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Abstract—The piecewise constant Doppler (PCD) algorithm is
a novel radar imaging process recently proposed for the gen-
eralized continuous wave synthetic aperture radar (GCW-SAR).
This paper presents a detailed theoretical analysis on the PCD
algorithm’s performance and proposes a further complexity-
reduced PCD algorithm with motion compensation (MOCO)
suitable for practical applications. Firstly, the difference between
conventional SAR imaging and PCD imaging, i.e., the zero-
th order versus the first order slant range approximation, is
revealed. Exact ambiguity function expressions of the PCD
imaging in range and azimuth directions respectively are then
derived. An error function of the PCD imaging as compared
with the ideal matched filtering method is further defined and
shown to be a function of an image quality factor which can
be used to quantify the PCD imaging performance. Finally, a
faster and more flexible imaging process, called decimated PCD
algorithm, is proposed, by which the image azimuth spacing can
be easily extended and hence the computational complexity can
be significantly reduced. The decimated PCD implementation
incorporated with the MOCO is developed for practical GCW-
SAR applications and its imaging error lower-bounded by the
PCD imaging error function is analyzed accordingly. Simulation
and experimental results validate the theoretical analysis of the
PCD imaging and show that the decimated PCD algorithm can
achieve a high imaging quality at low cost.

Index Terms—Synthetic aperture radar (SAR), continuous
wave radar, piecewise constant Doppler (PCD) algorithm, az-
imuth ambiguity, motion compensation.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is a high-resolution
remote sensing technique. It can work day and night under

all weather conditions by using its own illumination, and has
been widely used in many civil and defense applications [1]–
[5]. Conventional pulsed SAR repeatedly transmits wideband
signal pulses and receives the signals reflected from the
observed area during each pulse repetition interval (PRI). The
received signals can be viewed as a two-dimensional raw
data matrix. One dimension corresponds to the time delay of
the backscattered signals, known as the fast time. The other
corresponds to the time whenever the radar travels a distance
v·PRI where v is the radar movement speed, known as the slow
time. However, this two-dimensional data structure imposes
contradicting requirements on system design, leading to some
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inherent limitations, e.g., the minimum antenna area constraint
[6], [7].

To remove these limitations, some new SAR concepts
have been proposed, such as the high resolution and wide
swath SAR (HRWS SAR) [8]–[12] and the multiple input
and multiple output SAR (MIMO SAR) [13]–[16]. However,
using multi-channel transmitters and receivers only improves
the spatial resolution and diversity gain. The trade-off in
conventional SAR systems remains since the slow time in
azimuth is still adopted. The complicated MIMO architecture
also leads to some new technical challenges, such as the
discontinuous sub-swath [16], which should be synthesized
to a continuous wide swath.

Recently, a combination of full-duplex (FD) techniques
[17]–[21] and frequency modulated continuous wave SAR
(FMCW-SAR) [22]–[25], called generalized continuous wave
SAR (GCW-SAR) [26]–[28], has been proposed. With GCW-
SAR, the slow time in azimuth is no longer adopted and the
final image can be reconstructed from the one-dimensional
raw data vector which is obtained by sampling the received
backscattered signals after the self-interference cancellation
(SIC) at the radio frequency (RF) frontend [19]–[21]. Informa-
tion about a target in both the range and azimuth dimensions is
retrieved jointly with respect to the fast time only and thus the
above mentioned restrictions are removed. A novel imaging
algorithm suited for the one-dimensional data structure has
been proposed based on the piecewise linear approximation
of the slant range curve in azimuth [26]. Since the Doppler
frequency between the radar and a target in each linear
segment becomes a constant, the imaging process is termed
piecewise constant Doppler (PCD) algorithm, by which the
radar image can be reconstructed recursively in azimuth.

However, the previous work has not tackled the important
topic on practical GCW-SAR system design with different
performance requirements. The original PCD algorithm itself
has a complexity issue since the imaging spacing in azimuth,
which is determined by the sampling period of the received
signal, is much shorter than the azimuth resolution, leading
to many redundant imaging pixels. Furthermore, as a sig-
nificant step towards practical GCW-SAR application, how
to efficiently incorporate motion compensation (MOCO) into
the PCD imaging has not been investigated in the previous
work. Therefore, the purpose of this paper is to provide
a comprehensive theoretical analysis on the PCD imaging
algorithm’s performance and propose a further simplification
incorporated with the MOCO to make the algorithm suitable
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for processing real GCW-SAR data. We firstly re-formulate the
conventional SAR and PCD imaging processes as the results of
the zero-th order and the first order slant range approximations
respectively. Based on the slant range of the approximation,
the ambiguity functions in range and azimuth respectively for
the PCD algorithm are then analytically derived. Afterwards,
we analyze the PCD imaging performance in terms of a
normalized imaging error as compared with the ideal matched
filtering algorithm, which is shown to be a function of an
imaging quality factor. This factor quantifies the PCD imaging
performance and can be used to guide the GCW-SAR param-
eter design. In addition, after reviewing the recursive imaging
process of the PCD algorithm and further applying the zero-
th order approximation on top of the first order approximation
to the slant range, we propose a further complexity reduced
algorithm, called decimated PCD algorithm, by which the
imaging spacing in azimuth can be easily extended, lead-
ing to significant reduction of computational cost. As the
PCD imaging is based on time-domain correlation with one-
dimensional GCW-SAR data structure, spatial sampling does
not have to be uniform. With the knowledge of the radar
platform navigation, a novel MOCO method is proposed to
compensate for any non-ideal radar motion in the GCW-SAR
system. The imaging error of the decimated PCD algorithm is
also analyzed accordingly.

The remainder of this paper is organized as follows. In
Section II, detailed analyses on the ambiguity functions of the
PCD algorithm and its imaging error are performed respec-
tively. The decimated PCD algorithm is proposed in Section III
with imaging performance and complexity analyses. Section
IV and Section V present the simulation and experimental
results to validate the imaging error analyses and demonstrate
the lower complexity of the decimated PCD algorithm. Finally,
conclusions are drawn in Section VI.

II. PCD ALGORITHM

In this paper, we consider the common stripmap geometry,
where the difference between the conventional SAR imaging
and PCD imaging can be shown clearly and the PCD imaging
analyses can be derived easily. The general stripmap geometry
is shown in Fig. 1, where the side-looking radar, at a height
h0, travels along the x-direction with a constant speed v. The
incident angle is θ.

For simplicity, only a flat terrain is considered and the
time difference between the forward and the back trips is
assumed negligible. The demodulated received signal, which
is a superposition of reflected echoes from the beam footprint,
can be described as

sr(t) =

∫ ∫
σ(x, y)s(t− 2r(t, x, y)

c
)e−j

4π
λ r(t,x,y)dxdy

(1)

where λ is the wavelength of the transmitted RF signal, σ(x, y)
represents the radar cross section of the terrain being imaged
and s(t) is the baseband transmitted signal. The integration
is performed over the illuminated area. The instantaneous
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Fig. 1. SAR stripmap geometry.

slant range, i.e., the distance between the radar position and a
ground point, is expressed as

r(t, x, y) =
√

(Rcsinθ + y)2 + (x− vt)2 + h2
0

=
√
R2(y) + (x− vt)2 ≈ R(y) +

(x− vt)2

2R(y)

(2)

which is valid when the condition |x − vt| � R(y) =√
(Rcsinθ + y)2 + h2

0 is satisfied, where Rc is the distance
from the radar to the beam footprint center.

Note that the abovementioned quadratic approximation is
just used for the ease of analyses. The PCD imaging process
can be applied to any form of slant range as long as the radar
movement trajectory is known.

A. Imaging Process

Generally speaking, the SAR image reconstruction can be
theoretically formulated as a cross-correlation between the
received signal and a location dependent reference signal
based on the pulse compression principle, known as the
ideal matched filtering algorithm. The imaging process of an
arbitrary point (xm, yn) can be expressed as

I(xm, yn) =

∫ xm
v +T

2

xm
v −

T
2

sr(t)s
∗(t− 2r(t, xm, yn)

c
)

· ej 4π
λ r(t,xm,yn)dt

(3)

where the synthetic aperture time is defined as T , the
asterisk ∗ indicates complex conjugation, and s∗(t −
2r(t,xm,yn)

c )ej
4π
λ r(t,xm,yn) is the location dependent reference

signal for the point (xm, yn).
In conventional SAR, the transmission and reception are

repeated every PRI, and the slant range of point (xm, yn) in
each PRI is assumed to be constant, thus forming the zero-th
order approximation of r(t, xm, yn) shown in Fig. 2 (a) and
described as

r̃0(t, xm, yn) = r(τq, xm, yn), t ∈ [τq, τq + PRI) (4)
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Fig. 2. Slant range approximations in conventional SAR imaging and PCD
imaging: (a) conventional SAR imaging; (b) PCD imaging.

where τq = q ·PRI+xm/v−T/2, q = 0, 1, ..., [T/PRI]−1,
indicates the start of each PRI and [T/PRI] is the number of
PRIs over T . The conventional SAR imaging process can be
expressed as

I0(xm, yn)

=

∫ xm
v +T

2

xm
v −

T
2

sr(t)s
∗(t− 2r̃0(t, xm, yn)

c
)ej

4π
λ r̃0(t,xm,yn)dt

=

[T/PRI]−1∑
q=0

∫ (q+1)·PRI+ xm
v −

T
2

q·PRI+ xm
v −

T
2

sr(t)s
∗(t− 2r(τq, xm, yn)

c
)dt

· ej 4π
λ r(τq,xm,yn)

(5)

where t, the fast time, describes the time delay of the received
signals during each PRI, whereas τq , the slow time, describes
the discrete time instants whenever the radar travels over a
PRI. Therefore, the cross-correlation can be manipulated by
independent range and azimuth compressions. This conven-
tional operation enables fast Fourier transform (FFT) based
imaging algorithms with low computational complexity, e.g.,
the range Doppler algorithm [7].

