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ABSTRACT

This paper proposes a new approach to estimating high dimensional time varying
parameter structural vector autoregressive models (TVP-SVARs) by taking advan-
tage of an empirical feature of TVP-(S)VARs. TVP-(S)VAR models are rarely used
with more than 4-5 variables. However recent work has shown the advantages of
modelling VARs with large numbers of variables and interest has naturally increased
in modelling large dimensional TVP-VARs. A feature that has not yet been uti-
lized is that the covariance matrix for the state equation, when estimated freely, is
often near singular. We propose a specification that uses this singularity to develop
a factor-like structure to estimate a TVP-SVAR for many variables. Using a gen-
eralization of the recentering approach, a rank reduced state covariance matrix and
judicious parameter expansions, we obtain efficient and simple computation of a high
dimensional TVP-SVAR. An advantage of our approach is that we retain a formal in-
ferential framework such that we can propose formal inference on impulse responses,
variance decompositions and, important for our model, the rank of the state equation
covariance matrix. In a system with 15 variables, we show clear empirical evidence
in favour of our model and improvements in estimates of impulse responses.

Keywords: Large VAR; time varying parameter; reduced rank covariance ma-
trix.
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1 Introduction

Vector autoregressive models (VARs) have provided many valuable insights in applied

macroeconometrics. The past decade has seen considerable interest in VARs with

parameters that evolve over time — time varying parameter VARs (TVP-VARs) —

particularly with heteroscedasticity, to better capture the evolving dynamics of the

underlying variables. More recently researchers have been developing methods to

estimate larger systems of variables in VARs to avoid limitations that arise when

too few variables are modelled. The problems that motivate using both TVP-VARs

and large VARs are compelling, but addressing both problems in one model leads

to significant computational challenges. This paper proposes an approach to address

these challenges.

Bańbura, Giannone and Reichlin (2010) argue for modelling many variables in a

large VAR to avoid a number of problems that arise from modelling too few vari-

ables. They (and other authors such as Carriero, Kapetanios and Marcellino (2011),

Giannone, Lenza, Momferatou and Onorante (2014), Koop (2013) and Koop and Ko-

robilis (2013)), point out that forecasts, policy advice and analysis of structure suffer

problems resulting from omitted variable bias from using too few variables in the

VAR. Typical sample sizes in the VAR literature, however, are not large and using

large VARs leads to significant parameter proliferation making estimation and more

general inference either difficult or infeasible. Bańbura et al. (2010) address this

problem by employing the so-called Litterman prior to impose sufficient shrinkage to

permit inference.

The time varying parameter vector autoregressive model (TVP-VAR) allows for

the processes generating macroeconomic variables to evolve over time. These models,

which are most commonly given a state space representation, have informed us on a
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range of questions of interest to policymakers with perhaps the most notable area of

application being on the transmission of monetary policy (see, for example, Cogley

and Sargent (2001, 2005), Primiceri (2005), and Koop et al. (2009)). Although the

number of variables modelled using TVP-VARs has tended not to be very large, the

arguments for using large VARs have quite naturally led to efforts to develop large

TVP-VARs. As the number of states grows polynomially in the number of variables

and time then, as in the large VARs, computational difficulties are encountered in

these models when there are many variables. These difficulties tended to limit the

number of variables modelled using the TVP-VAR.1

A range of approaches have been developed to estimating large TVP-VAR models

to address the computational challenges. Some approaches aim to achieve parsimony

by shrinking parameters towards zero (e.g., Belmonte et al. (2014)), others use time-

varying FAVAR to incorporate the information from many sources. Since Bernanke

et al. (2005), there has been is a growing body of research on the use of factor-

augmented VAR models as an alternative specification to TVP-VAR to modelling and

forecasting with large systems. The factors and observables are given a VAR structure

and, typically in these models, only a few factors drive the common variation in the

system. More recently, these models have been extended to permit time-varying

parameters. An interesting recent extension is Eickmeier et al. (2015) in which

the states are observed and their dynamics are allowed to evolve over time. Such

an approach allows a large amount of information to feed into the model and this

information can also influence the variance. Eickmeier et al. (2015), for example,

allow the factors to drive the volatility process as well as the mean. Unlike the

factor structure, the approach in this paper preserves the original VAR structure and

1A few papers, such as Carriero, Clark and Marcellino (2016a,b) and Chan (2018), have developed
large VARs with stochastic volatility. But these papers all restrict the VAR coefficients to be
constant.
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permits a full covariance matrix for all state shocks.

Koop and Korobilis (2013) (hereafter KK2013)) present an approach to estimat-

ing large TVP-VARs by altering the specification and reporting estimates that avoid

an expensive exploration of the full posterior distribution. Using forgetting factors

they replace the state equation covariance matrix with a matrix proportional to a

filtered estimate of the posterior covariance matrix. They avoid running an MCMC

investigation of the full posterior distribution by reporting estimates from the Kalman

filter. As these estimates only use data up to the time of the forecast, t, and avoid a

full MCMC investigation of the posterior, the approach in KK2013 is ideally suited

to forecasting as demonstrated in that paper. The filter is appropriate as this ap-

proximates the information available to agents producing the forecasts at that time2.

Using the new specification with the filter delivers impressive computational speed in

estimating a TVP-VAR for the purpose of forecasting.

Our paper, by contrast, undertakes an ex-post study of economic behaviour which

is a very different purpose to replicating historical forecasts. The Kalman filter is not

appropriate in this case (see Sims (2001) critique of Cogely and Sargent (2001) along

these lines) as learning about the model at time t happens both before and after t.

