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Truth discovery has been widely studied in recent years as a fundamental means for resolving the conflicts in 
multi-source data. Although many truth discovery methods have been proposed based on different consid-
erations and intuitions, investigations show that no single method consistently outperforms the others. To 
select the right truth discovery method for a specific application scenario, it becomes essential to evaluate and 
compare the performance of different methods. A drawback of current research efforts is that they commonly 
assume the availability of certain ground truth for the evaluation of methods. However, the ground truth 
may be very limited or even impossible to obtain, rendering the evaluation biased. In this paper, we present 
CompTruthHyp, a generic approach for comparing the performance of truth discovery methods without using 
ground truth. In particular, our approach calculates the probability of observations in a dataset based on 
the output of different methods. The probability is then ranked to reflect the performance of these methods. 
We review and compare twelve representative truth discovery methods and consider both single-valued 
and multi-valued objects. The empirical studies on both real-world and synthetic datasets demonstrate the 
effectiveness of our approach for comparing truth discovery methods.
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1 INTRODUCTION
The World Wide Web has become a platform of paramount importance for storing, collecting, 
processing, querying, and managing the Big Data in recent years, with around 2.5 quintillion bytes of 
data created every day through various channels such as blogs, social networks, discussion forums,
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and crowd-sourcing platforms1. People from various domains, such as medical care, government,
and business, are relying on these data to fulfil their information needs. Information about the same
objects can often be collected from a variety of sources. However, due to the autonomous nature of
Web sources, conflicts may be reported among different Web sources. To help users determine the
veracity of multi-source data, a fundamental research topic, truth discovery, has attracted broad
attentions recently [1, 38].
So far, various truth discovery methods [14, 24, 44] have been proposed based on different

considerations and intuitions. However, investigations show that no methods could constantly
outperform the others in all application scenarios [22, 24, 37]. Moreover, Li et al. [22] demonstrate
with experiments that even an improved method does not always outperform its original version,
such as Investment and PooledInvestment [31], Cosine, 2-Estimates and 3-Estimates [16]. Therefore,
to help users select the most suitable method to fulfil their application needs, it becomes essential
to evaluate and compare the performance of different methods.

To evaluate the effectiveness of truth discovery methods, current research usually measures their
performance in terms of accuracy (or error rate), F1-score, recall, precision, specificity for categorical
data [37], and Mean of Absolute Error (MAE) and Root of Mean Square Error (RMSE) for continuous
data [24]. All these metrics are measured and compared based on the assumption that a reasonable
amount of ground truth is available. However, the fact is, the labor cost of ground truth collection
is rather expensive. Ground truth is often very limited or even impossible to obtain (generally less
than 10% of the size of the original dataset [37]). For example, the knowledge graph construction [8]
involves a large number of objects, making it impossible to have even a small set of ground truth,
which requires enormous human efforts.

The lack of sufficient ground truth can, in many cases, statistically undermine the legitimacy
of evaluating and comparing existing methods using the ground truth-based approach. Previous
comparative studies [5, 6, 21, 22, 25, 34, 40, 41, 44, 49, 50], are all based on real-world datasets with
sparse ground truth, which could bring biases to the performance evaluation of methods. Methods
with good accuracy may, by chance, return incorrect results on the particular objects covered by
the sparse ground truth, while methods with poor accuracy may, occasionally, be consistent with
the sparse ground truth. Moreover, methods that show the same accuracy on the rather limited
objects covered by the sparse ground truth, may have different performance in reality.

Under this circumstance, it is hard to conclude which method performs better or which method
performs best for specific application scenarios as the comparison results cannot be fully trusted.
Therefore, evaluating the performance of various truth discovery methods with missing or very
limited ground truth can be a significant and challenging problem for the truth discovery applica-
tions [24]. We identify the key challenges around this issue as the following:
• The only way to obtain evidence for performance evaluation without ground truth is to
extract features from the given dataset for truth discovery [22, 24, 37]. However, the features
of a dataset are sometimes complex, encompassing source-to-source, source-to-object, object-
to-value, and value-to-value relations. In addition, it is challenging to find a method to capture
those relations without creating additional biases.
• Current truth discovery methods commonly determine value veracity and calculate source
trustworthiness jointly. Source trustworthiness and value confidence scores are the common
intermediates of the existing methods, which are also the key elements for identifying the
truth for each object [24]. Therefore, we can consider identifying the relations among sources,
objects, and values by leveraging those measurements to match the relations extracted

1https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-
how-does-cpg-retail-manage-it/
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from the given dataset. However, even if we are able to obtain the features of the given
dataset, different truth discovery methods may calculate the source trustworthiness and
value confidence scores using different metrics, which have various meanings and require
non-trivial normalization.
• Even if we are able to resolve the above two challenging issues, it is still tricky to find appro-
priate metrics for comparing those features, to fulfil the requirement of method comparison.

In this paper, we focus on truth discovery method comparison without using ground truth. In a
nutshell, we make the following main contributions:
• To our knowledge, we are the first to reveal the bias introduced by sparse ground truth in
evaluating the truth discovery methods, by conducting experiments on synthetic datasets
with different coverages of the leveraged ground truth.
• We analyze, implement, and compare twelve specific truth discovery methods, including
majority voting, Sums, Average-Log, Investment, PooledInvestment [31], TruthFinder [45], 2-
Estimates, 3-Estimates [16], Accu [6], CRH [21, 25], SimpleLCA, and GuessLCA [33].
• We propose a novel approach, called CompTruthHyp, to compare the performance of truth
discovery methods without using ground truth, by considering the output of each method as a
hypothesis about the ground truth. CompTruthHyp takes both single-valued andmulti-valued
objects into consideration. It utilizes the output of all methods to quantify the probability of
observation of the dataset and then determines the method with the largest probability to be
the most accurate.
• We conduct extensive experiments on both synthetic and real-world datasets to demonstrate
the effectiveness of our proposed approach. Our approach consistently achieves more accurate
rankings of the twelve methods than traditional ground truth-based evaluation approach.

The rest of the paper is organized as follows. We review the related work in Section 2. Section 3
introduces some background knowledge about truth discovery and the observations that motivate
our work. Section 4 presents our approach. We report our experiments and results in Section 5.
Finally, Section 6 provides some concluding remarks.

2 RELATEDWORK
Due to the significance of the veracity of the Big Data, truth discovery has been a hot topic and
studied actively over last few years in the database community [11, 12]. The primitive methods
are typically rule-based, i.e., voting and averaging. For categorical data, people predict the values
with the highest number of occurrences as the truth, while for the continuous data, they naively
take the mean as the true values. These methods make the assumption that sources are equally
reliable, thus they show low accuracy for the cases that many sources provide low-quality data. To
relax the assumption voting or averaging makes, Yin et al. [45] first formulate the truth discovery
problem in 2008. In their work, a Bayesian based heuristic algorithm is proposed, which computes
the probability of each claim being correct given the estimated source weights and the influences
between claims. After that, many advanced solutions have been proposed by applying unsupervised
or semi-supervised learning techniques while additionally taking various implications of multi-
sourced data into consideration (see [2, 22, 24, 37, 51] for relevant surveys).

