
Received February 6, 2020, accepted March 1, 2020, date of publication March 10, 2020, date of current version March 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2979939

A Decentralized Latency-Aware Task Allocation
and Group Formation Approach With Fault
Tolerance for IoT Applications
MUHAMMAD MUDASSAR 1, YANLONG ZHAI 1, (Member, IEEE),
LEJIAN LIAO1, (Member, IEEE), AND JUN SHEN 2, (Senior Member, IEEE)
1School of Computer Science, Beijing Institute of Technology, Beijing 100081, China
2School of Computing and Information Technology, Faculty of Engineering and Information Science, University of Wollongong, Wollongong,
NSW 2522, Australia

Corresponding authors: Yanlong Zhai (ylzhai@bit.edu.cn) and Lejian Liao (liaolj@bit.edu.cn)

This work was supported by the Natural Science Foundation of China under Grant 61602037 and Grant 61872079.

ABSTRACT Development of internet of things (IoT) and smart devices eased life by offering numerous
applications targeting to provide real-time low latency services, but they also brought challenges in handling
huge data generated from the powerful computations, to get a job done. Decentralized edge computing could
help to achieve latency requirements of the applications by executing them closer to the user at edge of
network, but most of the current studies actually deployed centralized approaches for cluster computing at
edge, which put extra overhead of cluster formation and management. In this article, we propose to group
heterogeneous edge nodes on task arrival with a more decentralized method and execute tasks in parallel to
meet their deadline. On the other hand, to guarantee successful execution of critical IoT application running
in an edge network, fault tolerance has to be significantly considered. For resource limited edge devices,
there is a great need for efficient fault tolerance techniques, which can provide reliability based on device’s
local information, without worrying about overall network topology. In this article, our novel method is to
increase task reliability being executed in distributed edge computing environment through finding reliability
of an edge node locally, and by providing fault tolerance to increase overall application availability. Our
proposed fault tolerance technique works in decentralized mode by executing new algorithms to handle
above mentioned problems. Our experiment results show that our approach is effective as well as providing
desired goals of achieving deadline for latency-aware IoT applications, with staggering decrease in overall
network traffic along with ensuring reliability and availability.

INDEX TERMS Edge computing, distributed computing, Internet of Things, fault tolerance.

I. INTRODUCTION
Internet of Things (IoT) is expanding day by day and mak-
ing lives of individuals easier by offering many applications
like smart cities, home automation, security surveillance, and
smart health care at any time from any place. All of these
devices and applications under umbrella of IoT are generating
large amount of data, which can be very useful if analyzed
properly well on time. Big data processing technologies usu-
ally use cloud-computing resources for big task processing,
but accessing cloud resources from end user devices adds
latency. Further, it requires high bandwidth and is not suitable

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Maaz Rehan .

for real-time systems. To address these issues, mobile edge
computing [1] was proposed, which allows moving compu-
tations at edge of the network closer to the users and IoT
end-points.

To guarantee low-latency execution for the deadline sensi-
tive IoT applications, edge computing offers to process these
applications in close proximity to end devices that act as both
data generators and consumers. There are various charac-
teristics of edge computing making it an appropriate plat-
form for providing critical IoT services. In edge computing
where resources are available inside local network, it offers
more privilege to a number of applications that require:
a) low-latency real-time results; b) decentralization;
c) location-oriented; d) mobility; e) heterogeneity [2].

49212 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-4296-2809
https://orcid.org/0000-0002-0168-8308
https://orcid.org/0000-0002-9403-7140
https://orcid.org/0000-0003-1869-2757

M. Mudassar et al.: Decentralized Latency-Aware Task Allocation and Group Formation Approach

Besides the resource rich cloud computing paradigm,
nodes in edge computing, referred as edge nodes, are
resource-poor devices and heterogeneous in terms of
resources along with the mobility property attached to them.
IoT applications with resource intensive tasks, when exe-
cuted on individual edge nodes, might hinder quality of
service (QoS) and user satisfaction. This results as coun-
terproductive rather than productive. In edge computing
paradigm, the concept of task offloading to a remote server
promise to fill the gap between inefficient processing capabil-
ity of edge node and high computation demands of resource
intensive applications [3], [4]. However, cloud task offloading
worsens the problem of latency and increases data traffic
routed to cloud.