The Kalman smoother is better suited to our purpose as the resulting estimates use all

available data. The model in this paper differs in that we preserve the full probability

model and the dimension reducing restrictions imposed are suggested by empirical

evidence. Coupling this specification with an MCMC approach to estimation, we are

able to explore the full posterior distribution and so permit the full range of formal

inferential opportunities.3

2This does not account for the fact that the data are revised. However real-time forecasts could
be readily incorporated.

3There are a number of other differences with KK2013. In that paper they use a deterministic
model for the evolution of the measurement error covariance matrix (an exponentially weighted
moving average specification) whereas we use a stochastic specification. Further, KK2013 propose
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An issue that has been bubbling away in the background in the literature on

TVP-VARs is the treatment of the state equation covariance matrix. This matrix

is often specified as diagonal, although there is good reason to specify this as a full

matrix. Primiceri (p. 830, 2005) provides an argument that a full covariance matrix

for the vector of all mean equation and structural parameter states would be most

appropriate as the states are, and are expected to be, highly correlated. However,

he does not adopt such a specification in order to avoid parameter proliferation and

the attendant computational issues. Primiceri (2005) does maintain a full covariance

matrix for the reduced form mean equation states and more papers are doing so (see

for example, Eisenstat, Chan and Strachan (2016)). A full state equation covariance

matrix poses significant computational challenges for large TVP-VARs. As the num-

ber of variables n grows, the number of mean parameters grows at order n2 and the

number of parameters in the state equation covariance matrix grows at n4. In this

paper we present an reduced rank restriction on the state equation covariance matrix

that results in a reduced number of state errors driving the time-varying parameters.

The first contribution of this paper is to present an alternative approach to es-

timating large TVP-VARs. We increase the number of variables we can model in

a TVP-VAR by taking advantage of the strong correlations among the states. We

preserve the exact state space model but achieve parsimony by imposing a restriction

suggested by the data; that the state equation covariance matrix has reduced rank.

An early observation by Cogley and Sargent (2005) shows, using principal component

analysis, that the posterior estimate of the covariance matrix for the state equation

appears to have a very low rank. We formalize this observation into a model speci-

fication. Primiceri (2005) points out that small state equation error variances cause

a model for a time-varying parameter VAR that allows the dimension of the model to change over
time and this feature is shown to produce improvements in forecasting.
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problems for frequentist computation. Our approach, by contrast, uses this feature

to improve Bayesian estimation.

While the usual TVP-VAR will have the same number of time-varying parameters

as states (and the terms time-varying parameters and states are interchangeable in

this case), in our model the time-varying parameters is driven by a much smaller

number of states (and the distinction between time-varying parameters and states

becomes important). Note that no matter by how much we reduce the number of

states, the number of time-varying parameters in the VAR does not change. This

statement will become clearer when we develop the model in Section 2. Reducing the

number of states driving the time varying parameters results in estimates of the time

varying parameters that are far more precise.

We employ a range of strategies, in addition to the reduced rank structure, to

mitigate the computational issues. Each makes a small contribution on their own,

but collectively they allow us to estimate larger models. First, by estimating the

structural form of the TVP-VAR directly, we remove one sampling step in the Gibbs

sampler. This is particularly important as estimating the reduced form TVP-VAR

involves drawing two blocks of parameters that are naturally highly correlated. We

collapse these two blocks into one and draw that block in one step. Next, to achieve

a readily computable specification we generalize the scalar non-centered specification

of the state space model by Frühwirth-Schnatter and Wagner (2010) to the matrix

non-centered specification. This removes another step from the sampler as we draw

the initial states and the state covariance matrix together in a single step. Further,

we avoid the Kalman filter and smoother and, instead, use the precision sampler of

Chan and Jeliazkov (2009). This precision sampler uses a lower order of computations

to draw from the same posterior as the Kalman smoother. McCausland et al. (2011)

provide a useful discussion on the computational advantages of this approach an,
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in particular, point out that the gain is more significant for larger n. The main

contributions to improving computational speed, however, are due to the dimension

reduction (over 95%) that comes from the rank reduction of the state covariance

matrix and the use of the precision sampler rather than the more computationally

intensive Kalman filter and smoother.

The specification of the reduced rank model requires semi-orthogonal matrices

and ordered positive elements. This specification induces nonstandard supports for

the parameters and Bayesian computation on such supports is difficult. Another

contribution of this paper, then, is to use a judicious selection of parameter expan-

sions and priors for the expanding parameters to develop a specification that is fast,

efficient and easy to compute. This expansion is part of the generalization of the re-

centering method of Frühwirth-Schnatter and Wagner (2010) to a multivariate setting

mentioned above.

We apply the new specification and computation techniques to a study of the

evolution of responses of a range of real and nominal macroeconometric variables to

surprise productivity (non-news) and news shocks. Increasing the number of variables

modelled in a TVP-VAR could also prove useful in many other settings. In a study

of network spillovers among financial institutions, Geraci and Gnabo (2018) demon-

strate the utility of TVP-VAR models for a system of four sectors. The approach

in this paper permits the analysis of many more sectors or possibly disaggregated

data. Similarly, Ciccarelli and Rebucci (2007) propose using a TVP-VAR to address

simultaneity issues in studying contagion and interdependence among exchange rates.

The approach could find uses outside of economics. In psychology, for example, the

TVP-VAR is used to model emotion dynamics and has been proposed for the study

of networks in psychopathology (see Bringmann et al. (2018) and references therein).

The structure of the paper is as follows. In Section 2 we present the idea with
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a general state space model. We outline the model specifications that result from

different assumptions about the rank of the state equation covariance matrix. This

section also contains a technical derivation of the reduced sources of errors model

that results from a reduced rank state equation covariance matrix. In Section 3 we

outline posterior computation. Section 4 presents an application using a TVP-VAR

with 15 variables to demonstrate the proposed methodology. Section 5 concludes and

gives some indication of directions for future research.