We can roughly classify the methods into five groups. The iterativemethods [16, 31, 45] iteratively
calculate value veracity and source reliability from each other until certain convergence condition
is met. The Bayesian point estimation methods [6, 40] adopt Bayesian analysis to compute the
maximum a posteriori probability or MAP value for each object. The link based methods [19, 31]
conduct random walks on the bipartite graph between sources and values of objects. They measure
source authority based on their links to the claimed values and estimate source reliability and value
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correctness based on the bipartite graph. The probabilistic graphical model based methods [41, 49, 50] 
apply probabilistic graphical models to jointly reason about source trustworthiness and value 
correctness. Finally, the optimization based methods [20, 21] formulate the truth discovery problem 
as an optimization problem.

Different methods have different assumptions about input data, source reliability, relations among 
sources and objects, claimed values, identified truths, and take different unique characteristics of 
different application domains into consideration. For input data, the works in [10, 27, 46] assume 
that a small set of truths are available and thus the proposed algorithms work in a semi-supervised 
setting. For source reliability and relations among sources, most methods [6, 16, 21, 31, 45, 46, 49] 
make the source consistency assumption that a source is likely to provide true information with the 
same probability for all the objects. Some methods [16, 21, 31, 45, 49] make the source independence 
assumption that data sources are independent of each other, i.e., no source-to-source relationship 
exists in the given dataset. To relax the source independence assumption, the observations of 
sources’ authority features and sources’ copying relations have been presented in [19] and [4–
7, 23, 34, 48]. Since source reliability is the key to determining value veracity and existing truth 
discovery methods generally require source reliability initialization to launch their algorithm, more 
precise source reliability initialization is much in demand. Recent works adopt an external trustful 
source [8], a subset of labeled data [10, 27, 46], the similarity among sources [47], or the two-sided 
source graph [13, 14] as prior knowledge to initialize or help initializing the source reliability. A 
neural network approach which learns complex relational dependency between source reliability 
and claim truthfulness has been recently proposed for truth discovery in social sensing [28]. In 
some scenarios, it is reasonable to estimate multiple source reliabilities for a single source so 
that the variety in source reliability can be captured. Therefore, several methods [18, 26, 46] have 
been designed to capture the fine-grained source reliability. In most truth discovery works, source 
reliability is a parameter that is positively correlated with the probability of a source asserting 
truths. However, in the works [20, 30, 33, 36, 50], the meaning of this parameter is further enriched 
to fit more complex application scenarios. The research works in [14, 20, 43] take the long-tail 
phenomenon on source coverage into consideration to avoid small sources from being assigned 
extreme reliability. By considering incorporation of bad sources may even hurt the performance of 
truth discovery, [4, 10, 36] provide methods to wisely select sources for truth discovery constrained 
by the cost and output quality. For relations among objects, in [16, 31, 47], how object difficulty 
and the relations among objects affect truth discovery have been taken into consideration. A series 
of methods incorporate the implications or issues of the claimed values in the development of truth 
discovery, such as data type (e.g., GTM [49], CATD [20], EvolvT [52] are designed for continuous 
data, while 2-Estimates and 3-Estimates [16], Investment and PooledInvestment [31] are designed 
for categorical data), missing values [39], complementary vote [16, 50] and Local Closed World 
Assumption (LCWA) [8, 9], value similarity [6, 45], hierarchical structure of claimed values [8, 9]. For 
identified truths, as multi-valued objects widely exist in the real-world, various works have also been 
proposed to resolve the challenges presented by the multi-truth discovery (MTD) [14, 15, 34, 38, 40–
42, 50, 53]. Instead of providing a point estimator for each object’s truth, Xiao et al. [44] propose a 
novel truth discovery method (i.e., ETCIBoot) to construct confidence interval estimates as well as 
identify truths, where the bootstrapping techniques are nicely integrated into the truth discovery 
procedure.

Generally, there are two categories of previous studies on performance evaluation and comparison 
of truth discovery methods. The first category includes the works that propose novel and advanced 
approaches in various scenarios. To validate the performance of their proposed approaches and show 
how their approaches outperform the state-of-the-art methods, those projects conduct comparative 
studies by running experiments on real-world datasets with manually collected ground truth.
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Yin et al. [45] show the effectiveness of their proposed TruthFinder by conducting experiments
on one real-world dataset, i.e., Book-Author dataset, which contains 1, 263 objects. The manually
collected ground truth only covers 7.91% of the objects. With truth discovery gaining growing
popularity, considerable methods [5, 10, 14, 15, 20, 25, 29, 31, 35, 40, 41, 43, 44, 49–51] have been
proposed to deal with various scenarios. Those works, however, have the common limitation that
they either require labour-intensive labelling of data or use datasets with limited ground truth to
conduct experiments. Besides the Book-Author dataset, the frequently-used datasets, including
Flight [22] (covering 8.33% of complete ground truth), Population [31] (0.702%), Movie [50] (0.663%)
and Biography [31] (0.069%) are all feature sparse or have low-quality ground truth, which makes
the experimental data evaluated on those datasets cannot be fully trusted. The game dataset [20, 44]
is collected by crowd-sourcing, which contains the answers of 2, 103 questions from 37, 029 Android
users based on a TV game show “Who Wants to Be a Millionaire" via an Android App. This type of
datasets are usually limited to specific sets of questions and require a high labour cost.

The second category of the studies is presented in surveys [22, 24, 37, 51] that aim at investigating
and analyzing the strengths and limitations of the current state-of-the-art techniques. In particular,
Li et al. [22] study the performance of sixteen data fusion methods in terms of precision and recall,
on two real-world domains, namely Stock and Flight. Based on their experiments, the authors point
out that the collected ground truth tends to trust data from certain sources, which sometimes puts
wrong values or coarse-grained values in the ground truth. Moreover, we find that their constructed
ground truth are relatively sparse, with the one for the stock domain covering only 200/1000 = 20%
of the complete ground truth, and the one for the flight domain covering only 100/1200 = 8.33%.
The most recent survey [24] provides a comprehensive overview of truth discovery methods and
summarizes them from five different aspects, but they do not conduct any comparative experiments
to show the diverse performance of the methods. Waguih et al. [37] point out that the sparse ground
truth is not statistically significant to be legitimately leveraged for the accuracy evaluation and
comparison of methods. To the best of our knowledge, they are the first to implement a dataset
generator to generate synthetic datasets with the control over ground truth distribution, for the
sake of comparing existing methods. Different from their work, our approach tries to evaluate the
performance of various truth discovery methods without using ground truth, which is applicable
to more general real-world scenarios.