Usually smart devices are co-located in proximity to other
devices from time to time, suggesting that edge nodes can
potentially collaborate to execute a resource intensive, real-
time, latency-aware task by dividing its computations among
available devices, as shown in Fig. 1. By distributing com-
plex (compute-intensive) processing (e.g., speech recogni-
tion, object detection, planning navigation, machine learning)
in multiple edge resources closer to IoT end devices might
result in lower latency, and also a staggering cut down in over-
all network traffic can be achieved, as data will be restricted
in local network rather than routing towards cloud in default
mobile edge computing.

FIGURE 1. Distributed edge computing on available smart devices in the
locality.

Techniques for resource leveraging at the edge [5] or clus-
tering solutions [6] to group IoT devices might solve the
above problem to some extent, but they rely on master-slave
architecture or involve hierarchal grouping of devices. One
common property of current grouping or clustering meth-
ods is that they operate in a non-distributed and centralized
manner, which can cause problems in heterogeneous edge
nodes environment. The cluster management in itself has a
constant overhead in terms of cost and executions, and the
failure of cluster headwill make the entire cluster unavailable.
Hence, there is a need for decentralized technique helping the
edge-computing environment to leverage resources to process
big tasks of IoT applications, and by dividing application

tasks on a number of edge devices executing them in parallel
to fulfill latency requirements.

Moving away from the cloud towards edge computing, and
by pushing computations at edge of the network to execute
tasks distributed, poses new challenges to meet IoT appli-
cation requirements (e.g. availability and reliability). In the
edge computing environment where the resources of edge
nodes are limited in terms of energy, computation and storage
of edge devices along with their mobility property make them
make them more susceptible to failures than other systems.
Hence, special care is required to ensure reliability of the
task running in heterogeneous distributed edge network. It is
of great importance to design a fault tolerant system for
distributed edge networks with special focus on increasing
the reliability, along with handling dynamic behavior of edge
devices.

There exist research work investigating reliability and fault
tolerance in edge computing and IoT infrastructure. Research
work in [7]–[9], concentrated on providing fault tolerant
application design by considering services running on other
nodes as a backup, or using concept of reversibility functions
to recover from a failed event. Reliability and availability
modeling and analysis are important requirements for data
storage to ensure robust design and operation. Research work
in [10] evaluated reliability of mesh storage area network
(SAN), while [11] used data replication techniques to ensure
maximum data availability for high node failures in IoT
systems. Some research work proposed solutions to address
failure of communication links in IoT devices [12], [13].
To best of our knowledge, reliability and fault tolerance of
tasks running on individual node in distributed edge network
environment has yet been addressed fully.

The above research work provides insights into impor-
tance of fault tolerance for edge computing, especially when
application is running in distributed mode on unreliable edge
devices. Most of these tends to use some already existing
technologies like MDFS, Apache Kafka, Kubernetes, etc.,
to provide fault tolerance, which will add an extra bur-
den on resource limited nodes to configure and manage
these external frameworks. Others focused on tackling fault
handling for communication and routing of data. Device
heterogeneity and resources availability are barely consid-
ered by most of studies. Only a few of them provided
measures or modeled reliability parameters. Our work at
first finds reliability parameters of edge nodes to ensure
resources availability, and by providing decentralized fault
tolerance methodology, we have tried to enhance QoS for an
IoT application.

In this paper, we have contributed by analyzing decentral-
ized methodology for organizing edge nodes in a group to
execute the latency-aware and resource intensive IoT appli-
cation in distributed mode. Moreover, we have presented a
decentralized fault tolerance technique to ensue reliability
of tasks running in distributed on the group of edge nodes.
We have modeled fault tolerance metrics for edge computing
such as reliability and Mean Time to Failure (MTTF) to

VOLUME 8, 2020 49213

M. Mudassar et al.: Decentralized Latency-Aware Task Allocation and Group Formation Approach

provide necessary redundancy during the design time of our
fault tolerance technique.

Our main contributions in this article are:

• We have proposed an algorithm for decentralized group-
ing of edge nodes to execute a resource intensive task
distributed to meet its deadline requirements.

• Presented a mathematical model for fair resource alloca-
tion to a task in distributed edge executing environment.

• Reliability parameters are measured for nodes in edge
network.

