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ABSTRACT We consider the recent challenges of 3D shape analysis based on a volumetric CNN that
requires a huge computational power. This high-cost approach forces to reduce the volume resolutions
when applying 3D CNN on volumetric data. In this context, we propose a multiorientation volumetric deep
neural network (MV-DNN) for 3D object classification with octree generating low-cost volumetric features.
In comparison to conventional octree representations, we propose to limit the octree partition to a certain
depth to reserve all leaf octants with sparsity features. This allows for improved learning of complex 3D
features and increased prediction of object labels at both low and high resolutions. Our auxiliary learning
approach predicts object classes based on the subvolume parts of a 3D object that improve the classification
accuracy compared to other existing 3D volumetric CNN methods. In addition, the influence of views and
depths of the 3D model on the classification performance is investigated through extensive experiments
applied to the ModelNet40 database. Our deep learning framework runs significantly faster and consumes
less memory than full voxel representations and demonstrate the effectiveness of our octree-based auxiliary
learning approach for exploring high resolution 3D models. Experimental results reveal the superiority of
our MV-DNN that achieves better classification accuracy compared to state-of-art methods on two public
databases.

INDEX TERMS 3D shape analysis, object classification, convolutional neural network, DNNs, volumetric
CNN.

I. INTRODUCTION
The rapid development of consumer depth cameras, 3D
acquisition and scanning devices make it easier to obtain
a 3D view of a real object that is tremendously increasing
many real world applications [1] within the areas of com-
puter vision, online gaming, films, TV, engineering project
modeling, biology, military research and many more appli-
cations in the field of visual reality. Among them, 3D object
recognition and classification for autonomous vehicles (i.e.,
self-driving car) to avoid collisions, 3D object detection for
warehouse–robots to restore and collect products for shipping
and 3D retrieval for searching target objects in large databases
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are currently amongst the most demanding applications.
However, object classification is a key application of com-
puter vision areas, whereas vision systems are built using the
theory of artificial intelligence (AI) systems that machines
can recognize what is perceived similar to the human visual
system. To develop a computer vision framework a neural
network (can be developed using machine learning or deep
learning algorithm) is trained with a comparative class of
objects. During the training, final feature neurons andweights
are iteratively generated and stored as a trained model.

During model testing, an unseen object is given to the
neural network, then it generates a feature map using the
trained model.

The classification result outputs the prediction score of
category information of the object. The final target object is
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classified by the highest probability (≤1) of classes among
the trained objects. This phenomenon is referred to as object
classification in computer vision. Figure 1 depicts a basic
block diagram of CNN-based 3D object classification. The
research in object classification in the two-dimensional field
of image processing started over a few decades ago and
achieved very successful results employing deep convolu-
tional learningmethodology. Deep learning consists of a large
neural network including many hidden layers to learn a com-
plicated and complex model in a hierarchical or multilayer
manner.

The design of a vision system with neural networks for
an ordered sample 2D image to an unordered complex 3D
model by typical 3D data formats (i.e., triangle mesh or point
cloud) is usually deemed a more challenging task. Research
on deep learning for 3D Shape analysis [2] including object
classification excelled with the introduction of the Model-
Net [3] dataset. Recently, several deep learning approaches
have been proposed for 3D object classification, detection
and recognition purposes using various tactics to make regu-
lar sampled input features to the networks [4]–[8]. The most
commonly used 3D feature representations for classification
are volumetric, shape-descriptors, 3D projection, RGB-D,
multi-view, point clouds, 3D graphs, and meshes [9]–[11].

To capture the full geometric features of a 3D object,
volumetric representation provides very detailed information
with regular grid-style data. The most common practice of
volumetric representation is voxel to describe the 3D model
in three-dimensional distributions. The very first attempt of
deep learning (DL) to object classification was proposed
by Wu et al. and named 3D ShapeNets [4] by deep belief
networks [12], [13]. Therefore, due to the encouraging results
of 3D ShapeNets, several papers have been published that
consider volume-based DNNs [5], [6], [14] for object clas-
sification. Despite the great and promising consequences
of such volumetric deep learning approaches [15], these
kinds of networks are challenging to train in terms of high
computational cost. In comparison to 2D image resolution
(250×250) with 3D voxel resolution (32×32×32), the com-
putational cost increases cubically [16] as voxel represents
both occupied and nonoccupied parts of the object. The most
straightforward efficient way of volumetric representations
is octree-based deep learning approaches. Octree has a long
history in shape representations [17]–[19], and it is becom-
ing popular in CNN-based 3D shape analysis because of its
compatibility in obtaining fine detail of a 3Dmodel [19], [20].
Therefore, the best 3D classification results, up until recently,
have been achieved by 2D image-based deep learning con-
volutional neural networks, where 2D rendered images are
obtained from 3D shape as a projection of 3D data [22], [23].
However, how to determine the number of perspective views
to cover global features is unclear and losing the inherent
geometric features of the 3D model are the main constraints
of 2D-based CNN for 3D object analysis.