3 PRELIMINARIES
3.1 Problem Formulation
Current truth discovery methods take as input some conflicting triples (i.e., a given dataset) in the
form of {source, object, value}, where source (s ∈ S) denotes the location where the data originates,
object (o ∈ O) is an attribute of an entity, and value (Vso ⊂ V ) depicts the potential value set of an
object claimed by a source. For example, a triple, {“www.imdb.com”, “the director of Beauty and
the Beast”, “Bill Condon”}, indicates that the website “IMDb” claims that the director of the movie
“Beauty and the Beast” is “Bill Condon”. If o is a single-valued object, |Vso | = 1. For example, “the
age of a person” only has one single value; on the other hand, if o is a multi-valued object, |Vso | is
bigger than 1. For example, a person might have more than one child.
Truth discovery methods infer truth labels (“true” or “false”) for the triples as the output. Ac-

cording to whether the methods assume more than one true value for each object [50], the current
methods can be grouped into two categories: single-valued methods [6, 16, 21, 31–33, 45] and
multi-valued methods [14, 15, 34, 38, 40–42, 50, 53]. Single-valued methods infer a truth label to
each triple. When multi-valued objects exist in the given dataset, single-valued methods simply
concatenate and regard the values provided by the same source as a single joint value. Specifically,
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Table 1. Notations used in the paper

Notation Explanation
o, O An object (resp., Set of all objects), o may be single-valued/multi-valued
s , S A source (resp., Set of all sources)
v , V A claimed value (resp., a set of all claimed values)
Vs The set of all values provided by s
Vo The set of all claimed values on o

m,M A truth discovery method (resp., Set of truth discovery methods)
Vso The potential value set of o claimed by s

Vo
∗, V ∗ The ground truth of o (resp., of the given dataset)

Vo
m , Vm The identified truth of o (resp., the given dataset) output bym
V i The incomplete ground truth of the given dataset
Sv The set of sources provide claimed value v on an object
cV The confidence score ofV ,V is a single joint value
τs The trustworthiness of s
ϕ The observation of which value each source in the given dataset votes for
ϕsv The observation of s providing a particular value v (v ∈ Vo )
ϕs The observation of source s with its claimed values

P (ϕ |Vm ) The probability of ϕ conditioned on Vm

τs (m) Given Vm , the probability that the claimed values of s is true
Ps (vt |V

m
o ) (resp., Ps (vf |Vm

o )) Given Vm
o , the probability s provides a particular true (resp., false) value on o

Vs
t (m), Vs f (m) The set of all true (resp., false) values provided by s , given Vm

P (ϕsv |V
m ) The probability of ϕsv conditioned on Vm

P (ϕs |V
m ) The probability of ϕs conditioned on Vm

Cm The confidence of methodm

given a multi-valued object o (|Vso | > 1), they regard Vso as a single joint value, denoted as V , 
instead of considering each claimed value v ∈ Vso individually. They label the values in Vso as all 
true (i.e., V is true) or all false (i.e., V is false) together. In contrast, multi-valued methods treat 
the claimed values in Vso individually, and might assign different truth labels to the claimed values 
in each triple. Table 1 summarizes the notations used in this paper. Due to the complexity of source 
trustworthiness calculation in the multi-valued scenario and the lack of synthetic dataset generator 
that generates datasets with multi-valued objects and complete ground truth, we leave the method 
comparison without using ground truth for multi-valued truth discovery (MTD) methods as our 
future work.

Formally, we name the actual value of an object o the ground truth of o (denoted by Vo 
∗), and the 

triple involves o with the label “true” output by a truth discovery method m the identified truth of o 
(denoted by Vom ). In single-valued scenario, |Vo 

∗ | = 1, |Vom | = 1, while in multi-valued scenario, 
|Vo 
∗ |, |Vom | both might be greater than 1. After applying a group of truth discovery methods M one 

by one on the triples, each method m ∈ M outputs the identified truth for each object o  ∈ O . The 
closer Vom is to Vo 

∗ for each object, the better the method m performs. We denote the identified 
truth of all objects in O output by method m as V m (Vom ⊂ V m ), and the ground truth of all objects 
in O , i.e., the complete ground truth of the given dataset, as V ∗ (Vo 

∗ ⊂ V ∗). In most cases, the ground 
truth provided with each frequently utilized real-world dataset, denoted by V i , is only a subset of 
the complete ground truth (V i ⊂ V ∗). We define the coverage of the ground truth as follows:

Definition 3 .1. Coverage of the Ground Truth indicates the percentage of objects covered by 
the ground truth over all the objects in the given dataset. The coverage of the complete ground
truth is 100%. □
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Given the output of each truth discovery method, i.e.,Vm ,m ∈ M , and the ground truth (V i ), the
traditional ground truth-based evaluation approaches evaluate the effectiveness of each method
in terms of precision, recall, F1 score, accuracy/error Rate, and specificity for categorical data. For
each metric, the higher the value is, the better the method performs. In particular, to derive those
five metrics, the ground truth-based approaches first produce a confusion matrix for each method.
It cumulatively counts the numbers of true positives, false positives, true negatives, and false
negatives for each object o covered by V i . Then, based on the matrix, it calculates the metrics.
However, as V i is generally only a very small part of V ∗, the distributions of true positives, false
positives, true negatives, and false negatives, obtained in this small sample space cannot reflect the
real distributions. Therefore, the derived metrics are not statistically significant to be legitimately
leveraged for method accuracy evaluation and comparison.

3.2 Motivation
As analyzed in Section 2, a range of truth discovery methods are proposed for different application
scenarios. In order to includemoremethods in a comparable environment andmake the computation
of our approach tractable, we make the following assumptions:
• Assumption 1 (Source consistency). A source is likely to provide true information with the
same probability for all the objects.
• Assumption 2 (Source independence). Data sources are independent of each other, i.e., no
source-to-source relationship exists in the given dataset.
• Assumption 3 (Object independence). Objects are independent of each other, i.e., no object-to-
object relationship exists in the given dataset.

We focus on categorical data type and single-valued truth discovery methods in this paper, and
leave the fine-grained source reliability and enriched meaning of source reliability as our future
work. As these twelve truth discovery methods, i.e., Majority voting, Accu [6] 2, TruthFinder [45],
Sums, Average-Log, Investment, PooledInvestment [31, 32], 2-Estimates, 3-Estimates [16], Sim-
pleLCA, GuessLCA [33], CRH [21], are all single-valued methods that are compliant with the above
assumptions and applicable for categorical data, we implement and compare them to describe the
motivation of our work and evaluate our approach. In this section, we conduct empirical investiga-
tions on these twelve truth discovery methods using synthetic datasets with varied coverages of the
ground truth to investigate the bias introduced by incomplete ground truth.
The synthetic datasets with complete ground truth are generated by the dataset generator

implemented by Waguih et al. [37]. This generator involves six parameters that are required to be
configured to simulate a wide spectrum of truth discovery scenarios. We will introduce the settings
of those parameters in detail in Section 5.1. We tuned the ground truth distribution per source (GT )
for all the seven possible distributions, including uniform, Random, Full-Pessimistic, Full-Optimistic,
80-Pessimistic, 80-Optimistic, and Exponential. Based on the above configurations, we obtained seven
dataset groups, each group containing 10 datasets. The metrics, namely precision, recall, F1 score,
accuracy and specificity of each method were measured as the average of 10 executions over the 10
datasets included by the same dataset group. To calculate the metrics, for each dataset, we tuned
the coverage of the ground truth from 10% to 100%, and also from 1% to 10%, by randomly picking
up the specific quantity of objects from the complete ground truth. Due to the limited space, we
only show the experimental results on two settings, namely 80-Pessimistic and Full-Pessimistic,
with the corresponding datasets depicted as Synthetic80P and SyntheticFP. The experimental results
on all the other datasets show the same results. Note that all the objects in the synthetic datasets

2Note that Accu is not compliant with Assumption 2 since it takes the copying relationship among sources into consideration.
We chose this method to test how our approach performs when source-to-source copying relationship exists.
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(a) Coverage tuned from 10% to 100% for Synthetic80P
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(b) Coverage tuned from 1% to 10% for Synthetic80P
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(c) Coverage tuned from 10% to 100% for SyntheticFP
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(d) Coverage tuned from 1% to 10% for SyntheticFP

Fig. 1. Precision/Recall of twelve truth discovery methods evaluated on different coverages of the leveraged 
ground truth

have only one true value, thus the resulting precision, recall, and F1 score equal to each other. The 
accuracy and specificity show the same ranking results. Figure 1a and Figure 1c show the precision 
and recall of all the twelve methods with the coverage of the leveraged ground truth tuned from 
10% to 100%, while Figure 1b and Figure 1d show those of the methods with the coverage tuned 
from 1% to 10%. The latter range forms the sparse ground truth, which is closer to the reality, where 
the coverage of the collected ground truth is always below 10%, sometimes even below 1%.