2 Reducing the Sources of Variation

2.1 Overview

We will apply the reduced sources of error approach to a structural form TVP-VAR

(TVP-SVAR). In VAR analysis, the measurement equation is often specified on the

reduced form parameters, although we can readily transform between the reduced

form and structural form. We prefer the structural form as it reduces the number of

blocks of parameters to be estimated and makes the dependence among the structural

and reduced form parameters simpler (i.e., linear).

For the n× 1 vector yt for t = 1, ..., T, the TVP-SVAR can be written as

B0,tyt = µt +B1,tyt−1 + · · ·+Bp,tyt−p + εt, εt ∼ N(0,Σt), (1)

where B0,t, . . . , Bp,t are n×n and Σt = diag(exp(h1,t), . . . , exp(hn,t)). The first matrix

B0,t is n×n with ones on the diagonal and is commonly specified as lower triangular.

Given the structure of B0,t, we may write B0,t = I −Bt so that the matrix Bt has

9



zeros on the diagonal. The TVP-SVAR can now be written as:

yt = µt +Btyt +B1,tyt−1 + · · ·+Bp,tyt−p + εt

= µt + (y′t ⊗ In)Dbt +
(
y′t−1 ⊗ In

)
b1,t + · · ·+

(
y′t−p ⊗ In

)
bp,t + εt,

where bl,t = vec (Bl,t), l = 1, ..., p and Dbt = vec (Bt) where bt contains all the n(n−1)
2

non-zero elements of Bt in a vector and D is an appropriately defined n2 × n(n−1)
2

selection matrix. If we define the n× k matrix

xt =
[
In (y′t ⊗ In)D

(
y′t−1 ⊗ In

)
· · ·

(
y′t−p ⊗ In

)]
such that k =

(
np+ 1 + n−1

2

)
n and the (k × 1) vector αt =

(
µ′t b′t b′1,t · · · b′p,t

)′
,

we can write the above model using a standard but reasonably general specification

of the state space model for an observed n × 1 vector of observations yt with n × k

matrix of regressors xt :

yt = xtαt + εt, εt ∼ N (0,Σt) , (2)

αt = αt−1 + ηt, ηt ∼ N (0, Qα) , α0 = α ∼ N (α, V ) . (3)

In the application in Section 4, it will be more convenient to transform from the VAR

to the VECM form, but this again can be written in the general form in (2) and (3).

We therefore continue with the general form of the model and delay giving specific

details on the prior we use until Section 4. We can now present the idea of reducing

the sources of errors in a general linear Gaussian state space model.

We have not imposed any restrictions on the above model at this point and all of

the parameters in the VAR are able to vary over time. The dimension reduction occurs
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by applying a rank reduction to the covariance matrix for the state equation, Qα. If

we set the rank of Qα to rα = rank (Qα) ≤ k, then after applying the appropriate

transformations (detailed in the next subsection below) we can write the model in (2)

and (3) as follows:

yt = xtα + xtAαfα,t + εt, εt ∼ N (0,Σt) , (4)

fαt = fα,t−1 + zα,t, zα,t ∼ N (0, Irα) , fα,0 = 0, (5)

where Aα is a (k × rα) matrix, fα,t and zα,t are (rα × 1) vectors and the errors εt and

zt are independent of one another. As rα is generally much smaller than k, we call

the model in (4) and (5) the reduced sources of error model.

The technical details on the link between the general form of the state space

model in (2) and (3) and the final form in (4) and (5), including centering and

parameter expansions, are presented in the following subsection for the interested

reader. There are a number of choices in modelling the state space model and the

correlation structure. In this paper we extend the above to reducing the rank of

the covariance matrix for the volatility states, Qh. We present two specifications,

the second encompasses the first but there are significant differences in computation

between the two specifications.

In the transformation from (2) to (3) we use αt = α + Aαfα,t where AαA
′
α = Qα.

This function implies that the k time varying parameters in αt are driven by rα ≤ k

states, fα,t, in a factor-like structure for the states. The elements of Aα and fα,t are

not identified and this results from the use of parameter expansions. These expansions

relax the form of the model to improve estimation. In fact, we derive the above form

starting from identified parameters but then introduce the parameter expansions that

take away this identification.
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To give an impression of the extent of dimension reduction that is typically

achieved, consider our empirical application. We have n = 15 variables and T = 250

observations for a VAR with 2 lags. The dimension of the states αt and the covariance

matrix Qα in the unrestricted model in (2) and (3) has dimension 305,805 (here we

ignore the volatility). With rank of Qα set to rα = 4, which is preferred in this appli-

cation, then Specification 1 in (4) and (5) has dimension 3,844 representing a 98.7%

reduction in model dimension. It is worth noting that the larger is n the greater is

the dimension reduction.

Recall that with the full covariance matrix Qα the dimension of this matrix grows

at rate n4. Instead of using the specification of the state space model with a full

covariance matrix Qα, one might therefore use a diagonal specification of Qα in the

hope of reducing the dimension of the model. However, this does not result in as

great a dimension reduction as using a reduced rank Qα. In the case considered in

our application, for example, the states αt and the diagonal covariance matrix Qα in

the unrestricted model in (2) and (3) would have dimension 143,640. Thus the model

(4) and (5) with rank of Qa of rα = 4 still has a dimension 97.3% smaller than if a

diagonal form were chosen for Qα.