Considering the deep neural network and computational
limitations of voxel representations, this paper proposes an

effective octree-based auxiliary learning approach for 3D
object classification based on a multiorientation volumetric
deep neural network (MV-DNN). The availability of 3D
scanning tools and the advent of computational power led
us to investigate high resolution data to explore rich global
features in DNNs for 3D object classification. However, deep
learning (DL) requires a large training dataset and due to
the limited training 3D dataset, we utilize an augmentation
approach uniformly using a well-known multiorientation 3D
object on the scale of 360 degrees around the horizontal axis.

We implement GPU-based octree data structures to design
high resolution supported CNN that consumes lower mem-
ory. The hierarchical octree data structure is similar to the
quadtree structure [24], and CNN is performed just on sparse
octants where computational cost increases quadratically.
Our contributions in this paper are threefold and can be
summarized as follows:
• Wepropose to use auxiliary learning on octree structured
3D data to the subvolume parts of a 3D object. It aims to
learn edge detail information and increase the prediction
ability by observing some parts of an object.

• We propose to preserve all octants information to a cer-
tain partition level based on the predefined input voxel
resolution to store high-precision contour features at the
beginning of the octree partition. This effective feature
helps to enhance the geometric resolution to the con-
volution filter and improve the classifier performance
compared with conventional octree representation.

• We conduct extensive experiments to determine the
influence of input volume resolutions and multiorien-
tation effects on the classification task. Experimental
results show that the classification performance of our
MV-DNN improves gradually with volume resolutions
and augmented samples.

In addition, our proposed MV-DNN is a GPU-based volu-
metric deep convolutional neural network that directly inputs
octree structures of a 3D object. Our MV-DNN learns com-
plex hierarchical features of a 3D object in a supervised man-
ner. To implement auxiliary learning, we divide the bounding
box of a 3D object into subvolume parts utilizing layer slic-
ing methodology. Classification experiments are evaluated
on the ModelNet40 and ModelNet10 datasets (contains 3D
CAD models), and our proposed MV-DNN outperforms the
following state-of-art methods.

The rest of this paper is organized as follows. An overview
of deep learning approaches on different 3D representations
is presented in Section 2. Our proposed method and net-
work architecture are provided in Section 3. The analysis of
the experimental results is conducted in Section 4. Finally,
in Section 5, we provide conclusions and present the future
work of our research.

II. RELATED WORK
During the last few years, the DL approach achieved a very
satisfactory result in the 2D computer vision field. From that
point forward, DL attracts 3D computer vision researchers
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FIGURE 1. A basic block diagram of CNN-based 3D object classification.

to learn the complex structure of 3D data. Until recently,
DL research has been directed toward 3D object classifica-
tion, which is far less than that of 2D areas. In this section,
we briefly review some recent DL advances for 3D object
classification. We pick some of the most recent DL frame-
works and then discuss their 3D representation techniques,
including data preparation and training details.

A. DEEP NEURAL NETWORKS FOR 3D OBJECT
CLASSIFICATION
Selecting or extracting features is the key task for using a neu-
ral network for computer vision application. Unlike 2D fea-
ture extraction, a 3D model is complex by nature. There is no
ideal or universal method for learning a 3D model. However,
several feature extraction methods have been developed for
3D objects [25]–[28]. Based on the representation methods,
the neural networks are designed for different applications,
such as 3D model classification, retrieval, and segmentation.
In this section, we focus on object classification methods
only.

Wu et al [4] presented 3DShapeNets which is the
earliest deep learning approach on volumetric 3D data.
3DShapeNets was developed with a convolutional deep belief
network (CDBN) for 3D shape analysis including classifica-
tion. The geometry of the 3D shape was represented on a
3D voxel grid. The grid size was 30 × 30 × 30 which can
be compared with a 2D image resolution of 165 × 165. The
CDBN consists of 6 layers with thousands of hidden param-
eters. The classification experiment was conducted on their
ModelNet40 dataset, where each 3D model was augmented
by rotating 30 degrees (12 poses/model) in arbitrary poses.
The linear SVM method was used to train the network and it
costs approximately 48 hours on NVIDIA Tesla K40c GPU.
The classification accuracy was 77.32% for 40 categories.

The 3D ShapeNets further improved by Maturana and
Scherer [14] who proposed VoxNet, which is a 3D convo-
lutional neural network, by integrating a volumetric occu-
pancy grid representation. VoxNet experimented on three
different data sources where the classification accuracy on
the ModelNet40 dataset improved to 83%. VoxNet also
demonstrated several experiments to determine the effects
of augmentation, voting, occupancy grids, and multiresolu-
tions. Among them, training the network on the augmented

3D model and using the voting method provides high clas-
sification accuracy on the Modelnet40 dataset. Unlike 3D
ShapeNets, VoxNet uses a pooling layer, and dropout regu-
larization is also added at the end of each layer. Stochastic
gradient descent (SGD) with momentum was used to train
networks. However, both 3D ShapeNets and VoxNet are lim-
ited to small voxel volumes and consumed high memory and
time.