The error caused by the zero-th order approximation is
presented as the black dash-dot line in Fig. 2 (a) and can

be described as

d0(t, xm, yn) = r̃0(t, xm, yn)− r(t, xm, yn)

≈ (xm − vτq)2 − (xm − vt)2

2R(yn)

=
−v2t2 + 2xmvt+ v2τ2

q − 2xmvτq

2R(yn)
, t ∈ [τq, τq + PRI)

(6)

which indicates that the error in each PRI is different from
one another.

The zero-th order approximation leads to some intrinsic
limitations in conventional SARs. Firstly, the contradiction
between range swath and azimuth resolution is inevitable. To
satisfy the azimuth sampling requirement with high Doppler
frequency bandwidth, the PRI needs to be short, but a short
PRI leads to a narrow range swath. Secondly, the continuous
motion within a sweep in FMCW-SAR leads to a range walk
term and additional range-azimuth coupling which have to
be compensated before the image focusing [24]. In addition,
range cell migration is also necessary due to the slow time
sampling, which complicates the imaging process [7].

With GCW-SAR, the transmission and reception are con-
ducted at the same time, generating a one-dimensional raw
data structure without PRI [26]. Based on the PCD imaging
principle, GCW-SAR adopts the first order approximation of
the slant range which is composed of P linear segments
linked end to end, as shown in Fig. 2 (b). Note that r(t +
xm
v , xm, yn) = r(t, 0, yn) is valid in the flat terrain case. As-

suming that the length of each segment is TP = T/P and the
p-th segment starts from tp = p ·TP − T

2 , p = 0, 1, 2, ...P − 1,
the corresponding linear approximated slant range can be
expressed as

r̃1(t, xm, yn)

=
r(tp+1 + xm

v , xm, yn)− r(tp + xm
v , xm, yn)

(tp+1 − tp)
· (t− tp −

xm
v

) + r(tp +
xm
v
, xm, yn)

=
r(tp+1, 0, yn)− r(tp, 0, yn)

(tp+1 − tp)
(t− tp −

xm
v

)

+ r(tp, 0, yn)

= −λ
2
fDp(yn)(t− tp −

xm
v

) + r(tp, 0, yn)

, t ∈ [tp +
xm
v
, tp+1 +

xm
v

)

(7)

where fDp(yn) = − 2
λ
r(tp+1,0,yn)−r(tp,0,yn)

tp+1−tp is the constant
Doppler frequency for the p-th segment. Thus, the PCD
imaging process for the point (xm, yn) can be described as

I1(xm, yn)

=

∫ xm
v +T

2

xm
v −

T
2

sr(t)s
∗(t− 2r̃1(t, xm, yn)

c
)ej

4π
λ r̃1(t,xm,yn)dt

=

P−1∑
p=0

∫ (p+1)·TP+ xm
v −

T
2

p·TP+ xm
v −

T
2

sr(t)s
∗(t− 2r̃1(t, xm, yn)

c
)

· e−j2πfDp (yn)(t−tp− xmv )+j 4π
λ r(tp,0,yn)dt.

(8)
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With the linear approximation, two adjacent image points
I1(xm, yn) and I1(xm + ∆x, yn) spaced by ∆x are mainly
different by a constant phase shift, ej2πfDp (yn) ∆x

v , for the p-th
segment in addition to a minor adjustment of the integration in-
terval. Therefore, the images can be reconstructed recursively
in azimuth without any involvement of the slow time and hence
the inherent limitations in conventional SARs are removed.

The error caused by the first order approximation is shown
in Fig. 2 (b) plotted with the black dash-dot line. From (2)
and (7), it can be expressed as

d1(t, xm, yn) = r̃1(t, xm, yn)− r(t, xm, yn)

= −λ
2
fDp(yn)(t− tp −

xm
v

) + r(tp, 0, yn)− r(t, xm, yn)

≈
R(yn) +

v2t2p+1

2R(yn) −R(yn)− v2t2p
2R(yn)

tp+1 − tp
(t− tp −

xm
v

)

+R(yn) +
v2t2p

2R(yn)
−R(yn)− (xm − vt)2

2R(yn)

= − (xm − vt)2 + v(tp+1 + tp)(xm − vt) + v2tptp+1

2R(yn)

, t ∈ [tp +
xm
v
, tp+1 +

xm
v

).

(9)

It is also interesting to see that

d1(t+ TP , xm, yn)

= − 1

2R(yn)
((xm − v(t+ TP ))2 + v(tp+1 + tp + 2TP )

· (xm − v(t+ TP )) + v2(tp + TP )(tp+1 + TP ))

= − 1

2R(yn)
((xm − vt)2 − 2(xm − vt)vTP + v2T 2

P

+ v(tp+1 + tp)(xm − vt)− 2v2T 2
P + 2(xm − vt)vTP

− v2TP (tp + tp+1) + v2tptp+1 + v2TP (tp + tp+1) + v2T 2
P )

= d1(t, xm, yn), t ∈ [tp +
xm
v
, tp+1 +

xm
v

)

(10)

which demonstrates that d1(t, xm, yn) is a periodic function
with period TP .

As seen from Fig. 2, the error is largely reduced with
linear approximation, and thus the PCD algorithm can perform
well even with a small number of segments P . Moreover, the
aforementioned intrinsic limitations caused by the slow time
sampling are eliminated in the PCD algorithm.

B. PCD Ambiguity Function

For a given one-point SAR target, the ambiguity functions
of the PCD algorithm can be derived as follows. Assuming that
the target is located at the origin (0, 0), the received signal can
be expressed as sr(t) = σ(0, 0)s(t− 2r(t,0,0)

c )e−j
4π
λ r(t,0,0) and

the PCD image can be expressed as

I1(xm, yn)

=

∫ xm
v −

T
2

xm
v +T

2

σ(0, 0)s(t− 2r(t, 0, 0)

c
)

· s∗(t− 2r̃1(t, xm, yn)

c
)ej

4π
λ (r̃1(t,xm,yn)−r(t,0,0))dt.

(11)

For simplicity, we consider the two cases I1(0, yn) and
I1(xm, 0) respectively. The first one represents the image in
range direction and the second one in azimuth direction.

1) Imaging in Range: When xm = 0, we have

r̃1(t, 0, yn)− r(t, 0, 0)

= −λ
2
fDp(yn)(t− tp) + r(tp, 0, yn)− r(t, 0, 0)

≈ v2(tp+1 + tp)

2R(yn)
(t− tp) +R(yn) +

v2t2p
2R(yn)

−Rc −
v2t2

2Rc
≈ R(yn)−Rc

(12)

since the slant range R(yn) is much larger than the length of
segment TP v. Assuming that s(t) satisfies the requirement
of the transmitted waveform in GCW-SAR [26], i.e., it is
any normalized low-pass baseband signal with constant energy
spectrum in its bandwidth B, Eq. (11) can then be simplified
as

I1(0, yn)

≈ ej 4π
λ (R(yn)−Rc)

∫ T
2

−T2
σ(0, 0)s(t− 2r(t, 0, 0)

c
)

· s∗(t− 2r̃1(t, 0, yn)

c
)dt

≈ ej 4π
λ (R(yn)−Rc)

∫ T
2

−T2
σ(0, 0)s(t− 2Rc − 2R(yn)

c
)s∗(t)dt

≈ σ(0, 0)ej
4π
λ (R(yn)−Rc)sinc(

2B

c
(R(yn)−Rc))

(13)

where sinc(t) is the sinc function defined by sin(πt)/πt.
Consequently, PCD algorithm has a negligible loss on SAR
imaging performance in range direction.

