommendation systems and demonstrate the effec-
tiveness of the designed adversarial examples and strategically-
timed attack.

• We propose an encoder-classification detection model for
attack-agnostic detection. The encoder captures the temporal
relationship among sequence actions in reinforcement learn-
ing. We further use an attention-based classifier to highlight
the critical time steps out of ample interactive space.

• We empirically show that even small perturbations can re-
duce the performance of most attack methods significantly.
Our statistical validation shows that multiple attack methods
generate similar actions of the attacked system, providing
insights into improving the detection performance.

Figure 1: Our proposedAdversarial Attack andDetectionAp-
proach for RL-based Recommender Systems.

2 METHODOLOGY
2.1 RL-based Interactive Recommendation
Interactive recommendation systems suggest items to users and
receives feedback. Given a user 𝑢 𝑗 ∈ 𝑈 = {𝑢0, 𝑢1, 𝑢2, ..., 𝑢𝑛}, a
set of items 𝐼 = {𝑖0, 𝑖1, 𝑖2, ..., 𝑖𝑛}, and the user feedback history
𝑖𝑘1 , 𝑖𝑘2 , ..., 𝑖𝑘𝑡−1 , the recommendation system suggests a new item
𝑖𝑘𝑡 . This problem represents a Markov Decision Process as follows:
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• State (𝑠𝑡 ): a historical interaction between a user and the rec-
ommendation system computed by an embedding or encoder
module.

• Action (𝑎𝑡 ): an item or a set of items recommended by the
RL agent.

• Reward (𝑟𝑡 ): a variable related to a user’s feedback to guide
the reinforcement model towards true user preference.

• Policy (𝜋 (𝑎𝑡 |𝑠𝑡 )): a conditional probability distribution of
items which the agent might recommend to a user 𝑢𝑖 given
the state of last time step 𝑠𝑡−1. The learning process aims to
get an optimal policy.

• Value function (𝑄 (𝑠𝑡 , 𝑎𝑡 )): the agent’s estimation of reward
of current states 𝑠𝑡 and recommended item 𝑎𝑡 . We define
the reward as the cosine similarity between user and item
embedding vectors.

The reinforcement agent could follow REINFORCE with baseline
or Actor-Critic algorithm that both consist of a value network
and a policy network [14]. The attack model may generate adver-
sarial examples using either the value network [5] or the policy
network[10].

2.2 Attack Model
FGSM-based attack.We define an adversarial example as a little
perturbation 𝛿 added onto the benign examples 𝑥 , which can be
a composition of embedding vectors of users, relations and items
[14]. Unlike perturbations on images or texts, 𝛿 can be large due to
the enormous manual work to check the embedding vectors. We
define an adversarial example as

min
𝛿

𝑅𝑇 =

𝑇∑
𝑡=1

𝑄 (𝑠𝑡 + 𝛿, 𝑎𝑡 ) .

𝑎𝑡 = 𝜋∗ (𝑎𝑡 |𝑠𝑡 + 𝛿) subject to 𝑆 (𝑠𝑡 , 𝑠𝑡 + 𝛿) ≤ 𝑙

(1)

Attack with smaller frequency. The strategically-timed attack
[6] aims to decreases the attack frequency without sacrificing the
performance of the un-targeted reinforcement attack. We formally
present it below:

𝛿𝑡 = 𝛿𝑡 ∗ 𝑐𝑡 𝑐𝑡 ∈ {0, 1},
∑𝑇
𝑡=1 𝑐𝑡

𝑇
< 𝑑 (2)

where 𝑐𝑡 is a binary variable that controls when to attack; 𝑑 < 𝑇 is
the frequency of adversarial examples. There are two approaches
to generate the binary sequence 𝑐1:𝑇 optimizing a hard integer pro-
gramming problem and generating sequences via heuristic methods.
Let 𝑝0, 𝑝1 be the two maximum probability of an policy 𝜋 , we define
𝑐𝑡 as follwos, which is different from [6]:

𝑐𝑡 = (𝑝0 − 𝑝1) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

In our experiments, we let the RL-based recommendation system
to have a peak probability at the maximum action so as to test if
the importance of the action to attackers using the above formula.
In contrast, Jacobian-based Saliency Map Attack (JSMA) [9] and
Deepfool [8] are based on the gradient of actions rather than the
gradient of 𝑄 value. One key component of JSMA is saliency map
computation, which decides which dimension of vectors (in Image
classification is pixels) are modified. Deepfool pinpoints the attack

dimension by comparison of affine distances between some class
and temporal class.