To avoid the limitation of voxel representations, deep
learning on 3D sparse data using octree structured 3D
data provides very promising results for 3D shape analysis
[20], [21]. Riegler at el. proposed OctNet [16] for 3D object
classification onModelNet10 dataset [3]. The input 3D object
was hierarchically partitioned into an octree structure, and
pooled features were stored in the leaf nodes. The authors
also observed that the higher probability of activation was
made closer to the object boundary. The input triangle meshes
were converted to octree grids of several resolutions (83 to
2563), and each network consists of a number of blocks
where each block consists of two convolutional layers (stride
of 1) and one max-pooling layer with a stride of 2. OctNet
achieved the state-of-art performance on a low-scale
Modelnet10 database.

Considering massive image databases and advances in
image descriptor, Su et al. proposed multiview convolutional
neural networks (MVCNN) [22] where 3D models were
rendered to the 2D image under a perspective projection.
Every 3D model was captured with 12 rendered views by
placing 12 virtual cameras around the 3Dmodel. The network
was pretrained on the ImageNet dataset and then fine-tuned
on theModelNet40 dataset for 3D classification. Linear SVM
was used to train the network where SVM was applied on
a 12-view of a 3D object at the test time, and the highest
sum reflects the class of the object. MVCNN achieved 89.9%
classification accuracy on the ModelNet40 dataset. Recently,
Ma et al [29] introduced an LSTM module to learn low-
level features by CNN and outperform MVCNN for the clas-
sification task. In the following 3D2SeqViews is proposed
by Han et al [30], where VGG was finetuned to encode
low-level features and sequential views were aggregated in
a hierarchical attention fashion to generate globalfeature.
It performs better than LSTM for the 3D classification task.
However, the selection of number of views remains an open
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issue for imaged-based 3D object classification. Inspired by
multiview, Qi et al. [31] proposed volumetric and multiview
CNNs for object classification. Instead of multiview, Qi et al.
proposed using multiorientation pooling by concatenating
fc7, and data augmentation was performed in both azimuth
and elevation. The volumetric approach by Qi et al. was
mainly focused on network design considering the higher
resolution and proposed several volumetric CNNs, including
long anisotropic kernel and multiorientation pooling strate-
gies. Multilayer perceptron convolution layers [32] were
adopted to avoid overfitting and increase feature extraction
capability. Each multilayer perceptron contains three con-
volutional layers and a rectified linear unit (ReLU) layer.
All proposed networks were trained using augmented 3D
models where each 3D model was captured with 20 views
and applied to both azimuth and elevation rotation. The
best average class accuracy of 91.4% was achieved using
multiorientation pooling strategy To reduce the computa-
tional cost of voxel representation, NormalNet [10] and
LP-3DCNN [33] reduced the number of parameters by intro-
ducing RCC and ReLPV modules respectively with better
classification accuracy than state-of-art-methods. Recently,
Khan et al. proposed an unsupervised primitive GAN [34]
model, where generated volumetric features were used to
train the network onModelNet10 dataset for the classification
task but tested on ModelNet10 and ModelNet40 dataset. The
accuracy of this unsupervisedmethod is inferior to supervised
methods.

Hegde et al. proposed FusionNet [35] by merging voxel
and 2D-based representations in a system. They proposed
voxel-based two volumetric CNNs where 30 × 30 ×
30 voxel resolution was used in V-CCN I (3-convolution
and 2-FC layers) with 60 orientations of each 3D model.
Similar to AlexNet [36], different sizes of filters (1×1,
3×3 and 5×5) were concatenated in V-CNN II with similar
inputs of V-CCN I. Both V-CNN I and V-CNN II used a
weight-sharing approach over 60 orientations. The accu-
racy results of V-CNN I and V-CNN II were 82.41% and
80.63%, respectively, on the ModelNet40 dataset. Above all
volumetric-based voxel representations faced the same issues
of GPU memory that limits using the high resolution.

The point cloud 3D data format also has gained popularity
in 3D shape analysis [37]–[39] because of the availability
of a point cloud 3D scanner. Charles et al. [37] proposed a
DL-based 3D classifier named PointNet using point cloud
representation directly as input data to the network. Point-
Net was further improved by Qi et al. [37] who proposed
PointNet++, where PointNet was executed recursively to
the nested input point set. You et al. proposed PVNet [8]
with improved classification results using point cloud and 2D
rendered images simultaneously as input features to CNNs.
Recently, ComposeCaps is introduced in 3DCapsule [40]
framework by Cheraghian et al. to explore meaningful fea-
tures for point cloud classification To learn high-level relation
expressions, Liu et al proposed RS-CNN [41] and achieved
state-of-art-result for point cloud classification.