2) Imaging in Azimuth: When yn = 0, Eq. (11) becomes

I1(xm, 0)

=

∫ xm
v +T

2

xm
v −

T
2

σ(0, 0)s(t− 2r(t, 0, 0)

c
)

· s∗(t− 2r̃1(t, xm, 0)

c
)ej

4π
λ (r̃1(t,xm,0)−r(t,0,0))dt

=

∫ T
2

−T2
σ(0, 0)s(t+

xm
v
−

2r(t+ xm
v , 0, 0)

c
)

· s∗(t+
xm
v
−

2r̃1(t+ xm
v ,

xm
v , 0)

c
)

· ej 4π
λ (r̃1(t+ xm

v ,xm,0)−r(t+ xm
v ,0,0)).

(14)

Substituting r(t+ xm
v ,

xm
v , 0) = r(t, 0, 0), r̃1(t+ xm

v ,
xm
v , 0) =

r̃1(t, 0, 0), d1(t, 0, 0) = r̃1(t, 0, 0)−r(t, 0, 0) and (2) into (14),
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d|W (x)|
dx

=

√
LaP 2

2πL

1

2

√
(C(
√

2πx2

LLa
+
√

πL
2LaP 2 )− C(

√
2πx2

LLa
−
√

πL
2LaP 2 ))2 + (S(

√
2πx2

LLa
−
√

πL
2LaP 2 )− S(

√
2πx2

LLa
+
√

πL
2LaP 2 ))2

·

(
2
(
C(

√
2πx2

LLa
+

√
πL

2LaP 2
)− C(

√
2πx2

LLa
−
√

πL

2LaP 2
)
)(
cos(

2π

LLa
(x+

L

2P
)2)− cos( 2π

LLa
(x− L

2P
)2)
)

+ 2
(
S(

√
2πx2

LLa
−
√

πL

2LaP 2
)− S(

√
2πx2

LLa
+

√
πL

2LaP 2
)
)(
sin(

2π

LLa
(x− L

2P
)2)− sin(

2π

LLa
(x+

L

2P
)2)
))

(18)

ε2 =

∫∞
−∞ |σ(0, 0)e−j

2πx2
m

λRc
1
T

∫∞
−∞ rect( tT )ej

4π
λ d1(t,0,0)e−j2πΩtdt− σ(0, 0)e−j

2πx2
m

λRc
1
T

∫∞
−∞ rect( tT )e−j2πΩtdt|2 · λRc2v dΩ∫∞

−∞ |σ(0, 0)e−j
2πx2

m
λRc

1
T

∫∞
−∞ rect( tT )e−j2πΩtdt|2 · λRc2v dΩ

=

∫∞
−∞ |

∫∞
−∞ rect( tT )(ej

4π
λ d1(t,0,0) − 1)e−j2πΩtdt|2dΩ∫∞

−∞ |
∫∞
−∞ rect( tT )e−j2πΩtdt|2dΩ

(21)

I1(xm, 0) can be simplified as

I1(xm, 0)

=

∫ T
2

−T2
σ(0, 0)s(t+

xm
v
−

2r(t+ xm
v , 0, 0)

c
)

· s∗(t+
xm
v
− 2r̃1(t, 0, 0)

c
)ej

4π
λ (r̃1(t,0,0)−r(t,0,0))

· ej 4π
λ (r(t,0,0)−r(t+ xm

v ,0,0))dt

= σ(0, 0)e−j
2πx2

m
λRc

∫ T
2

−T2
s(t+

xm
v
−

2r(t+ xm
v , 0, 0)

c
)

· s∗(t+
xm
v
− 2r̃1(t, 0, 0)

c
)ej

4π
λ d1(t,0,0)e−j2π

2vxm
λRc

tdt.

(15)

Further assuming that s(t) is a phase only signal, i.e.,
s(t) = 1√

T
ejφ(t), where φ(t) is any phase function, and

approximating s(t− 2r(t+ xm
v ,,0)

c ) as s(t− 2r̃(t,0,0)
c ) when the

condition |xm−vt| << R(y) is satisfied, the image I1(xm, 0)
can be further simplified as

I1(xm, 0)

= σ(0, 0)e−j
2πx2

m
λRc

1

T

∫ T
2

−T2
ej

4π
λ d1(t,0,0)e−j2π

2vxm
λRc

tdt

= σ(0, 0)e−j
2πx2

m
LLa

∞∑
i=−∞

W (iP
La
2

)

· sinc( 2

La
(xm − iP

La
2

))

(16)

where L = vT ≈ λ
La
Rc is defined as the synthetic aperture

and La the antenna aperture in azimuth. The detailed deriva-
tion of (16) is provided in Appendix A. Clearly, I1(xm, 0) is
a weighted sum of sinc functions with equal spacing P La

2

in azimuth. The weight function W (x) is defined as (see
Appendix B)

W (x) =
1

TP

∫ TP
2

−TP2
ej

4π
λ d1(t,0,0)e−j2π

2vx
λRc

tdt

=

√
LaP 2

2πL
e
j πL

2LaP2 ej
2πx2

LLa

(
C(

√
2πx2

LLa
+

√
πL

2LaP 2
)

− C(

√
2πx2

LLa
−
√

πL

2LaP 2
) + jS(

√
2πx2

LLa
−
√

πL

2LaP 2
)

− jS(

√
2πx2

LLa
+

√
πL

2LaP 2
)
)

(17)

where S(x) and C(x) are the Fresnel integrals [29] also
defined in Appendix B.

The first derivative of |W (x)| can be found as shown in
(18). Note that d|W (x)|

dx = 0 when 2π
LLa

(x− L
2P )2 − 2π

LLa
(x+

L
2P )2 = i · 2π, for i = 0,±1,±2, ..., thus x = i · P La

2
are the extremums of |W (x)|. Interestingly, the sinc function
sinc( 2

La
(xm − iP La

2 )) are also located at these extremum
points and we will show later in the simulation results that
they are actually the minimum points of |W (x)| except for
i = 0.

C. PCD Imaging Performance

The normalized PCD imaging error as compared with the
ideal matched filtering method can be evaluated as

ε2 =

∫∞
−∞ |I1(xm, 0)− I(xm, 0)|2dxm∫∞

−∞ |I(xm, 0)|2dxm
(19)
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where I(xm, 0) is the ideal image expressed as

I(xm, 0) = σ(0, 0)

∫ xm
v +T

2

xm
v −

T
2

s(t− 2r(t, 0, 0)

c
)

· s∗(t− 2r(t, xm, 0)

c
)ej

4π
λ (r(t,xm,0)−r(t,0,0))dt

= σ(0, 0)

∫ T
2

−T2
s(t+

xm
v
−

2r(t+ xm
v , 0, 0)

c
)

· s∗(t+
xm
v
− 2r(t, 0, 0)

c
)ej

4π
λ (r(t,0,0)−r(t+ xm

v ,0,0))dt

≈ σ(0, 0)e−j
2πx2

m
λRc

1

T

∫ ∞
−∞

rect(
t

T
)e−j2π

2vxm
λRc

tdt

(20)

with the same assumptions and methods used in the derivation
of (16). Denoting 2vxm

λRc
and substituting (36) in Appendix A

and (20) into (19), ε2 can be further derived as (21). According
to Parseval’s Theorem, the power in frequency domain is equal
to that in time domain. Therefore, Eq. (21) can be further
simplified as

ε2 =

∫∞
−∞ |rect(

t
T )(ej

4π
λ d1(t,0,0) − 1)|2dt∫∞

−∞ |rect(
t
T )|2dt

=

∫ TP
2

−TP2
|ej 4π

λ d1(t,0,0) − 1|2dt∫ TP
2

−TP2
|1|2dt

=
1

TP

∫ TP
2

−TP2
(ej

4π
λ d1(t,0,0) − 1)(e−j

4π
λ d1(t,0,0) − 1)dt

= 2− 1

TP

∫ TP
2

−TP2
ej

4π
λ d1(t,0,0)dt− 1

TP

∫ TP
2

−TP2
e−j

4π
λ d1(t,0,0)dt

= 2−W (0)−W ∗(0) = 2− 2Re{W (0)}
(22)

where Re{W (0)} is the real part of W (0). Since the Fresnel
integrals C(.) and S(.) are odd functions, W (0) can be derived
from (17) as

W (0) =

√
LaP 2

2πL
e
j πL

2LaP2

(
C(

√
πL

2LaP 2
)− C(−

√
πL

2LaP 2
)

+ jS(−
√

πL

2LaP 2
)− jS(

√
πL

2LaP 2
)
)

=

√
2Q

π
ej

π
2Q

(
C(

√
π

2Q
)− jS(

√
π

2Q
)
)

(23)

where Q = LaP
2

L is defined as the image quality factor. From
(22) and (23) we see that the normalized PCD imaging error
is a function of Q. The error function curve shown in Fig. 3
indicates that the PCD imaging performs better as Q increases.