2.3 Detection Model
The detection model is a supervised classifier, which detects adver-
sarial examples based on the actions of the reinforcement agent
in a general feature space. Suppose the action distributions of an
agent are shifted by adversarial examples (Section 3 shows statis-
tical evidence of the drift). Given an abnormal action sequence
𝑎 = 𝜋∗ (𝑎 |𝑠 + 𝛿), the detection model aims to establisha separat-
ing hyperplane between adversarial examples and normal exam-
ples, thereby measuring the probability 𝑝 (𝑦 |𝑎, 𝜃 ) or 𝑝 (𝑦 |𝜋∗, 𝑠, 𝛿, 𝜃 ),
where 𝑦 is a binary variable indicating whether the input data are
attacked.

To detect the adversarial examples presented in the last section,
we employ an attention-based classifier. We first conduct a statisti-
cal analysis of the attacked actions in section 3. The detection model
consists of two parts. The first is an encoder, to encode the action
methods into a low dimensional feature vector. The second is a
classifier to separate different data. We adopt this encoder-decoder
model to make a bottleneck and filter out noisy information. The
formulation of GRU is as follows:

𝑧𝑡 = 𝜎𝑔 (𝑊𝑧𝑎𝑡 +𝑈𝑧ℎ𝑡−1)
𝑟𝑡 = 𝜎𝑔 (𝑊𝑟𝑎𝑡 +𝑈𝑟ℎ𝑡−1)

ℎ̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑎𝑡 +𝑈ℎ ◦ ℎ𝑡−1)

ℎ𝑡 = (1 − 𝑧𝑡 ) ◦ ℎ𝑡−1 + 𝑧𝑡 ◦ ℎ̂𝑡

(3)

We use an action sequence𝑎𝑛1:𝑇 to denote a series of user relation
vectors or item embedding vectors and apply a recurrent model to
encode the temporal relation into the feature vectors. We further
adopt a single layer GRU network as our encoder and employ
the attention-based dense net for detecting adversarial examples
(formulated below).

𝛼𝑡 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑒𝑒 + 𝑏𝑒 )𝑡

𝑎𝑡𝑡, ℎ𝑖𝑑 =

𝑇∑
𝑡=1

𝛼𝑡ℎ𝑡

𝑝 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑎𝑡𝑡𝑎𝑡𝑡 + 𝑏𝑎𝑡𝑡 )

(4)

where 𝑒 is the combined vector of action embedding and hidden
states ℎ𝑖𝑑—we compute attention weights from embedding vectors
and employ a liner unit to distribute probabilities to input time
steps; ℎ𝑡 is the output of encoder. After processed through the
attention layer, the vector is then piped into a linear unit with
softmax to predict if the agent is polluted. The loss function is the
cross entropy between the true label and corresponding probability,

𝐽 (𝐴𝑡𝑡 (𝑎1:𝑇 ), 𝑦) = −𝑦 ◦ 𝑙𝑜𝑔(𝑝)

3 EXPERIMENTS
In this section, we report our experiments to evaluate attack meth-
ods and our detection model.
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3.1 Dataset and Experiment Setup
We conduct experiments following [1] and [14] over a real-world
dataset, Amazon dataset [4]. This public dataset contains user re-
views and metadata of the Amazon e-commerce platform from 1996
to 2014. We utilize three subsets, namely Beauty, Cellphones, and
Clothing, as our experimental datasets. We directly use the dataset
provided by [14] on Github to reproduce their experiments. Details
about Amazon dataset analysis can be found in [14].