Yang et al. proposed unsupervised DL networks called
FoldingNet [42] and introduced a folding-based auto decoder
on point cloud data. Another unsupervised approach was
introduced by Li et al. [43] proposed SO-Net for point cloud
shape analysis. However, the point cloud was associated with
unordered 3D point data, so typically it required a transforma-
tion to make data in order and fed further to 3D shape analysis
networks. In the definition of Euclidean and non-Euclidean
data format, the point cloud carries a small Euclidean subset
that has global parametrizations; however, researchers mostly
treated point clouds as nonvolumetric representations [9]

III. METHOD
Due to the computational limitation of voxel representa-
tion in deep learning, we likewise consider the octree as
volumetric portrayals in view of its monetary computational
qualities which has been used in different 3D data appli-
cation [44]–[47]. Octree representations allow for deeper
networks with high voxel resolutions for the 3D object clas-
sification task. Our investigation in this paper focuses on
improving the performance of volumetric CNN and reducing
the performance gap between volumetric and nonvolumetric
representations for 3D object classification.

Riegler et al. [16] proposed OctNet for 3D object classi-
fication with a hybrid octree representation of a 3D CAD
model. Instead of the regular octree structure, OctNet restricts
the maximal depth of octree to 3, namely shallow octree.
To increase the input resolution, multiple shallow octrees are
required, e.g., two shallow octrees are required to generate a
resolution of 163 voxels. Apart from conventional volumetric
CNN, OctNet accepts high-resolution input and improves
classification accuracy significantly on ModelNet10 dataset
only.

Although we also have considered octree as a volumetric
representation of the 3D CAD model but there are distinct
differences between OctNet and our technique in terms of
octree representation and developing the network. Instead of
restricting the maximal octree depth of OctNet, we follow
the standard octree partition which generates octrees con-
tinuously until the maximum depth is reached. In addition,
we proposed to store all octants to a certain depth (e.g., 2 or
depth 3) depending on the maximal octree depth for reserving
orientation information and adjusting all features from vari-
ous octree depths to produce more discriminative features.
In addition, our proposed MV-DNN is more advanced and
obtains better classification accuracy on ModelNet40 and
ModelNet10 dataset than OctNet (see in Table 3).

In the following, we describe our proposed data structure
and the architecture of our multiorientation volumetric neural
network in detail.

A. VOLUMETRIC OCTREE REPRESENTATION
To make an effective hierarchical 3D data structure, we pro-
pose a crossover octree structure by holding all octants’
features up to a specific depth depending on the predefined
volume resolution. First, we put a 3D model into a bounding
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cube box, then it is subdivided into 8 equal pieces according
to first order octree (depth 1st). This subdivision process is
conducted until the predefined octree depth (d) is reached.
The maximum octree depth is equal to target volumetric
resolution (i.e., d = 5 for 323 voxel resolution). However,
subdivision only occurs on the occupied parent’s octants,
and the resulting octants are known as leaf or child octants.
A shuffle key (S) is generated for each octant according to
their corresponding octree depth (d) to ensure their position
in the 3D cube. The l-bit string key can be written as:

Sl = x1y1z1x2y2z2x3y3z4 . . . . . . . . . .xlylzl (1)

where xiyizi ∈ {0, 1}, (i = 1, 2, . . . , l), represent the position
of its parent octants. All octants are collected according to
their corresponding shuffle key (Sl) in ascending format in
each depth and stored as a one-dimensional vector. The size of
the shuffle key (Sl) is a 32-bit integer value. The average value
of each leaf node is stored in their parent nodes as features of
the 3D object computed as:

Ln = 1/
n

nmax∑
n=1

vc(1− n), (2)

where Ln denotes leaf node value, nmax is equal to 8 and refers
to the number of nodes in each leaf, and vc is the value of each
child octant.

To extract a high-level feature, we propose to limit the
full layer octree to a certain level of depth based on the
predefined voxel resolution. The reservation of full voxels
up to certain depths may increase the size of input features
and computational cost slightly more than the regular octree
structure, but the lower computational cost is still required as
compared to the full voxel method (see Table 4).

The reservation of full layer features is determined by the
following equations:

OϕnFL =

{
2 if ϕn ≤ VR = 4
3 else

(3)

where OϕnFL represents the expected full layer octree depth
calculated by Eq. (3), ϕn is the current octree depth in the
loop, and VR is the predefined input volume resolution. If we
consider the volume resolution to be higher than 163, then
the full layer features until depth 3rd will be stored unless the
number of full layer values is 2.

To find the relationship between parent and leaf nodes,
a label pk is assignedwhere the value of pk is a positive integer
number to all nonempty or 0 to empty nodes. All labels of a
specific depth (d th) are stored in a vector Ldk can be written
as:

Ldk = {p1p2p3p5p6p7p8p9p10p11p12 . . . . . . pdk−1pdk} (4)

where k is the total number of octants in the d th octree.
Only nonempty nodes are further subdivided, and the storing
order of the leaf nodes is sequentially made according to
their parents’ nodes. Figure 2a shows a very detailed map of
a generated octree in 2D view at different depths for a 3D

airplane model. We can see that the airplane model occupied
all the nodes (4-node for the 2D view) in 1st depth (d1) and is
subdivided into 32-leaf nodes in 2nd depth; however, we can
see only 16 new leaf nodes in the 2D view. In Figure 2a,
shuffle key maps of d2 show that the airplane occupies only
6 nodes among 16 are 1, 3, 4, 6, 9 and 12, respectively. These
occupied nodes are labeled with a positive integer number
(i.e., 1, 2, 3..), and 0 will be added to the empty nodes
(Figure 2b, L2). In the following depth-3, these 6-occupied
nodes will be further subdivided into 24 nodes. This is the
benefit of octree representation, where the octree resolu-
tion always changes and reduces the computation burden
by taking only occupied node data rather than full voxels.
However, the octree subdivision originally takes place in 8
new nodes where Figure 2a shows only 4 nodes because of
considering the 2D view for the sake of simplicity. Unlike
max-pooling [16], the input signal is formed by averaging the
normal vector of the leaf nodes because the performance of
the normal signal is better than a binary signal [9]. The size
of the input vector is an equal length of leaf nodes. This input
vector is directly fed to our proposed network.

B. THE ARCHITECTURE OF MV-DNN FRAMEWORK
Our proposed convolutional deep neural network introduces
auxiliary learning using octree-structured volumetric input
to improve the level prediction rate over time. The auxiliary
learning is inspired by the perceptual human vision system,
as we have an ability to recognize an object by observing
some parts of it. In similar way, the network is forcibly trained
to learn feature on subvolume parts to predict object label.
So, the output of the subvolume classification is strongly
correlated with the main task. Theoretically, overfitting is the
main barrier of volumetric CNN (3D CNN) and if it overfits
to training data then it stops learning. In that case, auxiliary
learning continues to learn and it is difficult to overfit because
of exploiting only subvolume parts of the input. Our multior-
ientation deep neural network (MV-DNN) is a convolution
neural network consisting of the auxiliary learning module
at the top (see Figure 3). The main blocks of our network
are multilayer octree convolution (MOC), max-poling (PL),
typical convolution layer (TCN) and fully connected layer
(FC). EachMOCblock consists of two convolution layers in a
feed-forward connection. These two consecutive convolution
layers will produce meaningful and precise features from low
level input feature using a few hundred parameters only (see
Table 1). The MOC block will help to make a feature in hier-
archical order, reduce underfitting the network and increase
feature learnability. MOC uses a fixed filter (conv kernel) of
size 3 but the number of filters will increase twice in the
following convolution layers to extract high-level features.
Figure 3 demonstrates that our auxiliary learning model for
octree depth 5th contains only two MOC blocks and the list
of parameters is provided in Table 1. The number of MOC
layers decreases or increases according to lower and higher
octree depths to adjust the input volume size for different
depths, respectively. The framework of depth 5th is extended
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FIGURE 2. Octree illustration of 3D model in 2D view (a) octree representation according to depth (b) Labeling of nodes to build
parent-child (leaf) relationship and decide which nodes will be further subdivided.

for depth 6th and 7th by adding one and two MOC blocks
respectively at the bottom.

During convolution operation, the octree depth will be
unchanged when striding of 1. So, each MOC block will
breakdown the input complex data into smaller and smaller
features and produce invariant global features through long
range convolution operation without reducing the octree
depth.

The output features of each convolution layer are gener-
alized with a batch normalization layer and all neurons are
activated by passing through a rectified linear unit (ReLU).
The convolution operation can be written as follows:

gc(U ) =
∑
n

∑
x

∑
y

∑
z

W n
xyz.M

(n)
d (Uxyz), (5)

where gc is the convolution operator,Uxyz represents a neigh-
boring octant of U and convolution results of all octants at
d th depth are recorded in a vectorMn

d as nth channel feature.
All property vectors of a 3D object Sd , Ld andMd are con-

catenated to form a super octree directly can be represented
as respectively S∗d ,L

∗
d andM∗d , which will be used to train the

CNN. The features will be downsampled only by a pooling
operation where max-pooling is employed with a kernel size
of 23 and a stride of 2. Pooling operation ψmp

i,j,k will select the
maximum octant value from every 8 adjacent leaf octants can
be written from Eq. (5) as

ψ
mp
i,j,k = max_pooling

x,y,z∈{0, 1}

n−1∑
o

(M (n−1)
d U2i+x,2j+y,2k+z). (6)

To apply auxiliary learning, we divide voxel features
inside the network according to a 3-dimensional data tensor.
However, the octree to voxel (O-V) layer converts octree data
(8×1) to voxel form with 1st depth (2×2×2). The reason
for making octree to voxel conversion in 1st depth because
of slicing the voxel can be divided into two equal points,
whereas the model can learn with 50% features of the 3D
object at 1st slicing point. Every slice operation will make
two new slice layers where 3 consecutive slices will create
8 new slicing layers (or 8 subdivisions of the voxel volume).
These 8 subdivision layers predict the object class by learning
features from the subpart of an object.