• For error prone heterogeneous edge network, an efficient
decentralized fault tolerance methodology is provided.

• Algorithm for backup node selection based on reliability
model to provide redundancy.

• We provided thorough evaluation for our proposed tech-
niques to validate their effectiveness.

II. RELATED WORK
With 5G on the horizon and very fast evolving concept
of IoT, the connected devices are projected to amount to
75.44 billion worldwide by 2025 [14] and this will be pro-
ducing immense volume of data. Current IoT solutions tend
to use remote cloud infrastructure to process this voluminous
data [15], [16], but it will add cost in terms of bandwidth,
and at same time the latency will be increased. To address
this edge computing was proposed and it receivedmuch inter-
est in literature [17]–[19]. With improvements of processing
capacity in smart devices such as smart phones, smart TVs,
and Raspberry Pi, smart gateways aim to provide services at
edge of the network by pushing computations on these edge
devices [20]–[22]. This improves responsiveness, increase
data security as keeping data more local and hence reducing
internet traffic.

A. EDGE NODE GROUPING
Edge nodes are heterogeneous in terms of available resources
and geographical location ranging from servers, routers,
access points, mobile phones, set top boxes etc. [23]. Another
property related to IoT devices is mobility, traffic generated
by end devices is very dependent on time and spatially dis-
tributed according to the population density and activities.
These properties significantly affect the load and potential
of edge devices [24] and make IoT applications suffer from
a lot of problems including excessive bandwidth utilization,
delay, scalability and fault tolerance. To handle these issues
edge devices and resources can be operated in a distributed
manner without external support like from cloud [25]. This
distributed operation of edge devices can leverage the com-
puting capabilities of edge nodes and help to face challenges
mentioned above.

It is desirable to form a group of edge devices to execute
applications that require large resources and often tran-
scend the capabilities of single edge node. Edge comput-
ing can provide elastic resources that allow for distributed
data processing and protects the data from the drawbacks

of traditional centralized architecture [26]. Research efforts
such as Cloudlet [27], Femtoclouds [5] and Fog comput-
ing [23] have argued for combining resources of mobile
devices. For Cloudlet solutions, when a device finds edge
support via Cloudlet, it offloads most of the processing to
Cloudlet instead of splitting the task among the available edge
devices [3]. The clustering concept in Femtoclouds needed
to be managed using specialized controllers in a centralized
manner [28]. Fog computing, which provides dedicated com-
puting servers at edge to meet requirements of end users
at a specific location, will increase the cost and specialized
management will be required to account for changes in user
demands [29]. These limitations hinder the qualities of these
systems despite their apparent advantages.

Research work in [30] proposed graph-based clustering
technique for mobile edge computing (MEC) to consoli-
date as many communications as possible at the edge. They
created MEC clusters by partitioning geographical area to
localize communications inside the cluster and reducing load
to cloud. Edge Mesh [31], focuses on enabling distributed
intelligence in IoT, it distributes the whole application into
subtasks which are distributed among edge devices, but it
requires that devices have to form a mesh network with
every device in edge network. H. Guo et al. [25] proposed
transparent computing based architecture for scalable and
manageable IoT applications. Authors in [6] have proposed
clustering approaches in both bottom to top and top to bot-
tom ways depending on the need of an IoT application. All
of these research works have used centralized methods for
management of different resources like OS, application and
data. A decentralized methodology is required for leveraging
resources at edge of an IoT network to execute big tasks while
satisfying their deadlines.

B. RELIABILITY AND FAULT TOLERANCE
When an IoT application is executing on a group of edge
nodes, it is essential for edge computing to be reliable and
fault tolerant. Designing an efficient fault tolerant system
for edge computing environment is a complex task, mainly
because of the extremely large variety of edge devices, net-
works and data computing methodologies [35]. Technologies
based on container-based virtualization have been used by [8]
for fault-tolerance systems. Javed et al. [33] explored fault
tolerance and automated recovery in a small edge cluster by
using Containers, Kubernetes, and Apache Kafka. In [36] a
distributed fault tolerant system for dynamic IoT environment
is proposed, where each device maintains consistent view of
duplicated services. In combination with heartbeat protocol,
recovery from failure can be achieved within few seconds
without any external intervention.