Ideally, if the performance evaluation is not biased by the incomplete ground truth, there should 
be no intersecting lines in the figures, demonstrating that the ranking of the metrics of the methods 
is consistent with the results measured on complete ground truth. Even if two or more methods 
show the same performance, the precision/recall lines of those methods in the figures should totally 
overlap rather than intersect.

However, for both types of datasets, we cannot get the completely correct ranking for each type 
of datasets until the coverage of the leveraged ground truth grows up to 60%, which is generally 
impossible to obtain in reality. The results are even worse for the sparse ground truth. As shown 
in Figure 1b and Figure 1d, by tuning the coverage of the ground truth, the ranking of methods
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fluctuates all the time, and no correct result is returned. That means the performance evaluation is
strongly biased by the sparse ground truth. In most cases, real-world datasets would not have strict
mathematical distributions, such as source coverage distributions, ground truth distribution per
source, and distinct value distribution per object might be random. Therefore, the ranking based
on real-world datasets with sparse ground truth would be even less correct.

4 OUR APPROACH
Under the single-valued assumption, by identifying a value of an object to be true, a truth discovery
method is implying that all the other values of the object are false. When a method incorrectly
identifies a false value of an object to be true, it certainly asserts the true value as a false value. In
this case, the false positives are equivalent to false negatives, and the recall and F1 scores equal to
the precision.

However, when it comes to the case of multi-valued objects, the identified truth of a multi-valued
object may overlap with the ground truth. Simply labeling a value set as true or false according to
whether it equals to the ground truth will degrade the accuracy of the performance evaluation of the
method. For example, if the identified truth for “Tom’s children” is {“Anna, Tim”}, and the ground
truth is {“Anna, Tim, Lucas”}, the identified truth is partially true, rather than false. Therefore, we
propose to treat each value in the identified value set individually. In this case, the false positives
are no longer equivalent to false negatives. Given that neither the precision nor the recall of a
method can reflect the performance of the method individually, we need to measure both the
accuracy and the completeness of the methods’ output. For example, given two methodsm1 and
m2,m1 identifies {“Anna, Tim”} as “Tom’s children”, whilem2 identifies {“Anna”} is the only child of
“Tom”. The precision of both methods is 1, as their identified values are all true values, indicating
their performance are the same. However, the recall ofm1 is 2

3 and that ofm2 is 1
3 , indicating the

performance ofm1 is better thanm2.
In this paper, we evaluate the performance of methods separately for single-valued scenarios (i.e.,

scenarios where only single-valued objects exist) and multi-valued scenarios (i.e., scenarios where
multi-valued objects exist). Note that, the selected twelve truth discovery methods all make the
single-valued assumption, but our comparison approach considers the multi-valued scenarios to
evaluate those methods more accurately.

4.1 CompTruthHyp
The most straightforward approach for truth discovery is to conduct majority voting for categorical
data or to average for continuous data. The largest limitation of such an approach is that it assumes
all the sources are equally reliable, which does not hold in most real-world scenarios. Thus, the
most important feature of the existing truth discovery methods is their ability to estimate source
trustworthiness [24]. While identifying the truth, current methods also return cV , the confidence
score of each value V (or the probability of V being true), and τs , the trustworthiness of each
source s (or the probability of source s providing true information), as the intermediate variables. In
particular, a higher cV indicates that valueV is more likely to be true, and a higher τs indicates that
source s is more reliable and the values claimed by this source are more likely to be true. Though
the calculations of cV and τs differ from one method to the other, current methods generally apply
the same principle for truth discovery: if a source claims true values frequently, it will receive
high trustworthiness; meanwhile, if a value is claimed by sources with high trustworthiness, it
will be more likely to be identified as truth. To determine the truth, a weighted aggregation of
the multi-source data is performed based on the estimated source trustworthiness. Thus, value
confidence score and source trustworthiness calculation are the key elements for truth discovery
and can be leveraged to compare the performance of current truth discovery methods.
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In particular, we consider the output of each method, including value confidence score and
source trustworthiness, as the hypotheses about the ground truth. The closer the hypotheses are to
the ground truth, the better the method performs. As different method applies different model to
estimate value confidence score and source trustworthiness, those measurements are incomparable
between different methods. In our approach, we use value binary (i.e., true/false) labels instead of
value confidence scores. We also unify source trustworthiness based on the value binary labels. Due
to the lack of the ground truth, we take the observation of the dataset, or data distributions over
sources, as the gold standard. After this transformation, the comparison of the performance of truth
discovery methods becomes the comparison of their ability to infer the observation of the given
dataset from their hypotheses. We fit the results of different methods into the data distribution of
the given observation to see what is the resulting likelihood of observation conditioned on the
hypotheses. The bigger the likelihood is, the better the method performs.
In this section, we present our approach, CompTruthHyp, which compares the twelve single-

valued truth discovery methods without using ground truth in both single-valued scenarios and
multi-valued scenarios. Our data model includes the following inputs: i) the input dataset for truth
discovery (i.e., {S,O,V } triples ); ii) the identified truth of each method (m ∈ M , |M | = 12); iii)
source trustworthiness and value confidence scores output by each method. The output of our data
model is a ranking of the accuracy of the twelve methods. As we do not have any ground truth,
we propose to obtain the ranking by comparing the methods’ ability to infer the observation of
the given dataset from their outputs. We denote by ϕ the observation of which source votes for
which value in the dataset, Vm the identified truth of a methodm, and P (ϕ |Vm ) the probability of
ϕ conditioned on Vm . A higher P (ϕ |Vm ) indicates that the methodm has bigger ability to capture
the features of the given dataset; thus, its output is more reliable.