2.2 Mapping to the reduced sources of errors model

In this subsection, we present the details of the transformations from (2) and (3)

to (4) and (5). Important features of the transformed model are that there are no

unknown parameters in the state equations and that the parameters to be estimated

all appear in the mean equation. Further, all of the parameters in α, Aα and fα,t

have conditionally normal posteriors.

Frühwirth-Schnatter and Wagner (2010) develop a computationally efficient spec-
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ification of the state space model that permits the time variation in individual pa-

rameters to be ‘turned off’. This approach involves two transformations: recentering

(or non-centering) and parameter expansion. We leave for a subsequent paper con-

sideration of turning off time variation. Rather we use the non-centered specification

to develop a reduced rank model from which it is simpler to obtain draws of the

parameters.

In recentering, the initial value is subtracted from all states and this is divided

by the standard deviation of the state equation error. This transformation moves the

initial state and the standard deviation into the mean equation leaving no unknown

parameters in the state equation.

The Frühwirth-Schnatter and Wagner (2010) approach is developed for scalar or

independent states. That is, Qα is assumed to be scalar or a diagonal matrix. In

our model the covariance matrix Qα is a full symmetric matrix allowing correlation

among the elements of ηt. We denote the initial state by α. Generalizing to this case,

the recentering transforms from αt to α̃t via

αt = α +Q1/2
α α̃t, (6)

and the model subsequently becomes

yt = xtα + xtQ
1/2
α α̃t + εt, εt ∼ N (0,Σt) , (7)

α̃t = α̃t−1 + z̃t, z̃t ∼ N (0, Ik) , α̃0 = 0. (8)

This more general specification requires a useful definition for Q
1/2
α , the square root

of the covariance matrix Qα. There are several ways to define the square root of

a full symmetric matrix, but for our purposes the definition must allow for Qα to
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have reduced rank. Our preferred definition, which can readily accommodate rank

reduction, uses the singular value decomposition.

The singular value decomposition of Qα can be written as Qα = UΛU ′ where

Λ = diag {λ1, λ2, ..., λk}, λi ≥ λi+1 ≥ 0 and U ∈ O (k) ≡ {U (k × k) : U ′U = Ik} is an

orthonormal matrix: U ′U = Ik. Given Qα, the elements of U are identified up to sign

(which is trivially resolved). The matrix Q
1/2
α is defined simply as Q

1/2
α = UΛ1/2U ′.

In this paper we impose parsimony by letting the k − rα smallest singular values of

Λ to be zero. That is, we allow λrα+1 = λrα+2 = · · · = λk−1 = λk = 0 and collect

the nonzero singular values into Λ1 = diag {λ1, λ2, ..., λrα}. In this case, we can con-

formably decompose U = [U1 U2] such that U1 ∈ Vrα,k ≡ {U (k × rα) : U ′U = Irα}

and U ′1U2 = 0 an rα × (k − rα) matrix of zeros. Under this restriction

Q1/2
α = UΛ1/2U ′ = U1Λ

1/2
1 U ′1.

We introduce the square root of the reduced rank covariance matrix into the

specification (6) to obtain the expression

αt = α + U1Λ
1/2
1 U ′1α̃t

= α + U1Λ
1/2
1 f

t
, (9)

where in the second line we have taken the linear combination f
t

= U ′1α̃t. The rank

reduction implies a reduction in the number of states from k (in αt) to rα (in f
t
).

Taking the linear combination f
t

in the state equation implies also taking the linear

combinations of the zt = U ′1z̃t. Here we have used the result that a linear combination

of standard normal random variables (z̃t) in which the linear combinations are formed

using a set of orthogonal unit vectors (U1 in our case) results in a vector of standard
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normal variables (zt). Thus the resulting state equation vector of errors, zt, is an rα−

vector of standard normal variables. That is, the state equation is now

f
t

= f
t−1 + zt, zt ∼ N (0, Irα) , f

0
= 0.

The specification in (9) involves the parameters U1 and Λ1 which have nonstandard

supports. These nonstandard supports significantly complicate computation and it

is difficult to obtain an efficient and simple algorithm. This issue is addressed by

mapping to a less restrictive form by introducing unidentified parameters.

The second step in the approach of Frühwirth-Schnatter and Wagner (2010) is to

introduce an unidentified parameter via an approach called parameter expansion, to

map the parameters to more standard forms and supports. Used judiciously, transfor-

mation via parameter expansion can make computation much simpler and more effi-

cient. This is achieved by the mapping to standard supports and employing standard

distributions thereby simplifying computation and breaking down the dependency in

the parameters (see discussion in, for example, Liu, Rubin and Wu (1998) and Liu

and Wu (1999)). Importantly, this approach has proven useful in reduced rank models

such as cointegrating vector error correction models (see Koop, Léon-González and

Strachan (2010)), factor models (Chan, Léon-González and Strachan (2018)), and

simultaneous equations models (Koop, Léon-González and Strachan (2012)).

Working in the scalar case, Frühwirth-Schnatter and Wagner (2010) introduce an

indicator ι that randomly takes the values −1 or +1. The support for ι is therefore

a one-dimensional orthogonal group, O (1). Generalizing this, we expand the set of

parameters by introducing the orthonormal matrix C ∈ O (rα) where O (rα) is the

rα-dimensional orthogonal group. Define the matrix Aα = U1Λ
1/2
1 C ′. Note that the

definition of Aα is just a standard singular value decomposition of a real matrix with
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singular values on the diagonal of Λ
1/2
1 . Introducing this expanding parameter C into

the model through (9) we obtain

αt = α + U1Λ
1/2
1 C ′Cf

t

= α + Aαfα,t,

fα,t = fα,t−1 + zα,t, zα,t ∼ N (0, Irα) , fα,0 = 0

in which fα,t = Cf
t

and zα,t = Czt. Introducing the above transformation into the

measurement equation in (7) and replacing the state equation in (8) by the one above,

we obtain the final form of the full state space model as that given in (4) and (5).