In current shift towards massive use of smart devices,
emergent needs for IoT applications have further increased
importance of fault tolerance for nodes in edge computing.
Authors in [7] proposed an approach for designing applica-
tions capable of surviving in the high-stress environment of
edge computing paradigm. They have introduced concept of

49214 VOLUME 8, 2020

M. Mudassar et al.: Decentralized Latency-Aware Task Allocation and Group Formation Approach

TABLE 1. Comparison of fault tolerance research work.

phase and used the ‘reversibility’ in context of application
design to tolerate node failure. The study in [34] focuses on
providing fault tolerance by providing abstraction of crystal
for fog application development. Crystals allow application
developers to easily build a sustainable fog application by
using crystal instances as a building block. Hence, it can
support location transparency, mobility and fault tolerant dis-
tributed processing over heterogeneous fog nodes. Research
work in [9] discusses the issue of reliability and fault tol-
erance for fog platforms to support smart city applications.
Fault tolerance is performed using fog services, when a fog
node fails the services running on this node it is replaced
by similar service available on another healthy fog node
located close to failed node. The data replication technique
has been used by [11] to ensure maximum data availability
under high node failures in IoT based systems. They address
the benefits of data replication in a homogeneous wireless
sensor networks (WSN) for an IoT-based system.

In particular, failure in edge network might occur at any
time, and unlike traditional distributed computing environ-
ments, these failures might lead to a significant portion of
edge side resources going offline, resulting in delay and
effecting the overall QoS. Gia et al. [13] propose an archi-
tecture supporting fault tolerance and scalability for health
care; their approach covers malfunction of sink node hard-
ware and traffic bottlenecks. Authors in [37] have proposed
fault tolerance to handle failures for routing paths in IoT
environment. They have defined neighborhood relationships
among nodes to exchange information with each other to find
optimal configurations in heterogeneous IoT environment.

Chen et al. [32] proposed a fault-tolerant and energy-
efficient data allocation and task scheduling algorithm for
mobile devices. They evaluated communication costs for
joining and leaving a network of mobile devices due to fail-
ures or mobility of devices. Node failure in the IoT environ-
ment might lead to data loss, and user might no longer have

access to valuable information stored on that node. Research
work in [10] modeled failure behavior of mesh storage area
network (SAN) for IoT to provide fault tolerance through
redundancy to decrease system down time. They have evalu-
ated reliability of SAN using binary decision diagram based
method. Authors in [38] applied check-pointing technology
to realize failure recovery on large-scale IoT applications,
but check-pointing puts load of extra computations even
when system is working smoothly. The above research works
related to fault tolerance and reliability, have concentrated
either on data or communication links in IoT networks. The
reliability and fault tolerance of nodes in edge computing
is not yet adequately investigated. In this work, we have
find reliability parameters of edge nodes to ensure resources
availability, and by providing decentralized fault tolerance
methodology, we have made efforts to enhance QoS for an
IoT application.

As discussed above, various approaches have been inves-
tigated and proposed to handle fault tolerance in IoT systems
in general and specific for edge computing. The approaches
usually focus on using centralized methodologies to manage
fault tolerance which is not suitable for edge computing envi-
ronment. The research works are also limited to provide fault
tolerance for data or communication, and mostly are unable
to provide measurements for reliability of the fault tolerant
system for edge computing. The analysis and comparison
over different methods is clarified in detail with Table 1.

III. METHODOLOGY
In this section, we will discuss how an IoT application (now
onwards will be referred as a task) is managed by using
a number of subtasks at first. Then we will present our
methodology for decentralized edge node grouping. Latterly
reliability parameters are discussed along with the algorithm
for providing fault tolerance.

VOLUME 8, 2020 49215

M. Mudassar et al.: Decentralized Latency-Aware Task Allocation and Group Formation Approach

TABLE 2. Symbols and their descriptions used in this paper.

A. TASK MANAGEMENT
To process a task ωk on the group of edge nodes, properties
related to the task are ωk ={ik, µk, dk, tk} where ik denotes
ith edge node on which processing request is received, µk is
workload of the task, dk is size of data associated with task
and tk is deadline of ωk . The task is divided into m number
of independent subtasks (denoted as δi) ωk ={δ1, δ2, . . .δm},
with no constraints on them (such that they can be executed
independently of each other). These subtasks can be executed
in parallel on different edge nodes without concerning the
order of execution. The variables and their descriptions are
shown in Table 2.