Our computation requires several parameters, which can be derived from the inputs: τs (m), the
probability that the claimed value of s is true, given Vm . We will introduce the calculation of τs (m)
in Section 4.2; Ps (vt |Vm

o ) (resp., Ps (vf |Vm
o )), the probability that a source provides a particular

true (resp., false) value for object o, given Vm
o . We will introduce the calculations of Ps (vt |Vm

o ) and
Ps (vf |V

m
o ) in Section 4.3. We compute the required parameters by applying different algorithms

for single-valued and multi-valued scenarios.
In single-valued scenario, |Vso | = 1,|Vom | = 1. In multi-valued scenario, before applying our

approach, we pre-process the given dataset by splitting each triple into |Vso | triples by treating each
claimed value individually. For example, a source s claims “Tom’s children” are {“Anna, Tim”}. The
original triple is denoted as {s , “Tom’s children”, {“Anna, Tim”}}. After pre-processing, we get two
triples, {s , “Tom’s children”, “Anna”} and {s , “Tom’s children”, “Tim”}. “Anna” and “Tim” are two
claimed values by s on object “Tom’s children”. Thus, in single-valued scenario, a claimed value v
is equivalent to Vso . In the multi-valued scenario, a claimed value v is a value in the value set Vso
claimed by a source on an object. Given Vm , Vom ⊂ Vm , v is a claimed value, Vo is the set of all
claimed values on object o, if v ∈ Vm

o , v is identified as a true value by methodm; if v ∈ Vo −Vm
o , v

is identified as a false value by methodm. Formally, if a source s covers an object o, we have the
probability of the observation of s providing a particular value v (v ∈ Vo ), conditioned on Vm , as:

P (ϕsv |V
m ) =

{
τs (m)Ps (vt |V

m
o ); i f v ∈ Vm

o
(1 − τs (m))Ps (vf |V

m
o ); i f v ∈ Vo −V

m
o

(1)

In our observation, we are interested in two sets of values: given V m , Vs t (m), denoting the set of 
true values provided by s ; Vs f (m), denoting the set of false values provided by s . Vs t (m) ∪Vs f (m) = 
Vs , Vs is the set of all values provided by s . Since we assume each source provides each value 
independently, we have the probability of the observation of source s with its claimed values, i.e.,
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ϕs , conditioned on Vm , as:

P (ϕs |V
m ) = (

∏
v ∈Vs t (m),o∈O

τs (m)Ps (vt |V
m
o )

∏
v ∈Vs f (m),o∈O

(1 − τs (m))Ps (vf |V
m
o )) (2)

By assuming sources are independent on each other, the conditional probability of observing the
given dataset ϕ is:

P (ϕ |Vm ) =
∏
s ∈S

(
∏

v ∈Vs t (m),o∈O

τs (m)Ps (vt |V
m
o )

∏
v ∈Vs f (m),o∈O

(1 − τs (m))Ps (vf |V
m
o )) (3)

To simplify the computation, we define the confidence of methodm, denote by Cm , as

Cm =
∑
s ∈S

(
∑

v ∈Vs t (m),o∈O

lnτs (m)Ps (vt |V
m
o ) +

∑
v ∈Vs f (m),o∈O

ln(1 − τs (m))Ps (vf |V
m
o )) (4)

4.2 Source Trustworthiness Normalization
The accuracy of truth discovery methods significantly depends on their source trustworthiness
estimation. Although all methods calculate source trustworthiness as the weighted aggregation
of value confidence scores, they adopt different models and equations. Therefore, the calculated
source trustworthiness by each method has different meaning and is incomparable. To normalize
source trustworthiness output by twelve methods, our approach, CompTruthHyp, regards the
trustworthiness of a source as the probability of its claimed values being true (i.e., precision). We
can derive a confusion matrix as shown in Table 2 for each source based on the identified truth of
each method. Then, we calculate the precision of each source output by each method (τs (m)) as
follows:

τs (m) =
TPs

m

TPs
m + FPs

m (5)

whereTPsm (resp., FPsm ) is the number of true positives (resp., false positives) of the values claimed
by source s , given Vm .
In the single-valued scenario, each source provides one value for any object of interest. Given

Vm , all the values in Vo −Vom are regarded as false (|Vo −Vom | = |Vo | − 1). We calculate τs (m) for
each source by performing Algorithm 1. In particular, for each methodm ∈ M (Line 1), for each
s ∈ S (Line 2), for each o ∈ OS (Line 4, where Os is the objects covered by s), if Vso is true (Line 5),

ALGORITHM 1: The algorithm of source trustworthiness normalization for the single-valued scenario
Input: Given dataset {S,O,V }and Vm for eachm ∈ M .
Output: τs (m) for each s ∈ S ,m ∈ M .

1 foreachm ∈ M do
2 foreach s ∈ S do
3 TPs

m = 0;FPsm = 0;
4 foreach o ∈ Os do
5 if Vso = Vo

m then
6 TPs

m + +;

7 else
8 FPs

m + +;

9 Calculate τs (m) by applying Equation 5;

10 return τs (m) for each s ∈ S ,m ∈ M .
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Table 2. Confusion matrix of a truth discovery methodm

Ground Truth
True False

Methodm True True Positive (TPm ) False Positive (FPm )
False False Negative (FNm ) True Negative (TNm )

ALGORITHM 2: The algorithm of source trustworthiness normalization for the multi-valued scenario
Input: Given dataset {S,O,V } and Vm for eachm ∈ M .
Output: τs (m) for each s ∈ S ,m ∈ M .

1 foreachm ∈ M do
2 foreach s ∈ S do
3 TPs

m = 0;FPsm = 0;
4 foreach o ∈ O do
5 foreach v ∈ Vso do
6 if v ∈ Vom then
7 TPs

m + +;

8 else
9 FPs

m + +;

10 Calculate τs (m) by applying Equation 5;

11 return τs (m) for each s ∈ S ,m ∈ M .

TPs
m increases by one (Line 6), otherwise, FPsm increases by one (Line 7, 8). For each source s ,

τs (m) is calculated by applying Equation 5 (Line 9).
In the multi-valued scenario, we calculate τs (m) for each source using Algorithm 2. As mentioned,
|Vo

m | and |Vso | may be bigger than 1. Therefore, we first pre-process the dataset by splitting the
triples and treating each claimed value in Vso individually (Line 5).

4.3 True-False Distributions
Given the identified truth output by a truth discovery method, we analyze the true-false distribution
of values for each object in the given dataset to calculate the probability that a source provides a
particular true (resp., false) value for an object.

For the single-valued scenario, each object has one single value. Therefore, we have Ps (vt |Vm
o )

fixed to 1. As the false values may have varied distributions on an object, Ps (vf |Vm
o ) can be different

for each observed false value. Given a set of false values of o, (Vo −Vm
o ), we need to analyze their

distribution and calculate the probability (Ps (vf |Vm
o )) for sources to pick a particular value from

the distribution. We define the untrustworthiness of a source as the probability that its claimed
values are false, i.e., (1−τs (m)). For each particular false valuevf , each source that claims this value
gives a vote of (1 − τs (m)) for it being false. We consider there is a box contains all the false claims
provided by all the sources in the given dataset. In this case, a particular claim vf may have several
occurrences in the box, if it is claimed by multiple sources s ∈ Svf . We count the occurrences of
vf by

∑
s ∈Svf

(1 − τs (m)). We calculate the probability of a particular false value being picked, i.e.,
Ps (vf |V

m
o ) by:

Ps (vf |V
m
o ) =

∑
s ∈Svf

(1 − τs (m))∑
vf ′∈Vo−Vm

o

∑
s ′∈Svf ′

(1 − τs ′ (m))
(6)



Comparing Truth Discovery Methods without Using Ground Truth 1:13

where Svf is the set of sources provide vf on o. We calculate this probability for each false value of
each object using Algorithm 3.