Therefore, for a given quality factor, the GCW-SAR param-
eters La, L, and P can be selected appropriately to satisfy the
required PCD imaging performance.

III. DECIMATED PCD ALGORITHM

With the PCD algorithm described in [26], the image
pixels in azimuth direction are reconstructed recursively with

2 4 6 8 10 12 14
Q

0

0.2

0.4

0.6

0.8

1

1.2

2

Fig. 3. Normalized PCD imaging error as a function of Q.
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Fig. 4. Decimated PCD imaging: (a) slant range approximation; (b) recursive
imaging process from xm

v
to xm+∆x

v
.

a spacing equivalent to the signal sampling period Ts, i.e.,
∆x = Tsv. Since the azimuth sampling rate is much larger
than the Doppler frequency bandwidth, the image spacing in
azimuth direction is much shorter than the azimuth resolution,
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leading to a large amount of redundant image points and hence
significant computational cost. In addition, the MOCO also
needs to be considered for practical GCW-SAR application. In
this section, we revisit the recursive process in PCD algorithm
and design a faster algorithm incorporated with MOCO with
significantly reduced computational complexity.

A. PCD Recursive Process

In the PCD algorithm, the range curve has been divided
into P linear segments. Thus, the image I1(xm, yn) can be
computed as a sum of the integrals over all the respective
segments, i.e., I1(xm, yn) =

∑P−1
p=0 I

(p)
1 (xm, yn), where the

integral over the p-th segment can be expressed as

I
(p)
1 (xm, yn)

=

∫ xm
v +tp+1

xm
v +tp

sr(t)s
∗(t− 2r̃1(t, xm, yn)

c
)

· ej 4π
λ r̃1(t,xm,yn)dt.

(24)

If the transmitted signal satisfies the condition s∗(t + xm
v −

2r(t,∆x,yn)
c ) ≈ s∗(t + xm

v −
2r(t,0,yn)

c ), from (7) and r(t +
xm
v , xm, yn) = r(t, 0, yn), the image I

(p)
1 (xm + ∆x, yn) at

the next azimuth point can be expressed as

I
(p)
1 (xm + ∆x, yn)

=

∫ xm
v + ∆x

v +tp+1

xm
v + ∆x

v +tp

sr(t)s
∗(t− 2r̃1(t, xm + ∆x, yn)

c
)

· ej 4π
λ r̃1(t,xm+∆x,yn)dt

=

∫ ∆x
v +tp+1

∆x
v +tp

sr(t+
xm
v

)s∗(t+
xm
v
− 2r̃1(t,∆x, yn)

c
)

· ej 4π
λ r̃1(t,∆x,yn)dt

≈
∫ tp+1

tp

sr(t+
xm
v

)s∗(t+
xm
v
− 2r̃1(t, 0, yn)

c
)

· ej 4π
λ (−λ2 fDp (yn)(t−tp)+r(tp,0,yn))ej2πfDp (yn) ∆x

v dt

−
∫ ∆x

v +tp

tp

sr(t+
xm
v

)s∗(t+
xm
v
− 2r̃1(t,∆x, yn)

c
)

· ej 4π
λ r̃1(t,∆x,yn)dt

+

∫ ∆x
v +tp+1

tp+1

sr(t+
xm
v

)s∗(t+
xm
v
− 2r̃1(t,∆x, yn)

c
)

· ej 4π
λ r̃1(t,∆x,yn)dt

= I
(p)
1 (xm, yn)ej2πfDp (yn) ∆x

v

−
∫ ∆x

v +tp

tp

sr(t+
xm
v

)s∗(t+
xm
v
− 2r̃1(t,∆x, yn)

c
)

· ej 4π
λ r̃1(t,∆x,yn)dt

+

∫ ∆x
v +tp+1

tp+1

sr(t+
xm
v

)s∗(t+
xm
v
− 2r̃1(t,∆x, yn)

c
)

· ej 4π
λ r̃1(t,∆x,yn)dt.

(25)

From (25) the three steps of the recursive imaging process
in the PCD algorithm can be described as: 1) compensating

the Doppler frequency shift from the previous image point;
2) removing the integral over time interval [xmv + tp,

xm
v +

∆x
v + tp); and 3) adding the integral over time interval [xmv +
tp+1,

xm
v + ∆x

v + tp+1).

B. Decimated PCD Principle
To remove the redundant imaging pixels, the imaging spac-

ing ∆x can be extended corresponding to multiple sampling
periods, resulting in a decimated PCD algorithm. We further
take the zero-th order approximation on top of the linear
segments of the slant range as shown in Fig. 4 (a). The ap-
proximated slant range curves r̃1(t, xm, yn) and r̂1(t, xm, yn)
during [tp, tp+1) for PCD and decimated PCD algorithms are
shown respectively using the dash and solid lines. Just as in
the conventional SAR imaging, the azimuth image spacing ∆x
can be as large as that corresponding to a PRI.

The recursive imaging process of the decimated PCD algo-
rithm is shown in Fig. 4 (b). Note that after the further zero-th
order slant range approximation the Doppler frequency shift
remains the same since r̂1(t, xm, yn)− r̂1(t, xm + ∆x, yn) =
r̃1(t, xm, yn) − r̃1(t, xm + ∆x, yn), and that the slant range
can be considered as a constant over the integration interval
[0,∆x/v), i.e., r̂1(t+ tp,∆x, yn) = r(tp,∆x, yn). Therefore,
from (25), the p-th segment of the decimated PCD image
Î

(p)
1 (xm + ∆x, yn) can be expressed as

Î
(p)
1 (xm + ∆x, yn)

= Î
(p)
1 (xm, yn)ej2πfDp (yn) ∆x

v

−
∫ ∆x

v

0

sr(t+ tp +
xm
v

)s∗(t+ tp +
xm
v

− 2r̂1(t+ tp,∆x, yn)

c
)ej

4π
λ r̂1(t+tp,∆x,yn)dt

+

∫ ∆x
v

0

sr(t+ tp+1 +
xm
v

)s∗(t+ tp+1 +
xm
v

− r̂1(t+ tp+1,∆x, yn)

c
)ej

4π
λ r̂1(t+tp+1,∆x,yn)dt

= Î
(p)
1 (xm, yn)ej2πfDp (yn) ∆x

v

− ej 4π
λ r(tp,∆x,yn)

∫ ∆x
v

0

sr(t+ tp +
xm
v

)s∗(t+ tp +
xm
v

− 2r(tp,∆x, yn)

c
)dt

+ ej
4π
λ r(tp+1,∆x,yn)

∫ ∆x
v

0

sr(t+ tp+1 +
xm
v

)s∗(t+ tp+1

+
xm
v
− 2r(tp+1,∆x, yn)

c
)dt.

(26)

It is worthwhile noting that the zero-th order approximation
is used in the decimated PCD imaging for reducing the
complexity. It has nothing to do with PRI or slow time as in
the conventional SAR imaging. The concept of PRI or slow
time is no longer valid in any PCD imaging.

C. Decimated PCD Implementation
Assuming that each linear segment is further divided into K

constant segments in the decimated PCD imaging, the imaging



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEM, VOL. XX, NO. X, JULY 2019 8

∆−𝑇𝑃

∆−𝑁𝑠𝑇𝑠

∆−𝑁𝑠1𝑇𝑠  -

𝑒
𝑗
4𝜋
𝜆
𝑟(𝑡0,∆𝑥, 𝑦𝑛)

∆−𝑁𝑠𝑇𝑠

-

𝑒
𝑗
4𝜋
𝜆
𝑟(𝑡1,∆𝑥, 𝑦𝑛)

∆−𝑁𝑠𝑇𝑠
𝑒𝑗2𝜋𝑓𝐷0𝑁𝑠𝑇𝑠

-

∆−𝑁𝑠𝑇𝑠

-

𝑒
𝑗
4𝜋
𝜆
𝑟(𝑡2,∆𝑥, 𝑦𝑛)

∆−𝑁𝑠𝑇𝑠
𝑒𝑗2𝜋𝑓𝐷1𝑁𝑠𝑇𝑠

-

∆−𝑁𝑠𝑇𝑠

-

𝑒
𝑗
4𝜋
𝜆
𝑟(𝑡3,∆𝑥, 𝑦𝑛)

∆−𝑁𝑠𝑇𝑠
𝑒𝑗2𝜋𝑓𝐷2𝑁𝑠𝑇𝑠

-

∆−𝑁𝑠𝑇𝑠

-

𝑒
𝑗
4𝜋
𝜆
𝑟(𝑡4,∆𝑥, 𝑦𝑛)

∆−𝑁𝑠𝑇𝑠
𝑒𝑗2𝜋𝑓𝐷3𝑁𝑠𝑇𝑠

-

𝐼1(𝑚∆𝑥,  𝑦𝑛) 