In contrast, the main branch of the classifier includes three
fully connected (FC) layers (4096, 512, N ). The last FC is
used as a classifier, where N is the number of object classes.
A single FC layer can be compared to several 1-dimensional
convolution layers, but the main difference between them
is making a decision that only FC can do. A single typical
convolution (TCN) layer with kernel size of 1 is added after
the O-V layer to increase the feature transformation with little
cost, and the flattened layer (after O-V) shapes the feature
vector in a simple form n × c × h × w to n × (c × h × w).
To reduce overfitting, we added a dropout layer between
FC-1 and FC-2 with a 50% drop ratio that works only during
the training session. The object class label is predicted by
FC-3, and the highest prediction among N nodes is the final
class of an object.

We calculate softmax loss to evaluate the network perfor-
mance with respect to the negative log-likelihood function.
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FIGURE 3. The network architecture of MV-DNN. An illustration of auxiliary learning by slicing voxel feature in subvolume parts.

The multiclass loss function can be written as:

l(y, ŷ) = −
N∑
j

yj. log ŷj, (7)

where y and ŷ are the ground truth and output scores of CNN
for the jth class in N classes. N is equal to 40 for the Model-
Net40 and 10 for ModelNet10 databases. The parameter ŷ is
the probability function of predicting the target class by the
softmax function and is written as:

ŷ =
exi

N∑
j
exj
,

{
i = 1 to M
j = 1 to N ,

(8)

where xi is the logit score of input data and xj is the score
referred by the network for each class in N . xi and xj are used
to predict the input class level by the softmax classifier prob-
ability function ŷ(∈ 0, 1). M is the number of total training
samples. The final average loss function can be written from
Eq. (7) as:

l(y, ŷ) = −
1
M


M∑
i=1

N∑
j

1 {yi = j}. log

 exi

N∑
j
exj


 . (9)

IV. CLASSIFICATION EXPERIMENTS
To implement the classification system, we used the Caffe
framework [48] to train and test the model on a desktop PC
with the following specifications: Intel Xeon-X5650, mem-
ory 24 GB, Windows 10 (64-bit), and Tesla K20C (5 GB).

A. DATA PREPARATION
To perform 3D object classification, we use the
ModelNet40 [12] as the primary dataset (one of the largest
3D classification datasets) which contains 12,311 CADmod-
els with 40 different classes. The dataset provides training
and test sets, and contain 9,843 models and 2,468 models,
respectively. We augment the dataset by rotating uniformly
around the horizontal direction to produce multiorientations
of each 3D model. We prepare several augmented datasets
on depths 4th to 7th and multiorientation (3, 6, 9, 12, 18,
24 and 30 rotations) takes place only on depth 7th. This
multiorientation of each 3Dmodel is applied both the training
and test datasets separately.

The second dataset is ModelNet10 [12], which consists of
4899 indoor CAD models of 10 different classes. The overall
dataset for our experiments was prepared in the same way as
ModelNet40 as discussed above.
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TABLE 1. The list of parameters and architectural details of MV-DNN.
FL and DR refer to filter size and dropout ratio respectively.

In this experiment, the octree format is generated with a
predefined number of rotations from 3D CAD (.off) models
directly downloaded on the ModelNet dataset. Therefore,
all augmented octree files with their corresponding labels
(0 to 39) are put randomly into an LMDB file. These pro-
cedures are the same for making both the training and testing
datasets. Figure 4 shows the comparison between the voxel
and our efficient octree representation at various depths.
Although we demonstrate depths 4th to 8th in Figure 4, our
experiments are conducted up to depth 7th due to our GPU
limitation. However, the computational cost of the octree
network is U (n2) where full-voxel cost is U (n3), and here n
is the voxel resolution. Figure 5 shows the multiorientation
approach of a 3D human CAD model in octree on 12-view.

FIGURE 4. Comparison between voxel and our proposed octree
representation of a 3D car model in various resolutions on ModelNet40.

FIGURE 5. An example of multiorientation around the horizontal axis of a
3D person model in octree (d5th) for 12-view on ModelNet40 dataset.

B. TRAINING DETAILS
All the training and testing experiments are conducted on
the aforementioned desktop PC. Our MV-DNN is a feedfor-
ward supervised deep convolution network optimized by the
SGD (stochastic gradient descent) method. We set a stepwise
learning policy in which initial base learning is set to 0.1 and
decreased by a factor of 10 every 10 epochs approximately.
The classification and learning rates are plotted for different
training sessions as follows. The network testing is carried
out every 2000 iterations during the training. The batch size
is set to 32 for all depths. We stop network optimization
approximately 40 epochs in general, but we store the training
model after passing every 5-epoch. During the training, we
also observe the learning behavior and classification accuracy
on the training dataset. We continuously store the accuracy
and loss in the interval of 2000 iterations.

C. CLASSIFICATION RESULT ANALYSIS
This network employs the auxiliary learning tactics that
continues to learn by the subvolume part. During weight
updating, these subvolume classifiers modify the weights of
the convolution filters that assist in predicting more accu-
rate object classes. Initially, we prepare the octree data by
uniformly rotating 12 poses of each 3D model for differ-
ent octree depths. Therefore, the number of training sam-
ples on ModelNet 40 dataset is augmented from 9,843 to
118,116 samples, and the testing dataset is augmented from
2,468 to 2,9616 samples. All the samples are randomly placed
into the LMDB dataset to make more realistic learning.