ALGORITHM 3: The algorithm of Ps (vf |Vm
o ) calculation for the single-valued scenario

Input: Given dataset {S,O,V } and Vm for eachm ∈ M .
Output: Ps (vf |Vm

o ) for each vf ∈ Vo −Vm
o , o ∈ O ,m ∈ M .

1 foreachm ∈ M do
2 foreach o ∈ O do
3 foreach vf ∈ Vo −V

m
o do

4 foreach s ∈ Svf do
5 Ps (vf |V

m
o )+ = (1 − τs (m));

6 Ps (vf |V
m
o ) of each vf is normalized to satisfy

∑
vf ∈Vo−Vm

o
Ps (vf |V

m
o ) = 1;

7 return Ps (vf |V
m
o ) for each vf ∈ Vo −Vm

o , o ∈ O ,m ∈ M .

In the multi-valued scenario, values in a source’s claimed value set are not totally independent.
Intuitively, the values occurring in the same claimed value set are believed to impact each other. The
co-occurrence of values in the same claimed value set indicates that those values have potentially
similar probabilities of being selected.

We define the weighted association among the distinctive values on the same object to represent
their influence on each other, based on which to compute the probability of each value being
selected. In particular, given Vm

o , we represent the bipartite mapping between true (resp., false)
values on each multi-valued object and sources that claim the true (resp., false) values into a true
(resp., false) value graph. In each true (reps., false) value graph, the identified true values (resp., false
values) in Vm

o (resp., Vo −Vm
o ) are the vertices, and sources that claim those values are the weights

of edges which connect with the values. For example, the value co-occurrences for a multi-valued
object are shown in Figure 2.Vo = {v1, v2, v3, v4, v5, v6},Vm

o = {v1, v2, v4}. True values v2 and v4 are
claimed by both s1 and s4, while false values v3 and v5 are claimed by s2.
The detailed procedure of Ps (vt |Vm

o ) and Ps (vf |V
m
o ) calculation is shown in Algorithm 4. For

each true (resp., false) value graph, we further generate a corresponding square adjacent “true”
(resp., “false”) matrix, which should be irreducible, aperiodic, and stochastic to be guaranteed to
converge to a stationary state. In particular, we first initialize each element in the matrix as the sum
of the trustworthiness (resp., untrustworthiness) of all sources that claim the co-occurrence of the
corresponding pair of true (resp., false) values (Line 8 and Line 17). To guarantee the three features
of the matrix, we add a “smoothing link” by assigning a small weight to every pair of values (Line

V1 V2

V4

S1, S3, S5 S1, S4

S1

(a) True value graph

V3 V5

V6

S3, S5

S2

(b) False value graph

Fig. 2. An example of value co-occurrences for a multi-valued object
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ALGORITHM 4: The algorithm of Ps (vt |Vm
o ) and Ps (vf |Vm

o ) calculation for the multi-valued scenario

Input: Given dataset {S,O,V } and Vm for eachm ∈ M .
Output: Ps (vt |Vm

o ) for each vt ∈ Vm
o , Ps (vf |Vm

o ) for each vf ∈ Vo −Vm
o , o ∈ O ,m ∈ M .

1 β = 0.1;
2 foreachm ∈ M do

// "true" matrix generation

3 foreach o ∈ O do
4 foreach vt1 ∈ V

m
o do

5 foreach vt2 ∈ V
m
o do

6 if vt1 , vt2 then
7 foreach s ∈ Svt1 ∩ Svt2 do
8 TrueMatrix[vt1 ][vt2 ]+ = τs (m);

9 TrueMatrix[vt1 ][vt2 ] = β + (1 − β ) ∗TrueMatrix[vt1 ][vt2 ];

10 Normalize TrueMatrix;
11 Apply FPC random walk computation to obtain Ps (vt |V

m
o ) for each vt ∈ Vm

o ;

// "false" matrix generation

12 foreach o ∈ O do
13 foreach vf1 ∈ Vo −V

m
o do

14 foreach vf2 ∈ Vo −V
m
o do

15 if vf1 , vf2 then
16 foreach s ∈ Svf1 ∩ Svf2 do
17 FalseMatrix[vf1 ][vf2 ]+ = 1 − τs (m);

18 FalseMatrix[vf1 ][vf2 ] = β + (1 − β ) ∗ FalseMatrix[vf1 ][vf2 ];

19 Normalize FalseMatrix;
20 Apply FPC random walk computation to obtain Ps (vf |V

m
o ) for each vf ∈ Vo −Vm

o ;

21 return Ps (vt |V
m
o ) for each vt ∈ Vm

o , Ps (vf |Vm
o ) for each vf ∈ Vo −Vm

o , o ∈ O ,m ∈ M .

9 and Line 18), where β is the smoothing factor. For our experiments, we set β = 0.1 (empirical
studies such as the work done by Gleich et al. [17] demonstrate more accurate estimation). We then
normalize the elements to ensure that every column in the matrix sums to 1 (Line 10 and Line 19).
This normalization allows us to interpret the elements as the transition probabilities for the random
walk computation. Finally, we adopt the Fixed Point Computation Model (FPC) [3] on each “true”
(resp., “false”) matrix to calculate Ps (vt |Vm

o ) (reps., Ps (vf |Vm
o )) for each true (resp., false) value of

each object o ∈ O (Line 11 and Line 20).

5 EXPERIMENTS
In this section, we first introduce our experimental setup in Section 5 .1. Then we report our 
evaluation results on both synthetic datasets in Section 5.2 and real-world datasets in Section 5.3.

5.1 Experimental Setup
5.1.1 Evaluation Metrics. We implemented all the twelve selected truth discovery methods, ground 
truth-based evaluation approach, and CompTruthHyp, in Python 3.4.0. All experiments were 
conducted on a 64-bit Windows 10 Pro. PC with an Intel Core i7-5600 processor and 16GB RAM. We 
ran each truth discovery method 10 times and used the above introduced five traditional evaluation
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metrics, including precision, recall, accuracy, F1 score, and specificity, as well as confidence output
by CompTruthHyp, to evaluate their average performance. For the single-valued scenario, as the
experimental results show that the rankings of different metrics are all equivalent, we discuss the
precision of each method as an example. For the multi-valued scenario, we additionally introduce a
newmetric, namely average, to measure the overall performance of the methods, which is calculated
as the average of the precision, recall, accuracy and specificity of each method.

To validate our approach, CompTruthHyp, we need to show the ranking of confidence of twelve
selected methods, is closer than the rankings of various evaluation metrics of the methods derived
from sparse/low-quality ground truth, to the real ranking of the performance of the methods
derived from the complete ground truth. In this paper, we adopt Cosine similarity (denoted as Cos.)
and Euclidean distance (denoted as Dist.) to measure the distance of the two rankings. For Cosine
similarity, a bigger value means better performance, while for Euclidean distance, a smaller value
indicates better performance.