To execute a task distributed on edge nodes, a fair execution
means that all the required resources are provided well in
time (tk) to get the job done before its deadline. In this paper,
we are considering CPU time required by each subtask as
a resource. For any task ωk that consists of m number of
subtasks, let ci be million of instructions (MI) required to
complete a single subtask. The workload of a subtask δi
will be:

µδi =

n∑
i=1

ci. (1)

The CPU time (tδi) required to execute a subtask δi on the
edge node e depends on its speed (se) as MIPS (millions of
instructions per second. That is,

tδi =
µδi

se
. (2)

For any task ωk which consists of m number of subtasks
running as distributed on γ number of edge nodes, let curωk
(t) denote currently assigned resources (CPU time) at time
t. Let <curωk (t) denote cumulative resources for k th task at
time t. Thus

<curωk (t) =
∫ t

0
curωk (t)dt. (3)

The total workload (µk) for the task ωk is equal to sum of
workload of m subtasks, and µcur is the workload for tasks
assigned to γ nodes until time t. The required workload will
be:

µneed = µk − µcur . (4)

Let Dωk (t) denote the current demand of resources at time
t (the demand depends onµneed). Also, let Sωk (t) denote total
resource share for the k th task at time t . The fairness degree
fdωk (t) of k

th task at time t is defined as normalization result
of the amount of resources a task ωk utilizing in distributed
execution environment of edge network with respect to cloud
execution.

fdωk (t) =

∫ t
0 curωk (t)dt∫ t

0 max{Dωk (t), Sωk (t)}dt
(5)

The fairness degree fdωk (t) = 1 shows the absolute
resources fairness for k th task at time t , and all the needed
resources are allocated to complete the task efficiently.
In contrast fdωk (t) < 1 indicates unfair. It is obvious that for
k th task, if it is executed on cloud all the needed resources are
provided as soon as task is assigned to cloud (as cloud is rich
in term of resources), hence, fdωk (t)= 1 because it has curωk
(t)= max{Dωk (t), Sωk (t)} at any time.

B. DECENTRALIZED EDGE NODE GROUPING
To handle a big task efficiently on edge network we have
proposed to execute it in a distributed mode on the federation
of edge nodes Ge

i (ω), where i is the ith group and e is edge
nodes in the group and ω is task to be processed. We have
specified an edge node as organizer Eorg, which has a task
to perform or which receives request from a user as shown
in Fig. 2. This organizer node will collaborate with other
edge nodes to complete assigned task and send results to the
user. Our algorithm works in decentralized way because this
organizer will only serve as initiator of making federation
of edge nodes and then each edge node decides by itself to
execute a subtask based on its local information about avail-
able resources. Once a node decides to execute a subtask it
also becomes a part of federation of edge nodes collaborating
to complete a task distributed. The Eorg can execute some
subtask by itself, while it can not compute a solution to decide
either a node will be assigned a task or not.

49216 VOLUME 8, 2020

M. Mudassar et al.: Decentralized Latency-Aware Task Allocation and Group Formation Approach

FIGURE 2. Decentralized grouping of edge nodes to perform a task.

When a task ω arrives at Eorg to execute in such a dis-
tributed fashion, the organizer node will announce in the edge
network U to form a groupGe

i (ω). The nodes in the group will
collaboratively execute subtasks of ω = {δ1, δ2, . . .δm}, and
will send results back to Eorg. Each edge node knows about
how much of its resource (<ei) it can collaborate to execute
the task. We assume that when a subtask is received by an
edge node, it will completely execute it.

Our algorithm for group formation and task distribution is
shown in Algorithm 1. Edge node Eorg will send a request
for group formation, and edge nodes in the locality reply-
ing to this request are added to a queue θ (lines 3 to 7).
If the nodes in the queue have some resources then they will
take a subtask from organizer node, meanwhile this node
is added to the group that is executing ω collaboratively
(lines 9 to 15). More nodes are added to the queue while
considering only the neighbor nodes of the nodes present in
the group (line 18 to 21). This process continues until the
required resources by task are fulfilled.