2.3 Two Specifications for the Variance

The standard model assumed in the literature specifies αt and ht = (h1,t, . . . , hn,t)
′ as

a priori independent and that the covariance matrix in the state equation for ht is

full rank. For example, a standard specification is a random walk log-volatility

ht = ht−1 + ηh,t ηh,t ∼ N (0, Qh)

where Qh = diag (σ2
h1, , . . . , σ

2
hn) and the random walk is initialized with h0.

In this section we apply the dimension reduction to the log variances, ht, in (1).

That is, we generalise to permit Qh to be a full, possibly reduced rank symmetric

matrix. Much of the parameter proliferation in the TVP-SVAR occurs in the mean

equations but we could just as reasonably wish to reduce the number of states driving

the stochastic volatility. The volatility component of the models we propose here

resembles that of Carriero et al. (2016a). Expanding upon the specification in Section
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2.1, we consider two specifications of the log volatility ht for reducing the dimensions of

the TVP-SVAR. The first, Specification 1, assumes the mean equation and volatilities

share common states while Specification 2 specifies them to be a priori independent.

The rationale for the first specification is that structural change in the mean and

variance could come from a common source. That is, structural change is driven

by a common factor. Specification 2 adopts the more standard assumption that the

mean and variance states are independent. Specification 1 of the process for αt and

ht encompasses Specification 2.

It is not difficult to imagine that shocks can drive changes in the whole structure

of the model such that changes in the mean and variance parameters are driven by

the same states. To allow for this possibility, we allow for the mean equation and

volatility to influence each other in the most general model specification. In this

model, the most general form, we allow the mean equation states, αt, to be correlated

with the log volatilities in ht. To permit this we specify a state equation for αt and

ht jointly as:

θt =

 αt

ht

 .

Specification 1 has state equation

θt = θt−1 + ηθ,t, ηθ,t ∼ N (0, Qθ) , (10)

such that the mean and variance states are correlated. After applying the rank
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reduction to the above specification, the time varying parameters in the model are

θt = θ + Afθ,t, A =

 Aα

Ah

 ,

fθ,t = fθ,t−1 + zt, zt ∼ N (0, Ir) , fθ,0 = 0,

where r = rα + rh, A is (n+ k)× r and fθ,t is r × 1.

It is more common to impose, usually for computational convenience, that the

errors in the state equations for αt and ht are independent. However, we wish to

retain dependence among the volatilities. The second model, Specification 2, assumes

that αt and ht are independent such that

A =

 Aα

Ah

 =

 Aα,11 0

0 Ah,12

 .

In this case, we could rewrite the model for ht as

ht = h+ Ah,11fh,t,

fh,t = fh,t−1 + zh,t, zh,t ∼ N (0, Irh) , zh,0 = 0,

where Ah,11 is n × rh, fh,t is rh × 1 and, as we might reasonably expect that the

volatilities can be modelled with common factors, then rh ≤ n.

3 Posterior Estimation

The state space structure specifies the priors for the states — fα,t, fh,t and fθ,t —

so we now describe the priors for the initial conditions θ = (α′, h′)′ and covariance
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matrices a = vec (A) .

Frühwirth-Schnatter and Wagner (2010) provide evidence in support of using the

Gamma prior, rather than the inverted Gamma prior, for their scalar state equation

variance. In the generalisation presented in this paper, this equates to using a Wishart

prior for Qθ. For the full rank (r = k) case, a zero mean normal prior for A implies

a Wishart prior for Qθ (see, for example, Zellner pp. 389-392 (1971) and Muirhead

(1982)). We therefore give the matrix A a normal prior distribution, a = vec (A) ∼

N
(
0, cI(n+k)r

)
for all three specifications. Through some experimentation, we find

c = 10−3 to be reasonable in a wide variety of settings.

For the initial state θ = {θj} (which contains the elements of α and h), we note

that in large models the dimension may be substantial, and hence, shrinkage priors

may be desirable. This implies a choice of structure on the prior covariance matrix

V θ =
{
V θj

}
. A number of options explored in the large Bayesian VAR literature

may be applied here. We consider the stochastic search variable selection (SSVS)

(e.g., George and McCulloch (1993)) prior of the form:

θj | δj ∼ N (θj, cδjV θj
), (11)

δj ∼ qδj(1− q)1−δj ,

where δj ∈ {0, 1} , c1 = 1 and c0 is some small constant. Of course, this will collapse

to a typical normal prior if either q = 1 or c0 = 1. Further, we combine SSVS with

Minnesota priors as suggested in Korobilis (2013). Having normal conjugate priors

for the initial conditions (α, h), the covariances (a = vec (A)) and the states (the ft),

the resulting conditional posteriors are normal for Specifications 1 and 2.

For the purposes of this section, we collect the T states into the vectors fm =(
f ′m,1, f

′
m,2, . . . , f

′
m,T

)′
for m = α, h or θ. Further, let aα =

(
vec (α)′ , vec (Aα)′

)′
and
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ah =
(
h′0, vec (Ah)

′) . The description of the priors above implies that the vectors aα,

fα, ah and fh have a normal form such as N
(
µ
m
, V m

)
for µ = a or f. Volatility Spec-

ification 2 leads to a straightforward sampler. For Specification 2, MCMC involves

five blocks:

1. (aα|sh, fα, ah, fh, y) ∼ N
(
aα, V α

)
;

2. (fα|sh, aα, ah, fh, y) ∼ N
(
fα, V f,α

)
;

3. (sh|aα, fα, ah, fh, y) ;

4. (ah|sh, aα, fα, fh, y) ∼ N
(
ah, V h

)
;

5. (fh|sh, aα, fα, ah, y) ∼ N
(
fh, V f,h

)
;

of which Steps 1, 2, 4 and 5 involve only analytically tractable conditional distri-

butions, all of which are straightforward to sample from. The states, sh, drawn in

Step 3 are the states determining the normal mixture components when drawing the

stochastic volatilities using the algorithm of Kim, Shephard and Chib (1998).