5.1.2 Synthetic Datasets. For the single-valued scenario, we applied the dataset generator intro-
duced in Section 3.2, which can be configured to simulate a wide spectrum of truth discovery
scenarios (except the multi-valued scenario). In particular, three parameters determine the scale of
the generated dataset, including the number of sources (|S |), the number of objects (|O |), and the
number of distinct values per object (|Vo |). The other three parameters determine the characteristics
of the generated dataset, including source coverage (cov), ground truth distribution per source
(GT ), and distinct value distribution per object (conf ). We fixed the scale parameters by setting
|S | = 50, |O | = 1, 000, and |Vo | = 20. To better simulate the real-world scenarios, we configured
both cov and conf as exponential distributions. By tuning GT as all possible settings, including
uniform, Random, Full-Pessimistic, Full-Optimistic, 80-Pessimistic, 80-Optimistic, and Exponential,
we obtained eight groups of synthetic datasets (each group contains 10 datasets): i) U25 (Uniform
25), each source provides the same number (25%) of true positive claims; ii) U75 (Uniform 75), each
source provides the same number (75%) of true positive claims; iii) 80P (80-Pessimistic), 80% of the
sources provide 20% true positive claims; 20% of the sources provide 80% true positive claims. iv)
80O (80-Optimistic), 80% of the sources provide 80% true positive claims. 20% of the sources provide
20% true positive claims; v) FP (Full-Pessimistic), 80% of the sources provide always false claims
and 20% of the sources provide always true positive claims; vi) FO (Full-Optimistic), 80% of the
sources provide always true positive claims and 20% of the sources provide always false claims. vii)
R (Random), the number of true positive claims per source is random; viii) Exp (Exponential), the
number of true positive values provided by the sources is exponentially distributed. All synthetic
datasets were generated with the complete ground truth.

5.1.3 Real-World Datasets. We refined three real-world datasets for both single-valued and multi-
valued scenarios. In particular, the Flight dataset, where each object only contains one true value,
was applied for the single-valued scenario. The Book-Author dataset and the Parent-Children
dataset, where each object may contain multiple true values, were applied for the multi-valued
scenario.

The Flight dataset was prepared by collecting gate information from the original Flight dataset [6].
The original Flight dataset contains 2, 864, 985 claims collected from 38 sources from the flight
domain. The sources include 3 airline websites (AA, UA, Continental), 8 airport websites (such as
SFO, DEN), and 27 third-party websites, including Orbitz, Travelocity, etc. A claim represents the
expected/actual departure/arrival time/gate of a particular flight on a particular day. It took the
data provided by the three airline websites on 100 randomly selected flights as the gold standard.
As this dataset is relatively big and our work focuses on categorical data, we refined and produced
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a new Flight dataset with complete ground truth by only reserving the departure/arrival gate of 
the flights covered in the original ground truth. The new dataset contains 38, 493 distinctive claims 
provided by 21 sources.

The Book-Author dataset [45] contains 33, 971 records crawled from www.abebooks.com. These 
records are collected from numerous book websites (i.e., sources). Each record represents a store’s 
positive claims on the author list of a book (i.e., objects). We refined the dataset by removing the 
invalid and duplicated records, and excluding the records with only minor conflicts to make the 
problem more challenging—otherwise, even a straightforward method could yield competitive 
results. We finally obtained 13, 659 distinctive claims, 624 websites providing values about author 
name(s) of 677 books, each book has on average 3 authors. The ground truth provided by the 
original dataset was utilized, which covers only 7.91% of the objects. The manually collected ground 
truth is sparse yet with high quality.

The Parent-Children dataset was prepared by extracting the parent-children relations from the 
Biography dataset [31]. We obtained 227, 583 claims about the names of the children of 2, 579 people 
(i.e., objects) edited by 54, 764 users (i.e., sources). In the resulting dataset, each person has on 
average 2.48 children. We used the latest editing records as the ground truth, which covers all the 
objects. However, the quality of ground truth collected in this simple way is very poor.

5.2 Experiments on Synthetic Datasets
In this set of experiments, we aim to compare the confidence (Cm) and the precision of twelve 
methods calculated on different coverages of leveraged ground truth, denoted as P(1%) to P(100%), 
with their real precision calculated on the complete ground truth, denoted as P(100%), on eight 
groups of synthetic datasets with different settings of ground truth distributions. Table 3 and 4 
show the experimental results. As the results on U25 and U75 show similar features with 80P, we 
omit to show them in this paper due to the limited space.

We observe that none of the twelve methods constantly outperforms the others in terms of pre-
cision, and a “one-fits-all” approach does not seem to be achievable. Based on the best performance 
values (shown in bold), we can see that the best method changed from dataset to dataset. In some 
cases, an improved method may not even beat its original version as a result of different features 
of the applied datasets. For example, while in most datasets 2-Estimates performed better than 
3-Estimates, it performed worse than 3-Estimates in FP and R, where most of the claims provided 
by most sources could be false. This shows that in such cases, the factor that “hardness of facts” 
should be considered to achieve better truth discovery. This instability of truth discovery methods 
reveals the importance of evaluating the methods. With a better evaluation approach, users can 
choose the best method for truth discovery more easily and accurately for a given scenario.

From the table, we can see that CompTruthHyp can always identify the best method for the given 
dataset. For 80P, 80O, and FO, the majority of methods performed better than random guessing 
with the real precision bigger than 0.5. For FO, the ranking of precision stayed stable with the 
coverage of the ground truth tuned from 1% to 100% and was consistent with the ranking of the 
real precision. The ranking of the confidence of methods output by CompTruthHyp was also equal 
to the ranking of their real precision, with Dist . = 0, and Cos . = 1. While CompTruthHyp and 
ground truth-based evaluation approach showed similar performance on this type of datasets in 
terms of accuracy, our approach did not cost any efforts for ground truth collection. For 80P and 
80O, when the coverage of the ground truth increased, the Euclidean distance decreased until it 
reached 0 (70% for 80P, 80% for 80O), the Cosine similarity increased until it reached 1 (70% for 80P, 
80% for 80O). The Euclidean distance and Cosine similarity of the confidence ranking were 1.414 
and 0.998 for 80P, which were as good as those of P(40%), while for 80O, the ground truth-based
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evaluation approach beat our approach only when they got a ground truth with coverage bigger
than 70%. Moreover, in real-world datasets, the collection of a ground truth with coverage bigger
than 10% is a rather challenging task.
For R, FP, and Exp, none of the methods was reliable, except for SLCA on FP. Almost all the

methods performed worse than random guessing with a real precision smaller than 0.5, and the
real precision of those methods was similar with each other. For R, with the coverage of the ground
truth increased, the Euclidean distance and Cosine similarity of the precision ranking fluctuated.

Even when the coverage reached 90%, the Euclidean distance was 3.464, which is still not close
enough to the real ranking. Though the Euclidean distance of the confidence ranking was 16.733
and the Cosine similarity was 0.778, which are not close to the real ranking, it performed better
than the rankings of P(1%), P(4%), P(5%), P(6%), P(8%) in terms of Euclidean distance, and those
of P(4%), P(5%), P(6%), P(7%), P(8%) in terms of Cosine similarity. In the case of FP, our approach
can only identify the best method and performed better than the ground truth-based evaluation
approach when the coverage of the ground truth was 1%. However, in this case, only the best
method performed better than random guessing and all the other methods showed very similar bad
performance. For Exp, where one source always lies and one source always tells the truth for all
the objects and the remaining sources range from 1% to 99% of values they claim is true. None of
the methods was reliable and all of them performed similarly bad. Even in this case, our approach
can still find out the best method, i.e., 3-Estimates.