We conduct our attack and detection experiments based on [14].
We preprocess the dataset by filtering out feature words with higher
TF-IDF scores than 0.1. Then, we use 70% data in each dataset as the
training set (and the rest as the test set) and actions of reinforcement
agent as the detection data. We define the actions of PGPR [14]
as heterogeneous graph paths that start from users and have a
length of 4. The three Amazon sub-datasets (Beauty, Cellphones,
and Clothing) contain 22,363, 27,879, and 39387 users, respectively.
To accelerate experiments, we use the first 10,000 users of each
dataset to produce adversarial examples. Users in Beauty get, on
average, 127.51 paths. The counterparts for Cellphones andClothing
are 121.92 and 122.71. We adopt the action file of 𝑙∞ attack with an
epsilon of 0.5 as the training set. As the number of paths is large,
we utilize the first 100,000 paths for train and validation with split
ratio 80/20. We randomly sampled 100,000 paths from each action
file to form the test set.

After trained on training dataset, the subject models are then
attacked by the adversarial methods. We slightly modify JSMA
and Deepfool for our experiments—we create the saliency map by
calculating the product of the target label and temporal label to
achieve both effectiveness and higher efficiency (by 0.32 seconds
per iteration) of JSMA; we also use sampling to decrease the compu-
tation load on a group of gradients for Deepfool. Besides, we set the
hidden size of the GRU to 32 for the encoder, the drop rate of the
attention-based classifier to 0.5, the maximum length of a user-item
path to 4, the learning rate and weight decay of the optimization
solver, Adam, to 5e-4 and 0.01, respectively.

3.2 Attack Experiments
This section reports our experiments on adversarial attacks. The
first part shows the attack experiment results, followed by an anal-
ysis of the impact of attack frequency.
Adversarial attack results.We are interested in how vulnerable
the agent is to perturbation in semantic embedding space. We con-
sider an attack to be effective if a small perturbation leads to a
notable performance reduction. We experimentally compare the
performance of different attack methods (described in Section 2)
in Table 1. We reuse the evaluation metrics of the original model,
namely Normalized Discounted Cumulative Gain (NDCG), Recall,
Hit Ratio (HR), and Precision for evaluation. All metrics are com-
puted based on the top 10 sorted predictions for each user. Besides,
all the metrics are presented in percentage without specific notion.

Table 1 shows the attack results share the same trend with the
distribution discrepancy. Most attack methods significantly reduce
the performance of the reinforcement system. FGSM 𝑙1 achieves the
best performance. It reveals that attacks on a single dimension can
change the neural network’s action drastically. Compared with 𝑙1
and 𝑙𝑖𝑛𝑓 methods, FGSM 𝑙2 is less effective, where the metrics just

fluctuates around the original baseline (shown in Table 1). This is
partly because the 𝑙2 attack creates a small disturbance on original
data. Specifically, JSMA chooses a small attack area but achieves
comparable results as FGSM 𝑙𝑖𝑛𝑓 . Deepfool achieves the second
least effective performance. Attacks on Clothing and Cellphones
sub-datasets show similar effects.
Impact of attack frequency. We conduct two experiments on
attack frequency, random attack, and strategically attack. In the
random attack method, the adversarial examples are crafted with a
frequency parameter, 𝑝 𝑓 𝑟𝑒𝑞 . In the strategically-timed attack, the
adversarial examples are generated by the method shown in Section
2.2. The NDCG metric is presented in Figure 2; other metrics have a
similar trend. It can be seen from 2 that the random attack performs
worse than the strategically-timed attack. Generating strategically
adversarial examples one third to half time steps achieves a signifi-
cant reduction in all metrics.

Figure 2: NDCG of attack frequency on Beauty and Cloth-
ing subsets. Dashdot lines represent random attacks, solid
lines are strategically-timed attacks. Blue and green lines
are FGSM 𝑙𝑖𝑛𝑓 and 𝑙1 attacks respectively.

Analysis of adversarial examples.We use Maximum Mean Dis-
crepancy as statistical measures to capture distribution distance.
This divergence is defined as:

𝑀𝑀𝐷 (𝑘,𝑋𝑜𝑟𝑔 , 𝑋𝑎𝑑𝑣) = sup
𝑘∈𝐾

(
1
𝑛

𝑛∑
𝑖=1

𝑘 (𝑥𝑜𝑟𝑔,𝑖 ) −
1
𝑚

𝑛∑
𝑖=1

𝑘 (𝑥𝑎𝑑𝑣,𝑖 )
)

where𝑘 is the kernel function, i.e., a radial basis function,𝑋𝑜𝑟𝑔 , 𝑋𝑎𝑑𝑣
are benign and adversarial examples.