C. RELIABILITY PARAMETERS
When an application is running in error-prone edge net-
work both data and task reliability are critically important.
To ensure reliability of edge node, we have consideredMTTF
(mean time to failure) as a metric for node failure rate and we
havemeasured reliability for groupGe

i (ω), which is executing
the distributed task collaboratively. The reliability of group is
defined as probability to complete the task ω successfully.
First we will consider the case of edge node failure while
working on the reliability of Ge

i (ω). The node failure in edge
network is independent and identically distributed, hence
failure process of edge nodes can be modeled using Poisson’s
process.

As discussed in Section III-A the task ω is divided into
m number of subtasks, to complete a subtask δi ∈ ω on an
edge node g ∈ Ge

i (ω), let τ denote time duration starting from
subtask δi assignment to result delivery. In addition, let τTδi
denote data transfer time from organizer to edge node g, and
τEδi is execution time and τRδi is transfer time for the results.
Then time duration of the subtask τ on g becomes:

τ = τTδi + τ
E
δi
+ τRδi (6)

Algorithm 1 Group Formation and Distributed Processing
Require: Organizer node Eorg; G(ω) = { }; Set of edge

nodes in the network U; Empty queue θ ; Resources of
the task <ω; Resources of edge node <ei

Ensure: Group Ge
i (ω) of edge nodes to execute task ω

1: for each Eorg∈ U do
2: θ ← Eorg

3: Eorg will send join request to all edge nodes (u∈U)
4: nodes (ú∈U)in locality reply to Eorg

5: for each ú∈U do
6: θ ← ú
7: end for
8: while fdωk 6= 1 do
9: if θ 6= φ then
10: for each ei∈ θ do
11: if <ω∩<ei 6= φ then
12: ei pull δi ∈ ω
13: <ω = <ω − <ei
14: G(ω)← ei
15: end if
16: end for
17: else
18: for each ei ∈ G(ω) do
19: if (neighbor eq ∈ ei) ∩ G(ω) == φ then
20: ei will send RReq = (Eorg,<ω) to eq
21: θ ← eq
22: end if
23: end for
24: end if
25: end while
26: Ge

i (ω)← G(ω)
27: end for

If λg is the failure rate of edge node then according to
Poisson’s process, probability of r failures in time τ will be:

pr (τ) =
(λgτ)re−λgτ

r !
(7)

In this paper, we are using standby backup for subtask δi,
which we name as replication factor (RF). The durability of δi
depends on different replication schemes, like RF2 (replica-
tion factor 2) or RF3. Replication scheme RF1 can tolerate
single node failure (as it works with one standby backup)
while RF2 can tolerate two node failures.

In case of RF0 (there is no backup node for δi) we say g is
reliable if there happens to be no failure during τ shown as
following:

R0gi (τ) = p0(τ) = e−λgτ (8)

The mean time to failure (MTTF) of g can be defined as:

MTTFg =
∫
∞

0
R0gi (t)dt =

1
λg

(9)

this shows that the lower the failure rate, the higher MTTF
will be, and system reliability will be increased. For RF1 reli-
ability of g will be equal to sum of probability (no node fails

VOLUME 8, 2020 49217

M. Mudassar et al.: Decentralized Latency-Aware Task Allocation and Group Formation Approach

during τ) along with probability (one node fails during τ),
because we are using standby mode.

R1gi (τ) = p0(τ)+ p1(τ) = e−λgτ (1+ λgτ) (10)

The respective MTTF will be:

MTTFg =
∫
∞

0
R1gi (t)dt =

1+ 1
λg

(11)

for a task with η number of stand by backups (replication
scheme RFη) reliability will become:

Rηgi (τ) =
η∑
r=0

(λgτ)re−λgτ

r !
(12)

The relative MTTF will be

MTTFg =
∫
∞

0
Rηgi (t)dt =

η + 1
λg

(13)

Our aim is to increase the overall reliability of subtask
during time τ , and according to Eq. 13 if we increase RF
it will increase reliability of δi. So, for time τ the required
reliability level Rreq can be achieved if MTTF ≥ τ , and it
actually depends on η number of standby backup nodes. The
backup node selection problem, therefore, becomes the task
of selecting ηreq number of nodes on which to put backup
of δi, so that Rreq is reached. Hence for time τ we have to
ensure following:

Rηgi (τ) ≥ Rreq (14)