𝑠𝑟(𝑙𝑇𝑠) 𝑠∗(𝑙𝑇𝑠) 

∆−𝑇𝑃

∆−𝑇𝑃

∆−𝑇𝑃

∆−𝑇𝑃

∆−𝑇𝑃

∆−𝑇𝑃

∆−𝑇𝑃

∆−
2
𝑐
𝑟(𝑡2,∆𝑥, 𝑦𝑛)

𝑁𝑠2 ↓ 𝑁𝑠2 ↓ 𝑁𝑠2 ↓ 𝑁𝑠2 ↓ 𝑁𝑠2 ↓ Downsampling

𝑁𝑠1 ↓ 𝑁𝑠1 ↓ Downsampling

∆−𝑁𝑠1𝑇𝑠 ∆−𝑁𝑠1𝑇𝑠 ∆−𝑁𝑠1𝑇𝑠∆−𝑁𝑠1𝑇𝑠

∆−
2
𝑐
𝑟(𝑡0,∆𝑥, 𝑦𝑛) ∆−

2
𝑐
𝑟(𝑡1,∆𝑥, 𝑦𝑛) ∆−

2
𝑐
𝑟(𝑡3,∆𝑥, 𝑦𝑛) ∆−

2
𝑐
𝑟(𝑡4,∆𝑥, 𝑦𝑛)

Fig. 5. Flow graph of decimated PCD algorithm for a given yn, where ∆±τ denotes time delay or advance by τ , l = i + mNs denotes signal sampling
time index, and m is the image azimuth sampling index.

spacing ∆x can be extended from Tsv to (TP v)/K = NsTsv,
where Ns = TP /(TsK) is the number of received samples
over each constant segment. The image azimuth coordinate
can be expressed as xm = m∆x where m is an integer index
describing the image pixel location in azimuth.

Replacing the integration over [0,∆x/v) in (26) by a sum
of Ns discrete signal samples, the recursive process can be
expressed as

Î
(p)
1 ((m+ 1)∆x, yn)

= Î
(p)
1 (m∆x, yn)ej2πfDp (yn)NsTs − ej 4π

λ r(tp,∆x,yn)

· Ts
Ns∑
i=1

sr((i+mNs)Ts + tp)s
∗((i+mNs)Ts + tp

− 2r(tp,∆x, yn)

c
) + ej

4π
λ r(tp+1,∆x,yn)Ts

Ns∑
i=1

sr((i+mNs)Ts

+ tp+1)s∗((i+mNs)Ts + tp+1 −
2r(tp+1,∆x, yn)

c
).

(27)

Furthermore, the received and reference signals can be
downsampled by a factor Ns1 . Hence, the number of samples
involved in the summations can be reduced to Ns2 = Ns

Ns1
and

Eq. (27) can be further expressed as

Î
(p)
1 ((m+ 1)∆x, yn)

= Î
(p)
1 (m∆x, yn)ej2πfDp (yn)NsTs − ej 4π

λ r(tp,∆x,yn)Ns1Ts

·
Ns2∑
i=1

sr((i+mNs2)Ns1Ts + tp)s
∗((i+mNs2)Ns1Ts

+ tp −
2r(tp,∆x, yn)

c
) + ej

4π
λ r(tp+1,∆x,yn)Ns1Ts

Ns2∑
i=1

sr((i

+mNs2)Ns1Ts + tp+1)s∗((i+mNs2)Ns1Ts + tp+1

− 2r(tp+1,∆x, yn)

c
)

(28)

where the number of complex multiplications are reduced by
Ns1 times. However, this simplification leads to a trade-off
between Signal-to-Noise-Ratio (SNR) and complexity in the
decimated PCD imaging since the downsampling reduces the
SNR due to fewer samples of received signals being used.
Hence, a proper selection of Ns1 and Ns2 should be made to
suit a practical SAR application scenario.

Taking P = 4 as an example, the flow graph of the
decimated PCD algorithm is drawn based on (28) as shown
in Fig. 5, where the two summations in (28) and the two
steps in the recursive imaging, i.e., adding and removing
the respective summations, are achieved by the feedback
loops in the middle and bottom of the flowchart respectively.
Obviously, after extending the image spacing in azimuth by
Ns times, the computational cost is largely reduced compared
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with the original PCD algorithm which is the special case of
Ns = 1.

D. Motion Compensation Strategy

In conventional Fourier-based SAR imaging, the range and
azimuth compressions are performed in the fast and slow
time dimensions respectively, where the two-dimensional FFT
requires a uniform spatial sampling in azimuth. Therefore,
the MOCO in cross-track and along-track motions must be
considered. However, the PCD algorithm is a recursive imag-
ing process in the time domain only, where the time-domain
correlation does not require a uniform spatial sampling in
azimuth. Therefore, the motion error will not deteriorate the
imaging performance as long as the movement of the radar
platform is known. In this subsection, a novel MOCO method
well suited for the GCW-SAR data processing is proposed.
How to mitigate the error caused by the dynamic nature of
the targets is also addressed.

Assuming that the actual trajectory of the radar is set to
(xr(t), yr(t), hr(t)), the actual distance between the radar and
the target can be described as

ra(t, xm, yn) =
√

(yr(t) + yn)2 + (xm − xr(t))2 + h2
r(t)

=
√
R2
r(t, yn) + (xm − xr(t))2

(29)

where Rr(t, yn) =
√

(yr(t) + yn)2 + h2
r(t). The MOCO

strategies in range and azimuth imaging are presented as
follows:

1) MOCO in Range: GCW-SAR distinguishes the range
targets by the time delay of the received signal and the
range imaging can be achieved via the time correlation
between the received signal and the location-dependent
reference signal. Hence, given ra(t, xm, yn), the reference
signal s∗(t− 2ra(t,xm,yn)

c )ej
4π
λ ra(t,xm,yn) can be generated

from the known transmitted signal s(t) based on the actual
trajectory of the radar to compensate the motion error.

2) MOCO in Azimuth: The PCD algorithm can tackle the
non-uniform spatial sampling in azimuth by replacing
the time correlation in (26) with the spatial correlation.
Due to the non-uniform spatial sampling in azimuth, the
number of the received samples in each linear/constant
segment varies. Assuming that Ns(m) samples are re-
ceived when the moving platform travels over the m-th
∆x and the corresponding downsampled factor is set to
Ns1(m) = Ns(m)

Ns2 (m) , the decimated PCD implementation

can be derived as

Î
(p)
1 ((m+ 1)∆x, yn)

= Î
(p)
1 (m∆x, yn)ej2πfDp (yn) ∆x

v − ej 4π
λ ra(tp(m),∆x,yn)

·Ns1(m)Ts

Ns2 (m)∑
i=1

sr(i ·Ns1(m)Ts +

m∑
j=0

Ns(j)Ts

+ tp(m))s∗(i ·Ns1(m)Ts +

m∑
j=0

Ns(j)Ts + tp(m)

− 2ra(tp(m),∆x, yn)

c
) + ej

4π
λ ra(tp+1(m),∆x,yn)Ns1(m)Ts

·
Ns2 (m)∑
i=1

sr(i ·Ns1(m)Ts +

m∑
j=0

Ns(j)Ts + tp+1(m))

· s∗(i ·Ns1(m)Ts +

m∑
j=0

Ns(j)Ts + tp+1(m)

− 2ra(tp+1(m),∆x, yn)

c
)

(30)

where tp(m) stands for the time instant when the radar
platform is located at the start point of p-th linear
segment corresponding to the imaging point (m∆x, yn),
and the compensation for the constant Doppler frequency
shift is the same as that in (28). The cross-track motion
error can be easily compensated based on the actual
radar trajectory, and the two integrals in (26) can
be calculated by the summation of the non-uniform
spatial samples over the distance intervals (xr(tp(m) +∑m
j=0Ns(j)Ts), xr(tp(m) +

∑m
j=0Ns(j)Ts) + ∆x]

and (xr(tp+1(m) +
∑m
j=0Ns(j)Ts), xr(tp+1(m) +∑m

j=0Ns(j)Ts) + ∆x] respectively, in which
xr(tp(m) +

∑m
j=0Ns(j)Ts) denotes the radar location in

azimuth at the start point of the p-th linear segment.
Compared with the decimated PCD imaging without MOCO
strategy in (28), we can see that the expression of ra(t, xm, yn)
without any approximation is adopted in (30) and the com-
putational cost is not increased any more, resulting in an
accurate and low-complexity MOCO strategy. On the contrary,
most conventional SARs can only compensate for the first
and second order components of the motion error due to the
two-dimensional FFT operation and the MOCO processes also
incur extra computational costs.