For Specification 1 the MCMC consists of sampling recursively from:

1. (aα|fθ, h0, Ah, y) ∼ N
(
aα, V α

)
;

2. (fθ|aα, h0, Ah, y) ;

3. (ah|aα, fθ, y) ∼ N
(
ah, V α

)
.

Under this specification, the measurement equation is nonlinear in fθ (since it

enters both the conditional mean and the volatility simultaneously), and therefore,

(fθ|α,Aα, h0, Ah, y) is not analytically tractable. We therefore sample it using an
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accept-reject Metrolpolis-Hastings (ARMH) algorithm as described in Chan and Stra-

chan (2012). Specifically, we use a normal proposal centered on the conditional pos-

terior mode f̂θ with the variance V̂θ set to the negative inverse Hessian evaluated at

the mode of ln p (fθ|., y). The derivation of f̂θ and V̂θ is given in Section 1 of the

Online Appendix.

Once the mode f̂θ is obtained, the proposal precision V̂ −1θ is given by a by-product

of the scoring algorithm and a matrix that can be easily evaluated at the mode

upon convergence (See Online Appendix, Section 1). We then generate proposals

as f cθ ∼ N
(
f̂θ, V̂θ

)
for the ARMH step as detailed in Chan and Strachan (2012).

The use of ARMH as opposed to standard M-H appears to provide substantial gains

in terms of acceptance rates (and hence sampling efficiency), particularly for larger

models (i.e. as the size of fθ increases). Intuitively, the normal proposal is symmetric,

while p (fθ|., y) will typically be skewed. This mismatch in shape will lead to higher

rejection rates for a standard M-H approach as the dimension of fθ increases. ARMH

mitigates this by adjusting the shape of the proposal to better fit the skewness of

the target distribution. As a result, acceptance rates are substantially increased. For

example, in the macroeconomic application discussed below, the model with n = 15

and rα = 10 yields an acceptance rate of about 89.9%.

4 Application

4.1 Implementation

We use a data set containing a total of 15 variable to estimate the time-varying effects

of surprise productivity (non-news) and news shocks. To understand the effects of

dimension upon the results, we estimate the model with n = 8 variables and again

21



with all n = 15 variables for contrast. The data consists of quarterly macroeconomic

series covering the period 1954Q3–2008Q3, with each variable described in Table 1.4

Given a subset of these variables, we assume the system admits a structural TVP-

VAR representation of the form

yt = B−10,t µt + Π1,tyt−1 + · · ·+ Πp,tyt−p + Atε̃t, ε̃t ∼ N (0, In) , (12)

where At = B−10,t Σ
1/2
t ,

Σt = diag (exp (h1,t) , . . . , exp (hn,t)) and

Σ
1/2
t = diag (exp (h1,t/2) , . . . , exp (hn,t/2)) .

Following Barsky and Sims (2011), non-news and news shocks in ε̃t are identified by

the restrictions:

1. non-news is the only shock affecting TFP on impact;

2. news is the shock that, among all of the remaining shocks, explains the max-

imum fraction of the forecast error variance (FEV) of TFP at a long horizon

(set to 20 years in our application).

To implement the methodology outlined in the previous sections in estimating

(12), we begin with the structural form in (1)

yt = µt +Btyt +B1,tyt−1 + · · ·+Bp,tyt−p + εt, εt ∼ N (0,Σt)

4Following standard practice in the news shock literature, all series are de-meaned.
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Table 1: Variables used in each estimated model.
Core variables Additional variables for the n = 15 model
1 Log TFP 9 Log RPI
2 FED funds rate 10 Log real SEP500
3 GDP deflator inflation 11 Unemployment Rate
4 Log hours per capita 12 Vacancy rate
5 Log real GDP per capita 13 TB3MS Spread
6 Log real consumption per capita 14 GS10 Spread
7 Log real investment per capita 15 Log real dividends
8 GS5 Spread

were ε̃t = Σ
−1/2
t εt. To more simply apply a prior that are more useful in large models,

we respecify the model in VECM form

∆yt = µt +Btyt + Πtyt−1 + Γ1,t∆yt−1 + · · ·+ Γp−1,t∆yt−p+1 + εt (13)

where Bt is the same lower triangular matrix defined in (12). Next, define

xt =
(
In (y′t ⊗ In)D

(
y′t−1 ⊗ In

) (
∆y′t−1 ⊗ In

)
· · ·

(
∆y′t−p+1 ⊗ In

))
such that k =

(
np+ 1 + n−1

2

)
n and αt is the (k × 1) vector

αt =
(
µ′t b′t π′t γ′1,t · · · γ′p−1,t

)′
,

where µt and bt are defined in Section 2 and γl,t = vec (Γl,t) l = 1, ..., p − 1 and

πt = vec (Πt). Consequently, we can now write (13) in the form of (2) and (3) as:

∆yt = xtαt + εt εt ∼ N (0,Σt) ,

αt = αt−1 + ηt ηt ∼ N (0, Qα) α = α0 ∼ N (α, V ) .

The advantage of this VECM specification is that it facilitates specifying more flexible
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shrinkage priors for

α =
(
µ′0 b′0 π′0 γ′1,0 · · · γ′p−1,0

)′
,

which is useful in large dimensional settings.