We prepared a couple of training and testing augmented
datasets by varying input resolutions (depth) and orientations
of each 3Dmodel.We converted all 3DCADmodels to differ-
ent octree depths from the 4th to the 7th with 12 views. Then,
the individual training was directed using different networks
based on input depths. The impact of octree depths as evalu-
ated to select the best input depth and multiple experiments
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FIGURE 6. Classification accuracy during the training on 12 views, a) depth-4th, b) depth-5th, c) depth-6th and d) depth-7th.

were conducted to select the best orientation on perspective
depth. We first selected the best depth on a 12-view dataset.
Figure 6 depicts the training and the testing classification
accuracy map during the training over the epochs. We can
see that all the models reach an approximately stable point
after 20 epochs. To validate the system, the trained model
was tested on the testing dataset and these samples have never
been used to train the network. We applied the voting strategy
to use the average score from all orientations of a test sample
and average instance accuracy is provided.

Figure 7 shows the comparison of classification accuracy
in percentage among various input depths (resolution from
163 to 1283) where the maximum accuracy achieved by our
MV-DNN using depth 7th (12-view) is 92.1%.

Another question about multiorientation is how many ori-
entations is better to make an augmented input training
dataset, which is still an open issue for 3D object classifica-
tion. To find the optimum input augmentation and maximize
the classification accuracy, a number of training datasets
are prepared using several views (3,6,12,18,24 and 30) of a
3D object. These views are made by rotating each 3D model
uniformly outside the network during the data preparation
stage.

FIGURE 7. The best depth selection by MV-DNN on ModelNet40.

We took depth 7th (1283) as a reference and observed the
multioriented impacts over the epoch during the training.
Figure 9 shows the classification result over these long-range
augmented training datasets, and the best classification result
is recorded on 24 views and is 92.6% in Figure 8. Our inves-
tigation reveals that the classification performance by our
MV-DNN increases consecutively with the resolution and the
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FIGURE 8. The best view selection on depth 7th by MV-DNN on different
views on ModelNet40.

augmented view. Average classification accuracy increases
by 0.5%while doubling the training samples (12 to 24 views).
It suggests that more samples in classes help to improve
performance.

In contrast, we observed that the accuracy growth rate has
slowed comparatively at depth-6 (643) and a small accuracy
of 0.1% drops while using view-30 (augmented dataset) on
depth 7th. It is a special case may happen only if the similar-
ity (visual) occurs among some 3D objects in specific voxels
representation [16] and also may happen because of using too
many views of a sample. To tackle this situation, it requires a
bigger dataset with invariant input samples and more advance
networks need to be investigated.

However, we also compare the classification accuracy of
our hybrid octree with full voxel representation [14] under
the same network using a volume resolution of 323. Table 2

TABLE 2. A comparison between full voxel and octree representation
with 323 volume resolution on ModelNet40 with effect of auxiliary
learning.

shows that our proposed octree with auxiliary learning gained
classification accuracy by 0.8% than the full voxel method.
The full voxelmethod assembles some redundant information
as it stores both occupied and non-occupied spaces which
increase the memory space. In contrast, octree stores occu-
pied spaces only and contains more precise information than
the full voxel method. According to experimental results,
auxiliary learning noticeably improved classification accu-
racy by 1.2%which demonstrates the ability of our MV-DNN
to extract more discriminative features from incomplete parts
of a 3D CAD model. So, the improvement comes from aux-
iliary learning with octree representation.

In each training session, the loss function (softmax loss)
was computed using Eq. (9) to measure the classification
performance by considering the uncertainty of our network
prediction. The accuracy (in percentage) is used in the applied
perspective to measure the average classification, but it is
not a very good estimation to judge a network because of
its binary prediction behavior (yes or no). The higher the
probability implies that the lower the loss is a symbol of a

FIGURE 9. Accuracy plots of depth-7th with different views on ModelNet40 (a) view-3, (b) view-6, (c) view-18, (d) view-24 and (e) view-30.
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FIGURE 10. Depth-7th(24 views) on ModelNet40 (a) Epoch vs Learning rate (b) Epoch Vs Training loss.

FIGURE 11. Visualization of learned features for dresser in multiple orientations. On the left, the second fully connected (FC-2) layer only 30
neurons are visualized. On the right, third fully connected (FC-3) layer outputs the corresponded object class on ModelNet10.

well-functioning network. Our target is to minimize the loss
function for each training on the training dataset over the time
which will have an impact to minimize the loss while testing
using unseen objects. We can observe in Figure 10b, how the
loss on the training dataset decreased over the epochs and
influenced to decrease the loss on the test dataset (∼=0.32).
However, to explain the classification accuracy over multior-
iented datasets, we can see in Figure 9a, MV-DNN keeps in
learning after 40 epochs on view-3 dataset where it almost
stops learning after 18 epochs and 12 epochs on the higher
views 18 and 24 respectively (see in Figure 9c and 9d). This
occurs because at the higher views, i.e., view-24, the number
of augmented 3D models from an individual model help to
converge the network earlier and gives comparatively better
classification accuracy among others in terms of the required
number of epochs. In view-3 and view-6, one epoch con-
tains only 29,529 and 59,058 3D models for training and
requires 922 and 1,845 iterations, respectively (batch size =
32), to pass all models. In contrast, view-12, view-24 and
view-30 contain 118,112, 236,232 and 295,290 models that
require 3691, 7382 and 9227 iterations, respectively, to make
one epoch. Thus, the higher views contain more iterations
in one epoch, assist in learning faster and achieving better
classification accuracy earlier than lower views.