E. Decimated PCD Imaging Performance

The error function of the decimated PCD imaging can be
also derived. Assuming that the time interval over the k-th
constant segment of the p-th linear segment as shown in Fig. 4
(a) is described as [tp+ xm

v +k∆x
v , tp+ xm

v +(k+1)∆x
v ) where

k = 0, 1, ...,K−1, the approximated slant range r̂1(t, xm, yn)
can be expressed as

r̂1(t, xm, yn) = r̃1(tp +
xm
v

+ k
∆x

v
, xm, yn),

t ∈ [tp +
xm
v

+ k
∆x

v
, tp +

xm
v

+ (k + 1)
∆x

v
).

(31)
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The error in slant range caused by decimated PCD can be then
expressed as

d̂1(t, xm, yn) = r̂1(t, xm, yn)− r(t, xm, yn)

=
r(tp+1, 0, yn)− r(tp, 0, yn)

(tp+1 − tp)
(tp +

xm
v

+ k
∆x

v
− tp −

xm
v

)

+ r(tp, 0, yn)− r(t, xm, yn)

≈ v2(tp+1 + tp)

2R(yn)
k

∆x

v
+

v2

2R(yn)
(t2p − (t− xm

v
)2),

t ∈ [tp +
xm
v

+ k
∆x

v
, tp +

xm
v

+ (k + 1)
∆x

v
).

(32)

Similar to (19), the normalized error of decimated PCD
imaging compared with the ideal matched filtering method
can be evaluated as

ε2 =

∫∞
−∞ |Î1(xm, 0)− I(xm, 0)|2dxm∫∞

−∞ |I(xm, 0)|2dxm
(33)

where I(xm, 0) is expressed as (20). With the same technique
used to derive (22), Eq (33) can be further expressed as

ε2 =

∫∞
−∞ |rect(

t
T )(ej

4π
λ d̂1(t,0,0) − 1)|2dt∫∞

−∞ |rect(
t
T )|2dt

=

∫ T
2

−T2
|ej 4π

λ d̂1(t,0,0) − 1|2dt∫ T
2

−T2
|1|2dt

=
1

T

∫ T
2

−T2
(ej

4π
λ d̂1(t,0,0) − 1)(e−j

4π
λ d̂1(t,0,0) − 1)dt

= 2− 1

T

∫ T
2

−T2
ej

4π
λ d̂1(t,0,0)dt− 1

T

∫ T
2

−TP2
e−j

4π
λ d̂1(t,0,0)dt

= 2− 2Re{ 1

T

∫ T
2

−T2
ej

4π
λ d̂1(t,0,0)dt}

= 2− 2Re{ 1

P

P−1∑
p=0

K−1∑
k=0

ej
2π
P2

L
La

((−P+2p+1) kK+(−P2 +p)2)

·
√
P 2

2π

La
L

(
C((−P

2
+ p+

k + 1

K
)

√
2π

P 2

L

La
)

− C((−P
2

+ p+
k

K
)

√
2π

P 2

L

La
)

+ jS((−P
2

+ p+
k

K
)

√
2π

P 2

L

La
)

− jS((−P
2

+ p+
k + 1

K
)

√
2π

P 2

L

La
)
)
}

(34)

where the closed-form expression of the integral
1
T

∫ T
2

−T2
ej

4π
λ d̂1(t,0,0)dt is derived in Appendix C. We see

that the decimated PCD error is a function of P , K and
L/La.

Since d̂1 ≈ d1 when K is sufficiently large, the decimated
PCD imaging error is bounded by the PCD imaging error.
Therefore, in a practical GCW-SAR system, the GCW-SAR
parameters L, La and P should firstly be determined to satisfy
the upper bound of the GCW-SAR imaging performance. With

the knowledge of P and L/La, K can then be selected based
on (34) to meet the required imaging performance.

F. Complexity

For simplicity, the same observed scene is reconstructed by
using PCD and decimated PCD algorithm respectively. It is
also assumed that there are N2 samples within a sweep of the
observed area and the number of range pixels is N .

The PCD algorithm updates the image in azimuth re-
cursively whenever the system obtains a new demodulated
sample, thus achieving an N × N2 pixel image over the
observed scene. Each image point in azimuth needs 3P + 2
complex multiplications [26], and thus the PCD algorithm
requires (3P + 2)×N3 complex multiplications.

However, after extending the azimuth imaging spacing, the
decimated PCD algorithm only achieves an N ×N2/Ns pixel
image and only uses part of the samples when Ns1 > 1, thus
the computational cost is largely reduced. As seen in Fig. 5, the
number of samples in azimuth has been reduced to N2/Ns1
after the first downsampling, hence the decimated PCD algo-
rithm only requires (P + 1) ·N ·N2/Ns1 complex multiplica-
tions before the second downsampling. After the second down-
sampling, the recursion needs further (2P+1)N3/Ns complex
multiplications. Therefore, the total computational complexity
can be finally reduced to (P+1)·N2·N/Ns1+(2P+1)N3/Ns.

IV. SIMULATION RESULTS

To compare the performance of different imaging algo-
rithms, the same airborne simulation scenario is assumed.
The transmitted signal is a continuous-wave periodic chirp
signal. The SARs operate in the same stripmap mode with
the following airborne SAR parameters [22]: carrier frequency
fc = 10 GHz, platform altitude h0 = 7000 m, antenna
aperture La = 0.9 m, speed of radar platform v = 70 m/s,
and Rc = 8082.9 m. To present the imaging performance in
azimuth clearly, the y coordinate is normalized by the azimuth
resolutions δx = La

2 in the first four simulation experiments.

A. Comparison between Conventional SAR imaging and PCD
imaging

In the first simulation experiment, we compare the perfor-
mance of an FMCW-SAR using PCD algorithm and range
Doppler algorithm respectively assuming that the number of
linear segments, P , is the same as the number of PRIs, N , over
a synthetic aperture time. Due to the zero-th order approxi-
mation of the slant range for the conventional range Doppler
algorithm, azimuth ambiguity will occur if the PRI is large.
However, the azimuth ambiguity using the PCD algorithm
can be greatly reduced due to the first order approximation
even if the linear segment is long. With the radar parameters
given at the beginning of this section, the length of the
synthetic aperture is almost 600δx, and the lowest bound of the
unambiguous pulse repetition frequency (PRF), i.e., 1/PRI, is
78Hz. Fig. 6 shows the imaging performance of a one-point
image at (0, 0) with N = P = 250 and N = P = 100
respectively. Obviously, the first order approximation in PCD
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Fig. 6. Comparison between PCD imaging and conventional SAR imaging when N = P < 300: (a) P = N = 250; (b) P = N = 100.
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Fig. 7. PCD images in range and azimuth respectively, where the range images with P = 60, 40 and 20 are shown in (a), and the azimuth images and
corresponding weight function |W (x)| with different P are shown in (b) P = 60 ( Q = 12), (c) P = 40 (Q = 5.33), and (d) P = 20 (Q = 1.33)
respectively.

imaging can reduce the azimuth ambiguity caused by the
inadequate PRF in conventional SAR. In Fig. 6 (a), the first
azimuth ambiguity will appear at the points x = 250δx and
x = −250δx symmetrically when N = P = 250. Such
ambiguities can be reduced to a negligible level in PCD
imaging.

B. Performance of PCD Imaging

The PCD imaging performance theoretically derived in
Section II is validated in the second simulation experiment. For
simplicity, a one-point image at (0, 0) is assumed. Firstly, we
show the range images with P = 60, 40 and 20 respectively in
Fig. 7 (a). We see that the change in P makes no difference to
the range image quality since the slant range is much longer
than the length of a linear segment. The azimuth images with

P = 60, 40 and 20 are shown in Fig. 7 (b), (c) and (d)
respectively, where the corresponding values of the image
quality factor Q are 12, 5.33 and 1.33, respectively, with
La = 0.9 m and L ≈ 270 m. It is clearly seen that an azimuth
image is a sum of a set of sinc functions spaced by P La

2 . The
corresponding weight function |W (x)| are plotted with the red
lines in the figures, noting that the i · P La

2 , i = ±1,±2, ...,
are the locations of the local minimums of |W (x)|. The
imaging performance shows that the ambiguity caused by
PCD becomes increasingly negligible when Q > 5.33 and
the corresponding ε2 < 0.05.

C. Performance of Decimated PCD Imaging

The decimated PCD algorithm further adopts the zero-th
order approximation in each linear segment and thus can
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Fig. 8. Imaging performance of decimated PCD algorithm with different azimuth spacings: (a) ∆x = 1 m (K = 5); (b) ∆x = 0.25 m (K = 20); (c)
∆x = 0.125 m (K = 40); and (d) ∆x = 0.025 m (K = 200).
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Fig. 9. Decimated PCD error as a function ofK, when P = 50, L/La = 300
and Q = 8.33.

significantly reduce computational complexity. The azimuth
image spacing ∆x can be extended so that the redundant
imaging points in the original PCD algorithm can be removed.