In addition to the SSVS specification in (11) combined with the Minnesota prior

for θ = (α′, h′)′ = {θj}, we also implement “inexact differencing” as advocated by

Doan et al. (1984), Bańbura et al. (2010), and others. This is done by setting the

prior mean to θj = 0 for all j and the prior variance as

V θj
=


1 if θj ∈ h0, θj ∈ µ0, or θj ∈ b0,
102

2n
if θj ∈ π0,

0.3
2nl2

if θj ∈ γl,0 for l = 1, . . . , p− 1.

For SSVS, we set c0 = 0.01 and q = 0.5. Finally, we scale each ∆yi to have sample

standard deviation one before commencing sampling, which facilitates the use of

generic prior settings like the ones given above. However, the effect of this scaling

is reversed in the post-processing of draws such that all outputs such as impulse

response functions are reported on the originally scaled data.

Once draws of Bt, Πt, Γ1,t, . . . ,Γp−1,t, and Σt are obtained, they are transformed

to draws of Π1,t, . . . ,Πp,t from (12) as

B0,t = In −Bt

Π1,t = In +B−10,t (Πt + Γ1,t) ,

Πl,t = B−10,t (Γl,t − Γl−1,t) , l = 2, . . . , p− 1,

Πp,t = −B−10,t Γp−1,t.
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To recover At, we begin with Ãt = B−10,t Σ
− 1

2
t . Note that by construction Ãt is lower

triangular and therefore the non-news shock is identified in accordance with restriction

1 above. However, the news shock generally does not satisfy Restriction 2. Following

Barsky and Sims (2011), the desired restriction is implemented by constructing an

orthogonal matrix Qt using a spectral decomposition of impulse response functions.

Specifically, for each period t we compute the impulse responses of log TFP to all

shocks excluding non-news for the periods t, t+1, . . . , t+80. Let Rs be the (n− 1)×1

vector of impulse responses at time t+ s and take the spectral decomposition

Q̃tD
′
tQ̃t =

80∑
s=0

RsR
′
s,

where the eigenvalues in Dt are in descending order. Setting

Qt =

 1 0

0 Q̃t


and At = ÃtQt achieves the desired identifying restriction, which is sufficient for com-

puting forecast error variance decompositions. To derive impulse response functions,

we further identify the sign of the news shock by requiring that the maximum impact

of news on log TFP across all horizons is positive.5

4.2 Results

We begin by conducting an extensive empirical analysis on the choice of rα (number

of mean equation states) and rh (number of states driving the volatility) using the

Deviance Information Criterion (DIC) as the model comparison criterion. The DIC is

5In computing Q̃t for t > T − 80 we set Πl,t+s = Πl,T for all t + s ≥ T .
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based on the integrated likelihood — i.e., the joint density of the data marginal of all

the latent states — and is computed using the method in Chan and Eisenstat (2018).

The relative DICs for x are presented in Tables 2. For the model with n = 15, the

Table 2: DICs for models specified with n = 15 and various combinations of rα and rh.
All values are relative to the DIC of the constant coefficient model (i.e. rα = rh = 0).

3 states 5 states 7 states 10 states 12 states
rα rh DIC rα rh DIC rα rh DIC rα rh DIC rα rh DIC

3 0 -764 5 0 -766 7 0 -742 10 0 -366 12 0 -140
2 1 -771 4 1 -816 6 1 -688 8 2 -486 8 4 -573
1 2 -711 3 2 -887 4 3 -892 6 4 -697 7 5 -655
0 3 -562 2 3 -851 3 4 -888 5 5 -854 6 6 -800

1 4 -756 1 6 -698 4 6 -876 5 7 -792
0 5 -583 0 7 -565 2 8 -800 4 8 -840

0 10 -545 0 12 -577
shared -770 shared -835 shared -719 shared -418 shared 199

DIC select Specification 2 with seven states: four states driving the mean equation

coefficients in αt and, again, three states driving the volatilities ht. Specification 2 is

also preferred by the DIC, with five states in total, for the n = 8 model (full results

are provided in Table 1 of the Online Appendix).

In Figures 1 to 4 we present short and long-run impulse response functions for

models with n = 8 and n = 15 variables and the number of states selected by the

smallest DIC in each case. Section 3 of the Online Appendix contains supplementary

results, including a range of impulse response functions and variance decompositions

quantifying the effects of news and non-news shocks on economic variables.

The impact shocks in Figures 1 and 3 show significant variation over time in the

impact of non-news shocks upon log TFP. Figures 2 and 4 show that the long run

effect of a news shock on the real variables—log TFP, log real per capita GDP, log

real per capita consumption and log real per capita investment—has declined over

time with the density of the response moving towards zero. This effect is particularly
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clear for the larger model with n = 15.

There is a noticeable second order effect upon the estimated posterior impulse

responses in both the n = 8 and the n = 15 models. Specifically, we see that the

error bands suggest that there was a very large increase in uncertainty about the

immediate effect of news shocks upon the Fed funds rate, the spread and to a lesser

extent upon inflation around 1980. It is also in these second order effects upon the

posterior that we see the effect of estimating a smaller model. Looking at Figures

2 and 4, the error bands are much tighter for the larger model despite this model

having many more parameters to be estimated. We also see that estimating the

smaller model we have the impression that the posteriors for a number of impacts,

particularly to non-news shocks, are skewed at particular points in time and have

higher probability of producing outliers from one tail at these times. These effects

largely disappear when we estimate the larger, less restricted model.