MMD-org reveals the discrepancy between the original and ad-
versarial datasets. While MMD-𝑙1 presents the discrepancy among
different attack methods. The results (Table 1) show that the adver-
sarial distribution is different from the original distribution. Also,
the disturbed distributions are closed to each other regardless of
the attack type. This insight makes it clear that we can use a classi-
fier to separate benign data and adversarial data and it can detect
several attacks at the same time, which might be transferred to
other reinforcement learning attack detection tasks.

3.3 Detection Experiments
From a statistical perspective, the above analysis shows that one
classifier can detect multiple types of attacks. We evaluate the
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Table 1: Adversarial attack results, MMD between benign distribution and adversarial distribution on Amazon Beauty

Data Parameters NDCG Recall HR Precision MMD-org MMD-𝑙1
Original - 4.654 6.572 13.993 1.675 0.121 0.620
FGSM 𝑙1 𝜖 =0.1 2.695 3.714 6.599 0.693 0.604 0.010
FGSM 𝑙2 𝜖 =1.0 4.567 6.555 13.751 1.653 0.016 0.573
FGSM 𝑙𝑖𝑛𝑓 𝜖 =0.5 2.830 3.909 7.351 0.787 0.570 0.011
JSMA - 2.984 3.844 8.254 0.931 0.412 0.034

Deepfool - 3.280 4.352 9.548 1.050 0.177 0.458

detection performance of different models using Precision, Recall
and F1 score.

We adopt an attention-based network for detection experiments.
The detection model is trained on FGSM 𝑙1 attack with 𝜖 at 0.1 for
all datasets. The results (Table 2) show that our detection model
achieves better performance on strong attacks. The detection pre-
cision and recall rise as the attack becomes stronger. 𝑙∞ attack
validates this trend, which shows that our model can detect weak
attacks as well. The result of detection on 𝑙2 attack can be reasoned
with MMD analysis shown above, high precision and low recall
show that most 𝑙2 adversarial examples are close to benign data
which confuses the detector. The 𝑙1 attack with 𝜖 = 1.0 validates
that our detector performs well yet achieves worse performance
on other tests of Cellphones dataset.

Table 2: Detection Result & Factor Analysis

Dataset Attack Precision Recall F1 Score
Beauty 𝑙1 0.1 0.919 0.890 0.904

𝑙2 1.0 0.605 0.119 0.199
𝑙𝑖𝑛𝑓 0.5 0.918 0.871 0.894
JSMA 0.910 0.793 0.848

Deepfool 0.915 0.840 0.876
Cellphones 𝑙1 0.1 0.801 0.781 0.791

𝑙2 1.0 0.754 0.593 0.664
𝑙𝑖𝑛𝑓 0.5 0.795 0.752 0.773
𝑙1 1.0 0.810 0.825 0.817

Clothing 𝑙1 0.1 0.911 0.866 0.888
𝑙2 1.0 0.541 0.099 0.168
𝑙𝑖𝑛𝑓 0.5 0.912 0.879 0.895

Dataset Frequency Precision Recall F1 Score
Beauty 𝑙1 0.02 0.823 0.362 0.503

𝑙1 0.08 0.918 0.872 0.894
𝑙1 0.3 0.922 0.927 0.924

Dataset Frequency Precision Recall F1 Score
Beauty 𝑙1 0.579 0.921 0.912 0.917

𝑙1 0.316 0.918 0.879 0.898
𝑙1 0.118 0.837 0.401 0.543

Our results on factor analysis (Table 2) show that the detection
model can detect attacks even under low attack frequencies. But
the detection accuracy decreases as the attack frequency drops—the
recall reduces significantly to 40.1% when 11.8% examples represent
attacks.

4 CONCLUSION
Adversarial attacks on reinforcement learning-based recommenda-
tion system can degrade user experience. In this paper, we systemat-
ically study adversarial attacks and their factor impacts. We conduct
statistical analysis to show classifiers, especially an attention-based
detector, can well separate the detection data. Our extensive exper-
iments show both our attack and detection models achieve satisfac-
tory performance.
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