5.3 Experiments on Real-World Datasets
In this set of experiments, we report comparative studies with three real-world datasets. For the
single-valued scenario, we applied the Flight dataset with complete ground truth. We aim to
compare the ranking of confidence (Cm) of the twelve methods with the ranking of their real
precision calculated on the complete ground truth. Table 5 shows the experimental results, with
the top-three best performance in bold. As there are five groups of sources with potential copy
in this dataset and only Accu took the copying relations into consideration, Accu performed the
best among the twelve methods. Though the Euclidean distance of the confidence ranking is 6.164
and the Cosine similarity is 0.971, which are not perfectly close to the real ranking, our approach
successfully labels the best two methods as well as the four worst methods. The reasons why our
approach did not achieve the perfect ranking may include: i) We observed data sharing between
sources, and even on low-quality data in this dataset, and this violated the source independence
assumption made by our approach. We will consider to relax this assumption in our future work.
ii) Generating gold standards is challenging when we cannot observe the real world in person but
have to trust some particular sources. Since every source can make mistakes, the gold standard of
the Flight dataset could contain errors.

For multi-valued scenario, as precision cannot reflect the overall performance of a method with
the complete ground truth (as analyzed in Section 3.1), we compared the confidence ranking of
the methods with the ranking of all six metrics calculated on the provided ground truth, including
precision, recall, accuracy, specificity, F1 score, and average. Table 6 shows the experimental results,
with the top-three best performance in bold. These results also validate the observation that no
method constantly outperforms the others. We also observed that the rankings of different metrics
differed from one another, which validates our assertion that any one of those metrics can not
individually reflect the overall performance of the methods. All methods performed worse on the
Book-Author dataset than on the Parent-Children dataset with lower precision, recall, accuracy,
and specificity. The possible reasons contain the poorer quality of sources (poorer ground truth
distribution), more missing values (i.e., true values that are missed by all the sources), and the
smaller dataset size.
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Table 5. Experimental results for Flight dataset with complete ground truth (the single-valued scenario)

Dataset Method Precision Cm

Flight

Voting 0.889 -21564
Sums 0.915 -20281
AvgLog 0.914 -20326
Inv 0.636 -28108
PInv 0.691 -27195
Tru 0.818 -22925
Est2 0.887 -20065
Est3 0.562 -29167
Accu 0.940 -19738
CRH 0.923 -19748
SLCA 0.893 -19855
GLCA 0.894 -21419
Dist. 0.000 6.164
Cos. 1.000 0.971

Table 6. Experimental results for two real-world datasets (the multi-valued scenario)

Dataset Method Precision Recall Accuracy Specificity F1 Average Cm

Book

Voting 0.749 0.712 0.576 0.022 0.730 0.515 -26258
Sums 0.851 0.685 0.651 0.511 0.759 0.674 -23011
AvgLog 0.841 0.663 0.629 0.489 0.742 0.656 -23477
Inv 0.815 0.745 0.659 0.311 0.778 0.633 -23860
PInv 0.812 0.750 0.659 0.289 0.780 0.628 -23435
Tru 0.847 0.663 0.633 0.511 0.744 0.664 -23303
Est2 0.863 0.755 0.707 0.511 0.806 0.709 -21915
Est3 0.828 0.734 0.664 0.378 0.778 0.651 -24907
Accu 0.858 0.788 0.725 0.467 0.822 0.709 -21390
CRH 0.850 0.679 0.646 0.511 0.755 0.672 -22751
SLCA 0.861 0.810 0.742 0.467 0.835 0.720 -21670
GLCA 0.846 0.658 0.629 0.511 0.740 0.661 -23243
Dist. 5.099 13.153 11.225 13.153 10.863 4.472 0.000
Cos 0.980 0.865 0.901 0.861 0.909 0.985 1.000

Parent

Voting 0.919 0.901 0.845 0.462 0.910 0.782 -330234
Sums 0.938 0.927 0.883 0.585 0.933 0.833 -314582
AvgLog 0.938 0.926 0.882 0.581 0.932 0.832 -314124
Inv 0.915 0.919 0.841 0.457 0.917 0.783 -331351
PInv 0.912 0.912 0.839 0.454 0.912 0.779 -331523
Tru 0.938 0.926 0.881 0.581 0.932 0.832 -315231
Est2 0.940 0.927 0.885 0.595 0.933 0.836 -309873
Est3 0.905 0.889 0.822 0.366 0.897 0.746 -340031
Accu 0.941 0.928 0.885 0.588 0.934 0.836 -310314
CRH 0.938 0.927 0.883 0.586 0.932 0.833 -313421
SLCA 0.942 0.927 0.886 0.601 0.935 0.839 -302873
GLCA 0.938 0.924 0.876 0.578 0.931 0.829 -321098
Dist. 2.828 3.742 2.000 1.000 3.162 1.414 0.000
Cos. 0.994 0.989 0.997 0.999 0.992 0.998 1.000

For both datasets, our approach can consistently identify the top-three best methods. The 
confidence ranking is more similar with the ranking of average than the ranking using other 
metrics. This validates that confidence metric reflects the overall performance of  the methods. 
However, for the Book-Author dataset, the Euclidean distance of the confidence ranking to average 
was still bigger than 4.0 and the Cosine similarity with average was still lower than 0.99. This 
is because the ground truth is relatively sparse, so the ranking of average cannot reflect the real 
performance ranking of the methods. Another reason is that there may be copying relations among 
sources, which are neglected by all the methods including our approach. Compared with the 
Book-Author dataset, the confidence ranking was closer to the rankings of all metrics on the 
Parent-Children dataset. This is because the ground truth covers all the objects and is obtained by 
collecting all the latest editions regarding the objects. Although the precision of the ground truth
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does not reach 1, the quality of sources in this dataset is relatively high. Therefore, the leveraged
ground truth is similar to the complete ground truth.

6 CONCLUSION
In this paper, we focus on the problem of comparing truth discovery methods without using the
ground truth, which has not been studied by previous research efforts. We first motivate this study
by revealing the bias introduced by sparse ground truth in evaluating the truth discovery methods,
by conducting experiments on synthetic datasets with different coverages of the ground truth.
Then, we propose a generic approach, called CompTruthHyp, to solve this bias. In particular, we
propose two approaches for single-valued and multi-valued scenarios, respectively. Given a dataset,
we first calculate the precision of each source by the output of each truth discovery method. Based
on the source precision and the identified truth, we estimate the probability of observations of
the given data set, for each method. The performance of methods is determined by the ranking
of the calculated probabilities. Experimental studies on both real-world and synthetic datasets
demonstrate the effectiveness of our approach.

This paper is our first step towards truth discoverymethods comparison without using the ground
truth. Our future work will focus on enhancing the approach by considering more complex appli-
cation scenarios. For example, we are interested in the scenarios with complex source relationships
such as copying and mutual supportive relations (i.e., two sources with similar facts) [24].
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