In this simulation experiment, the impact of azimuth image
spacing ∆x on the decimated PCD performance is inves-
tigated. Based on the aforementioned SAR parameters, the
ratio L/La is 300. The number of linear segment P is set
to 50 and the corresponding Q = 8.33. A one-point image
at (0, 0) is adopted and the azimuth imaging results with
∆x = 1 m, 0.25 m, 0.125 m and 0.025 m (corresponding
K = 5, 20, 40, and 200) are shown respectively in Fig. 8. It

is evident that the azimuth ambiguity can be reduced with the
decreasing ∆x. Compared with the PCD error at Q = 8.33, the
decimated PCD error as a function of K is shown in Fig. 9.
We see that the PCD imaging error ε2 = 0.02 is the lower
bound of the decimated PCD imaging. When K is larger
than 140 (∆x < 0.036 m), the error caused by the zero-th
order approximation can be neglected. In fact, K does not
necessarily need to be reduced to 140 as Fig. 8 shows that
almost the same imaging performance can be obtained when
K > 40 since ε2 is small enough. Therefore, a high-quality
image with a large ∆x can be achieved by decimated PCD
imaging as long as ε2 is sufficiently small.

D. Complexity and Impact of Downsampling on SNR

In the fourth simulation experiment, we compare the compu-
tational cost between PCD and decimated PCD algorithms and
investigate the impact of downsampling on SNR in decimated
PCD algorithm. With P = 50, L/La = 300, Ts = 5× 10−9 s
and ∆x = 0.125 m (K = 40), a one-point image at (0, 0) is
reconstructed by PCD and decimated PCD algorithms respec-
tively. The number of complex multiplications in PCD imaging
can be computed as 1.17× 1011. In decimated PCD imaging,
with Ns1 = 10000, 1000, 100, and 10 respectively, the number
of complex multiplications can be reduced to 4.13 × 106,
3.95×107, 3.93×108 and 3.93×109 respectively. Hence, the
computational cost is significantly reduced in the decimated
PCD imaging. Although a larger Ns1 can achieve a lower
computational complexity, it also leads to a lower SNR after
image reconstruction. Assuming that the SNR in the receiver is
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Fig. 10. Decimated PCD images in azimuth with different Ns1 : (a) Ns1 = 10000, (b) Ns1 = 1000, (c) Ns1 = 100 and (d) Ns1 = 10.
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Fig. 11. Multi-targets SAR imaging comparison among different ∆x: (a) ∆x = 0.18 m (K = 30) and (b) ∆x = 0.027 m (K = 200).
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Fig. 12. Imaging performance of decimated PCD incorporated with MOCO strategy: (a) imaging without MOCO and (b) imaging with MOCO.

−30 dB, the final SAR images with Ns1 = 10000, 1000, 100, and 10 are shown in Fig. 10 respectively, validating the
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Fig. 13. Front view of the indoor GCW-SAR experimental scenario.

trade-off between complexity and SNR. Therefore, Ns1 and
Ns2 should be determined appropriately to achieve a balance
between SNR and complexity.

E. Decimated PCD Image with Multiple Targets

In the fifth simulation experiment, we compare the multiple-
target decimated PCD imaging with different ∆x. P is set to
50 and L/La is equal to 300 in the simulation. The transmitted
signal bandwidth is set to 1 GHz and La is 0.9 m. The range
and azimuth resolution are thus equal to 0.3 m and 0.45 m
respectively. The final decimated PCD images with ∆x = 0.18
m (K = 30) and ∆x = 0.027 m (K = 200) are shown in Fig.
11 respectively. It is clearly seen that the error caused by the
zero-th order approximation in decimated PCD algorithm is
negligible with a proper ∆x.

F. Effect of MOCO Strategy in PCD Imaging

In the final simulation experiment, the imaging performance
of the decimated PCD implementation incorporated with the
MOCO strategy is investigated. The speed of the radar plat-
form is set to v = v0 + 3 · sin(2π(v0t/L)) m/s, where
v0 = 70 m/s. With P = 50, L/La = 300, and ∆x = 0.18 m
(K = 30), a point-target image at (0, 0) is reconstructed by
using the decimated PCD algorithms with and without MOCO
respectively. We can see from Fig. 12 that the non-ideal radar
trajectory deteriorates the decimated PCD imaging, but the
motion error can be removed after applying the proposed
MOCO strategy.

V. EXPERIMENTAL RESULTS

In this section, we validate the proposed GCW-SAR pa-
rameter selection method and demonstrate the decimated PCD
algorithm performance by using the real data received from a
GCW-SAR experimental platform. For simplicity, an indoor
GCW-SAR experimental environment is built with the fol-
lowing parameters: platform altitude h0 = 0.92 m, synthetic
aperture L = 0.2 m, speed of radar platform v = 0.8 m/s, and
Rc = 1.44 m. The AWR1843 single-chip 77-GHz FMCW
radar sensor made by Texas Instruments [30] is used as the
radio front-end, where the carry frequency is 77 GHz and the
bandwidth is set to 3.6 GHz to maximize the range resolution.

Therefore, the range and azimuth resolutions of the GCW-SAR
image are 0.0541 m and 0.0140 m respectively. The front view
of the radar system is shown in Fig. 13, where the targets are
two rectangular metal blocks with a size of 0.225 m × 0.08
m located at the center of the beam footprint. The received
data stream is transferred to a personal computer and the PCD
images are reconstructed by using MATLAB 2019.

With the known fixed L and La in the experimental sce-
nario, the PCD image quality Q is only determined by the P .
Based on the proposed GCW-SAR parameter design, to obtain
the normalized PCD imaging error ε2 = 0.1, the image quality
factor Q is approximately equal to 3.6 and thus P is set to 5.
For comparison, the GCW-SAR images with different Q values
= 0.5617, 3.5106, and 14.0425, corresponding to P= 2, 5, and
10 respectively, are reconstructed by using the decimated PCD
algorithm with the same ∆x = 0.004 m, as shown in Fig. 14.
It is evident that the two targets can be shown clearly in the
GCW-SAR image with the Q = 3.5106. When Q is increased
to 14.0425, the improvement of the image quality in azimuth
can be hardly seen, and a small Q can lead to a worse PCD
imaging performance. Therefore, P = 5 is suitable for this
real imaging system.

Substituting P = 5 and L/La = 7.1212 into (34), the num-
ber of constant segments K in the decimated PCD algorithm
can then be selected. Fig. 16 shows the relationship between
K and ε2. To keep ε2 ≤ 0.2, K is set to 10. The real data
GCW-SAR images reconstructed by using different K = 2,
5, and 10 are shown respectively with the same P = 5 and
L/La = 7.1212 in Fig. 15. We can see that the two targets can
be seen clearly even when K = 5 where the corresponding
ε2 = 0.4 since the radar cross section of the targets is much
higher than that of the carpet floor. Therefore, the threshold
of ε2 is determined based on the different imaging scenarios.
In addition, the computational cost can be further reduced by
downsampling the received signal. In the above experimental
results, Ns1 is set to 360, thus reducing the received signal
sampling to 10 MHz. With the known P = 5, L/La = 7.1212,
and K = 10, the real data GCW-SAR image with Ns1 = 720
is reconstructed as shown in Fig. 17. With reduced SNR, the
two targets cannot be distinguished and thus Ns1 should be
set to 360 in this GCW-SAR experimental scenario.

In summary, to design a practical GCW-SAR system, the
antenna aperture La and the transmitted signal bandwidth
should be firstly determined to ensure the azimuth and range
resolutions. Then, the synthetic aperture L is obtained based
on the carrier frequency and the imaging distance. With the
known L/La ratio and the desired normalized PCD error
ε2, the number of linear segments P can be determined.
Substituting P and L/La into (34), the number of constant
segments K can be further determined. Finally, the Ns1 can
be selected based on the required SNR.

VI. CONCLUSION

Detailed analysis, further simplification and MOCO of
the PCD algorithm are presented in this paper. Compared
with the zero-th order approximation to the slant range in
conventional SAR imaging, the PCD imaging demonstrates
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Fig. 14. Real data GCW-SAR imaging comparison among different Q: (a) Q= 0.5617, (b) Q= 3.5106, and (c) Q= 14.0425.
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Fig. 15. Real data GCW-SAR imaging comparison among different K with the same P = 5 and L/La = 7.1212: (a) K = 2 (∆x = 0.02 m), (b) K = 5
(∆x = 0.008 m), and (c) K = 10 (∆x = 0.004 m).
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Fig. 16. Decimated PCD error function with different K, where P = 5 and
L/La = 7.1212.

many advantages due to the one-dimensional data structure
and the first order approximation to the slant range. The closed
form ambiguity functions in range and azimuth directions are
derived respectively. With ideal matched filtering method as
the benchmark, the normalized imaging error function of the
PCD algorithm is also formulated, which can be defined as
a function of the image quality factor. A simplified PCD
algorithm, called decimated PCD algorithm, is also proposed,
which can significantly reduce the imaging complexity with
negligible degradation on imaging performance. The corre-
sponding imaging error, lower-bounded by the PCD imaging
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Fig. 17. Real data GCW-SAR image with the Ns1 = 720.

error function, is also analyzed. To remove the imaging error
caused by the non-ideal radar trajectory, a novel MOCO
strategy well suited for the decimated PCD imaging is de-
veloped. The work presented in this paper and supported by
the experimental results validates the theoretical foundation
of the PCD algorithm in terms of imaging process, ambiguity
function, performance bound, simplified implementation and
MOCO, serving as a practical guideline to the GCW-SAR
system design.