To ensure reliability of task running on Ge
i (ω) for time τω

(time from the start of ω to its completion), we have to
ensure that there will be no process or data loss. This can
be calculated by finding probability of no node failure in
the group for τω, because subtasks of ω are running on g
number of edge nodes in parallel, if any node g ∈ Ge

i (ω) for
time τω fails the task will be failed. As node failure in edge
network happens following Poisson process, we can estimate
the probability that a node fails during tk given that node
failure rate is λg.

p(τω) = (λgτω)e−λgτω (15)

For n node in the group, the probability that no node fails
during τω is 1−p(τω), this means first node inGe

i (ω) will not
fail and second node in Ge

i (ω) will not fail and so on, and n
th

will not fail. Let us name this event as ξi that node i does not
fail during,

ξi = 1− p(τω) (16)

The cumulative probability that no node fails in the group
during τω is

P(ξ1, ξ2,ξn) = P(ξ1)P(ξ2)P(ξn)

=

n∏
i=1

(1−p(τω)) (17)

So the reliability of the group will become

RG(τω) = 1−
n∏
i=1

(1− p(τω)) (18)

TABLE 3. State of neighbor node.

D. FAULT TOLERANCE
Considering resources limited edge devices, a decentralized
local fault tolerance technique is required to enhance task
execution at edge. Our method allows edge devices to oper-
ate independently, without having global knowledge of the
overall edge network.

At first, all edge nodes have to keep knowledge about their
available resources locally. Resources calculation at each
edge node can be performed as following

Rni =
n∑
i=1

(ρ × AvailableCapacity(Si)) (19)

where Si ∈ {CPU%,RAM%,Bandwidth%} denotes the
amount of respective remaining resource, and ρ indicates the
weights assigned to each resources. For this work, we have
assigned weight value of 40 to CPU, and 30 for RAM and
Bandwidth each. We have assigned these values via con-
sidering importance level of each factor for an IoT applica-
tion scenario. Similar values are also suggested by previous
studies [39].

For each edge node in group Ge
i (ω), we want to keep a

subset of selected edge nodes from its neighbors. To provide
robustness this subset should contain edge nodes that can
complete the relevant application tasks in case of node failure.
A suitable replacement is one that has as many resources to
offer low latency execution as possible. While selecting a
node q as a neighbor node the edge node g has to be careful
about its state. Table 3 shows state of each node.

• Neighbors in the Candidate state have high priority to
become a backup node, because these nodes have some
free resources.

• Neighbors in Serving state are active nodes providing
resources to serve similar tasks as that of g, which is
serving (being both are part of the same group Ge

i (ω)).
These nodes are given less priority to become a backup
node.

• Neighbors in Exhausted state usually have exhausted
their resources. These nodes will not be used as backup
nodes.

Each node g in the edge network keeps a small neighbor
set Q. The neighbors will periodically exchange information
related to its local resources with each other to remains up-
to-date. Meanwhile, this periodic exchange will also help
to identify node failure. To ensure required reliability level
according to Eq. 14, we have to place backup on ηreq edge
nodes. The node selection and backup placement is given in
the Algorithm 2.

49218 VOLUME 8, 2020

M. Mudassar et al.: Decentralized Latency-Aware Task Allocation and Group Formation Approach

Algorithm 2 Candidate Node Selection and Backup Place-
ment for Reliability
Require: Group of nodes Ge

i (ω) executing a task; Members
of group g; Knowledge about resources Req of each
neighbor; State of node; Exhausted nodes

Ensure: Reliability for node g
1: for each g ∈ Ge

i (ω) do
2: list← neighbors of g
3: available_nodes← list - Exhausted
4: sort available_nodes according to Req
5: for each e ∈ available_nodes do
6: if e 6∈ Ge

i (ω) then
7: backup_node← e
8: available_nodes = available_nodes − e
9: end if
10: end for
11: for each e ∈ available_nodes do
12: backup_node← e (∵ insert e at end of list)
13: end for
14: while |backup_store| < ηreq do
15: e← backup_node.pop
16: replica← process(g) & data(g)
17: copy (replica, e)
18: backup_store← e
19: end while
20: end for

Our fault tolerance methodology creates backup nodes for
each node that belongs to the group, without relying on any
central entity (based on information received by neighbor
nodes). Firstly, we have created a list of neighbor nodes of g,
which does not include any exhausted node. Afterward we
have sorted this list according to available resources at each
node. Secondly, we have prioritized candidate nodes present
in the list over serving nodes. After the list for backup nodes is
created, we have copied process and data related to subtask δi,
which executing on g, to the backup nodes. The number of
replicas depends on ηreq, as discussed previously.