Therefore, if we increase the training session of view-3
and view-6, it also boosts classification accuracy, and we
record the better results achieves by view-6 using approxi-
mately 80 epochs where we stop network optimization. The
accuracy plot in Figure 9d shows that the test accuracy
line using view-24 reaches an approximately stable position
after 12 epochs of training, but we continue training the
network further to achieve the best result. In addition, we also
observe the learning rate and loss continuously during the
training.Figure 10a depicts the learning rate over the epochs,
and it seems the learning rate reached almost zero (0) after
16 epochs as did the loss function in Figure 10b. Therefore,
we decided to stop training at approximately 16 epochs.

We tested the network using the last stored training model
on the augmented test dataset containing 59,232 models,
and the offline test accuracy achieved was 92.6%. By using
the same setup of data augmentation and input resolution
(Depth-7th and 24 views), our MV-DNN achieved classifi-
cation accuracy of 95.1% on ModelNet10 dataset using a
pretrained model on ModelNet40 dataset. We also used the
original training and testing splits of Modelnet10 dataset.
Figure 11 demonstrates an approximate rotational invariance
learning by our MV-DNN across12 rotations of Dresser on
ModelNet10. The fifth column of FC-3 is the correct response
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TABLE 3. Classification accuracy on ModelNet datasets. M-40 and M-10 refer to ModelNet40 and ModelNet10 dataset respectively.

for Dresser. Moreover, a confusion takes place between sec-
ond and fifth rotations with Night Stand but we obtain the
target class by voting across all orientations. Table 3 shows
the comparison of classification accuracy with state-of-art
methods in percentage and all the classification results on
ModelNet40 and ModelNet10 dataset are collected from
respective papers.

Our proposed MV-DNN achieved better performance
among volumetric single CNNs by using depth 7th on
24 views but performed inferior to VRN Ensemble [49].
Overall, multiview and point cloud CNNs are dominating
the 3D object classification problem, except VRN Ensemble.
MV-DNN obtains 92.6% accuracy on Model40 and 95.2%
accuracy on ModelNet10 test dataset, which are respec-
tively better than any other volumetric single networks and
also comparable to point cloud and multiview CNNs. The
acquired result by our MV-DNN indicates the design supe-
riority with octree representation.

In addition, we also compared GPU memory consumption
and the computational speed for one complete pass of our
octree with full voxel method. To record the average time

TABLE 4. A comparison of GPU and time consumption between our
sparse occupied octree and full voxel methods. The total GPU memory
was 5 GB, and the batch size was 32.

per iteration, we ran 500 forward and backward iterations
on the GPU, and the total GPU consumption was also calcu-
lated. Both experiments were conducted using our MV-DNN
framework. We found that our MV-DNN using the sparsely
occupied (octree) method consumed less GPUmemory under
all resolutions presented in Table 4 compared to the full
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voxel method. The full voxel method cost approximately
4 times more memory. The average time for one iteration
(batch = 32) by octree cost seven times less for a forward
pass and approximately ten times less for a backward pass
than the full voxel method.

V. CONCLUSIONS AND FUTURE WORKS
In this paper, we proposed a GPU-based volumetric deep
convolution neural network for 3D object classification using
multioriented 3D input data. We addressed two general prob-
lems of using DNN to 3D object classification that require
a large-scale training dataset and high computational mem-
ory. We introduced a low cost sparsely occupied volumetric
representation to the newly proposed auxiliary learning DNN
framework by employing a layer slicingmethodology to learn
from a subdivision part of a 3D object. We used standard
training and testing splits as provided by the ModelNet
dataset. The experimental results show that our DNN archi-
tecture performed well with comparatively small training
effort and classification accuracy is improved than state-
of-art volumetric methods. Due to use of octree generating
low-cost volumetric features, our proposed network requires
less computational memory and time compared to full voxel
methods. In addition, to validate our network architecture,
a classification loss map was also drawn during the training
session. However, our network takes very cleaned 3D data as
the input. In real world scenarios, there are multiple objects
with overlap positions. In that case, our network has a lack of
capability for taking those inputs to classify.

In our future work, this new approach ofMV-DNN (octree-
based auxiliary learning) can be investigated further to solve
more challenging tasks where high resolutions are required
including real time 3D scene analysis and 3D appearance or
motion patterns recognition.
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