We have used DIC to select the rank rα. DIC may not select the correct rank

and so it is important to know how the variance-covariance matrix for the states,

e.g., Qα, differs for different dimensions rα and r∗α say. We end the Results section by

investigating the effect on Qα of changing the rank rα.

Changing rα changes the column dimension of Aα and thereby the rank of Qα.

We introduce a slight notation change to distinguish between results from different

rα. Denote the covariance matrix with rank rα by Qα = Qrα = AαA
′
α where Aα is of

dimension k × rα. There are many norms that we could use to measure the distance

between Qrα and Qr∗α but to help discern whether the distance between Qrα and Qr∗α

is large, we choose a measure that is bounded on [0, 1] . A distance of 0 results if the

matrices are the same and a distance of 1 occurs if they are orthogonal to each other.
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The measure from Herdin et al. (2005) is

d
(
Qrα , Qr∗α

)
= 1−

trQrαQr∗α

‖Qrα‖F
∥∥Qr∗α

∥∥
F

where
∥∥Qr∗α

∥∥
F

is the Frobenius norm. For our application with n = 15, the DIC chose

rα equal to 4. We estimated models with a range of different ranks and Table 1 below

reports the various d
(
Qrα , Qr∗α

)
for rα, r

∗
α = 2, 3, 4, 5, 6. For example, d (Q4, Q5) = 0.08

which we take to indicate that overestimating rα does not change Qrα much.

r∗α\rα 2 3 4 5

3 0.21

4 0.31 0.10

5 0.37 0.14 0.08

6 0.41 0.18 0.10 0.08

Table 1: Estimated distances d
(
Qrα , Qr∗α

)
.

The evidence suggests that estimating Qrα with rα below the value chosen by DIC

(say at 2) does have a noticeable effect on Qrα while overestimating the rank (say

at 6) has less of an impact. We take these results to suggest that the DIC is doing

a good job of estimating rα small enough to reduce the dimension without greatly

impacting upon the estimated Qα.

5 Conclusion

This paper presents an approach to reducing the dimension of the TVP-SVAR. We

achieve this by reducing the number of states driving the time varying parameters,

while preserving the full number of time varying parameters. The aim is to permit
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more efficient estimation of larger systems while preserving a full probability model

and all formal inferential opportunities. The specification we employ is new and has

a number of advantages. The dimension reduction is achieved by choosing a reduced

rank of the state equation covariance matrix using empirical evidence. We employ DIC

to select the rank of the covariance matrix. The specification is an exact one, allowing

estimation of outputs, such as impulse responses and variance decompositions, and

their full posterior distributions.

Computation remains a challenge in any large dimensional model, including the

one presented in this paper. To mitigate this issue in this model we present a number

of techniques that improve computation. These include careful specification of the

model, judicious choice of computation algorithm, SSVS with a Minnesota prior to

reduce the number of parameters, and use of parameter expansions to attain more

readily computable forms for the final model. As a result, we present an approach

that increases the range of models available to macroeconomists.

The application to a large system of 15 variables in a time varying VAR suggests

that the estimates remain precise with sensible error bands. We find evidence of time

variation in the impulse responses and differences between smaller and larger models.

There are many directions in which this model could be extended. Subsequent work

will consider automated selection of the rank of the state equation covariance matrix

and inference on whether specific states vary over time or not (as per Frühwirth-

Schnatter and Wagner (2010)).

Referees suggested a number of interesting extensions. One would be to allow the

number of states is allowed to vary over time and change at unknown points such

that this change is data driven. Such a model implies a time-varying dimension of

the state space and covariance matrix and this extension could accommodate periods

in which new latent factors appear in different economic environments. In a study
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of financial variables and estimating on sub-samples, Ando and Bai (2017) find more

factors during the GFE than at other times using pre-selected periods among which

the number of factors may change. Koop and Korobilis (2013) demonstrate the

significant advantage in forecasting of allowing for the model dimension to evolve

over time, not by changing the number of states but rather by changing the number

of variables in the system. We are not aware of a model in which automatic or

data driven changes in the number of factors at unknown points has been estimated,

although one possible approach could follow the approach of Chan et al. (2012) and

specify a time-varying dimension model using a dynamic mixture model. This would

constitute an important advance but, as discussed in that paper, even that approach

faces significant computational limitations.

A number of papers such as Cogley, Primiceri, and Sargent (2010) (with n = 3)

and Baumeister and Benati (2013) (with n = 4) allow for time variation in the state

equation covariance matrix. This feature was important to allow for a change in

the random-walk drift of macro variables. In each paper, the diagonal elements of

the covariance matrix evolve while the off-diagonals are fixed. Unfortunately such a

specification would not adapt for the model in this paper due to the dimension of

the system and the reduced rank of the covariance matrix. Introducing stochastic

volatility for the states in our model would imply letting the matrix A evolve over

time as At. Stochastic volatility in factors (the states in our model may be seen as

factors) and the challenges of estimation of such a model is discussed in Kastner et al.

(2017) and references therein. The interweaving strategies discussed in their paper

offer a potential approach to computing such a model.
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Kastner, G., Frühwirth-Schnatter, S., Lopes, H. F. 2017. Efficient Bayesian Inference

for Multivariate Factor Stochastic Volatility Models. Journal of Computational and

Graphical Statistics 26 (4): 905-917.

Kim, S., Shephard, N., Chib, S. 1998. Stochastic volatility: likelihood inference and

comparison with ARCH models. Review of Economic Studies 65: 361-93.

Koop, G. 2013. Forecasting with Medium and Large Bayesian VARs. Journal of

Applied Econometrics 28: 177-203.

Koop, G., Korobilis, D. 2013. Large Time-varying Parameter VARs. Journal of

Econometrics 177: 185-198.
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