APPENDIX A
DERIVATION OF PCD AZIMUTH AMBIGUITY FUNCTION

Defining the rectangular function rect( tT ) as

rect(
t

T
) =


1, |t| < T/2,
1
2 , |t| = T/2,

0, otherwise
(35)
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the PCD image I1(xm, 0) in (16) can be described as

I1(xm, 0)

= σ(0, 0)e−j
2πx2

m
λRc

∫ ∞
−∞

1

T
rect(

t

T
)ej

4π
λ d1(t,0,0)

· e−j2π
2vxm
λRc

tdt

(36)

which can be viewed as a Fourier transform, in terms of a
frequency variable Ω = 2vxm

λRc
. The time domain function,

which is a product of 1
T rect(

t
T ) and ej

4π
λ d1(t,0,0), can be

represented as a convolution in Ω domain, so that Eq. (36)
can be rewritten as

I1(xm, 0)

= σ(0, 0)e−j
2πx2

m
λRc

(∫ ∞
−∞

1

T
rect(

t

T
)e−j2πΩtdt

⊗
∫ ∞
−∞

ej
4π
λ d1(t,0,0)e−j2πΩtdt

) (37)

where ⊗ denotes convolution operation. The expression of
1
T rect(t) in Ω domain is the sinc function sinc(TΩ). Since
d1(t, xm, yn) is a periodic function, the Fourier transform of
ej

4π
λ d1(t,0,0) can be expressed as∫ ∞
−∞

ej
4π
λ d1(t,0,0)e−j2πΩtdt =

1

TP

∞∑
i=−∞

D(
i

TP
)δ(Ω− i

TP
)

(38)

where D(Ω) is the Fourier transform of ej
4π
λ d1(t,0,0) in one

period, i.e.,

D(Ω) =

∫ TP
2

−TP2
ej

4π
λ d1(t,0,0)e−j2πΩtdt. (39)

Therefore, I1(xm, 0) can be expressed as

I1(xm, 0)

= σ(0, 0)e−j
2πx2

m
λRc

(
sinc(TΩ)⊗ 1

TP

∞∑
i=−∞

D(
i

TP
)δ(Ω− i

TP
)
)

= σ(0, 0)e−j
2πx2

m
λRc

( 1

TP

∞∑
i=−∞

D(
i

TP
)sinc(T (Ω− i

TP
))
)
.

(40)

Defining W (x) = 1
TP
D( 2vx

λRc
) and replacing Ω by 2vx

λRc
, we

have the final expression of (16).

APPENDIX B
PCD WEIGHT FUNCTION

Assuming that the number of linear segments, P , is odd,
d1(t, 0, 0) in the integration interval [−TP2 ,

TP
2 ) can be ex-

pressed as

d1(t, 0, 0) =
v2

2Rc
(−t2 +

T 2
P

4
), t ∈ [−TP

2
,
TP
2

). (41)

Hence, the corresponding weight function can be derived as

W (x) =
1

TP

∫ TP
2

−TP2
ej

4π
λ d1(t,0,0)e−j2π

2vx
λRc

tdt

=
1

TP

∫ TP
2

−TP2
ej

4π
λ

v2

2Rc
(−t2+

T2
P
4 )e−j2π

2vx
λRc

tdt

= ej
πv2T2

P
2λRc

1

TP

∫ TP
2

−TP2
e−j

2π
λRc

(v2t2+2xvt)dt

= ej
πv2T2

P
2λRc ej

2πx2

λRc
1

TP

∫ TP
2

−TP2
e−j

2π
λRc

(vt+x)2

dt

=

√
λRc

2πv2T 2
P

ej
πv2T2

P
2λRc ej

2πx2

λRc

∫ (x+
TP
2 v)

√
2π
λRc

(x−TP2 v)
√

2π
λRc

e−jt
2

dt

=

√
λRc

2πv2T 2
P

ej
πv2T2

P
2λRc ej

2πx2

λRc

(∫ (x+
TP
2 v)

√
2π
λRc

0

(cos(t2)

− jsin(t2))dt−
∫ (x−TP2 v)

√
2π
λRc

0

(cos(t2)− jsin(t2))dt
)

=

√
λRc

2πv2T 2
P

ej
πv2T2

P
2λRc ej

2πx2

λRc

(
C((x+

TP
2
v)

√
2π

λRc
)

− C((x− TP
2
v)

√
2π

λRc
) + jS((x− TP

2
v)

√
2π

λRc
)

− jS((x+
TP
2
v)

√
2π

λRc
)
)

(42)

where S(x) and C(x) are the Fresnel integrals respectively
[29] defined as

S(x) =

∫ x

0

sin(t2)dt =

∞∑
n=0

(−1)n
x4n+3

(2n+ 1)!(4n+ 3)
,

C(x) =

∫ x

0

cos(t2)dt =

∞∑
n=0

(−1)n
x4n+1

(2n)!(4n+ 1)
.

(43)

Since L ≈ λ
La
Rc, Eq. (42) is further expressed as (17).

When P is even, d1(t, 0, 0) is a time TP
2 shifted version

of that with odd P , so that W (x) has the same expression as
(42) except for a phase shift e−j

2πvTP
λRc

x. Note that both weight
functions have the same amplitude |W (x)| and W (0).

APPENDIX C
INTEGRAL IN DECIMATED PCD ERROR FUNCTION

Based on (34), the integral 1
T

∫ T
2

−T2
ej

4π
λ d̂1(t,0,0)dt can be

expressed as a sum of P · K integrations over respective
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constant segments of the slant range, i.e.,

1

T

∫ T
2

−T2
ej

4π
λ d̂1(t,0,0)dt

=
1

T

P−1∑
p=0

K−1∑
k=0

∫ tp+(k+1) ∆x
v

tp+k∆x
v

ej
4π
λ

v2(tp+1+tp)

2Rc
k∆x
v + v2

2Rc
(t2p−t

2)dt

=
1

T

P−1∑
p=0

K−1∑
k=0

∫ tp+(k+1) ∆x
v

tp+k∆x
v

ej
2πv2

λRc
(−t2+(tp+1+tp)k∆x

v +t2p)dt

=
1

P

P−1∑
p=0

K−1∑
k=0

ej
2πv2

λRc
((tp+1+tp)k∆x

v +t2p)

√
λRc

2πv2T 2
P

·
∫ (tp+(k+1) ∆x

v )
√

2πv2

λRc

(tp+k∆x
v )

√
2πv2

λRc

e−jt
2

dt.

(44)

Since tp = −T2 + pTP , L ≈ λ
La
Rc, and ∆x = TP

K v, Eq. (44)
can be further derived as

1

T

∫ T
2

−T2
ej

4π
λ d̂1(t,0,0)dt

=
1

P

P−1∑
p=0

K−1∑
k=0

ej
2πv2

λRc
((−T+(2p+1)TP )k

TP
K +(−T2 +pTP )2)

·

√
λRc

2πv2T 2
P

∫ (−T2 +pTP+(k+1)
TP
K )

√
2πv2

λRc

(−T2 +pTP+k
TP
K )

√
2πv2

λRc

e−jt
2

dt

=
1

P

P−1∑
p=0

K−1∑
k=0

ej
2π
P2

L
La

((−P+2p+1) kK+(−P2 +p)2)

·
√
P 2

2π

La
L

∫ (−P2 +p+ k+1
K )

√
2π
Q

(−P2 +p+ k
K )

√
2π
P2

L
La

e−jt
2

dt

=
1

P

P−1∑
p=0

K−1∑
k=0

ej
2π
P2

L
La

((−P+2p+1) kK+(−P2 +p)2)

·
√
P 2

2π

La
L

(
C((−P

2
+ p+

k + 1

K
)

√
2π

P 2

L

La
)

− C((−P
2

+ p+
k

K
)

√
2π

P 2

L

La
)

+ jS((−P
2

+ p+
k

K
)

√
2π

P 2

L

La
)

− jS((−P
2

+ p+
k + 1

K
)

√
2π

P 2

L
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)
)
.

(45)
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