For recovery, firstly, each node in the group will keep track
of tasks assigned to its direct neighbors along with a list of
backup nodes, as well as information about organizer node.
This information is shared periodically between neighbors.
When a group member node gi does not receive information
from one of its neighbor eq, the neighbor is considered as
dead. After fault detection node gi will look in the list of
backup nodes (previously shared by eq), and select first node
from the list as backup node eb and send recovery message to
this node. As the backup node has already been assigned task
δi using Algorithm 2, eb completes the task and sends results
back to Gorg.

IV. SIMULATION AND RESULTS
To evaluate our proposed algorithms for decentralized edge
node grouping and fault tolerance, we have simulated a smart
battlefield scenario game, where soldiers wear sensors to

FIGURE 3. Simulation of battlefield scenario with edge group computing
and fault tolerance.

collect information and receive instructions. Sensors worn
by soldiers include bio-sensors to monitor vital signs, sen-
sors to monitor battlefield information and sensors for
position-related information, as shown in Fig. 3. Sensors col-
lect real-time data of battlefield, and it is required to process
this data immediately to react properly in a war scenario.
The overall job processing for a soldier has different task
types, like moving object detection, sound detection, target
detection, andmonitoring as well range detection to hit target,
weapon selection based on target type, information about
other team members. All tasks are required to be executed
without any latency, so edge computing is the best option.
Also single edge node might not be able to process the entire
job of a solider well in time, hence, decentralized computing
could help to distribute tasks to nearby edge nodes and get
the results quickly.

We carried out our simulation using iFogSim [40] as a
simulation tool, which runs on top of CloudSim [41] sim-
ulator. This simulator allows running application scenarios
using edge devices with different configurations and enables
to measure different application related statistics, as well as
device and network-related measures.

We have considered this game scenario as generalizable
case to test our proposed methodologies of decentralized
distributed task execution on a group of edge nodes, and
handling fault tolerance for edge nodes. Because in battlefield
there is a great need to handle fault tolerance. The simulation
scenario has been repeated with different numbers of players
acting as soldiers, with each player having a different number
of subtasks to process. To evaluate our proposed methodolo-
gies this game scenario suits best, because the overall job of
a player can be easily divided into number of independent
subtasks, and each edge node can decide at its own either
to process a subtask or not. This will lead to decentraliza-
tion, hence allow evaluating our decentralized edge node
grouping and faulting tolerance effectively. Each player is
connected with a random node in the edge network, which
will also act as organizer node for that player. Different edge
devices will collaborate with organizer nodes based on their
available resources to execute different tasks in distributed
environment. Processing requirements for subtasks (δi) are
given in Table 4, and task allocation for each player is shown
in Fig. 4.

VOLUME 8, 2020 49219

M. Mudassar et al.: Decentralized Latency-Aware Task Allocation and Group Formation Approach

TABLE 4. Processing requirements of subtasks.

FIGURE 4. Task allocation map for each player.

FIGURE 5. iFogSim network topology with cloud, organizer and edge
nodes.

Fig. 5 illustrates the iFogSim network topology. For our
simulation, a powerful node is configured as cloud, and there
exists an organizer node associated with each player. In our
work, we are testing for eight different players hence there
are 8 organizer nodes. A number of edge nodes are also
placed, both organizer nodes and edge nodes have different
processing capacities, which are randomly assigned to each
node. Sensors and actuators are also attached to edge nodes.
To ensure diversity of simulation, parameters have been var-
ied as the summary in Table 5.

TABLE 5. Simulation environment setup.

FIGURE 6. Application latency comparison.

For task allocation, we have considered CPU require-
ments by each task. Edge node from the network fulfilling
CPU requirements will be assigned the specific subtask of
a player, and nodes are added to the group as well. Each
node will also select its backup node by following our fault
tolerance methodology. We have compared our approaches
for executing tasks assigned to a player, namely Edge with
FT (execution on group of edge nodes with fault tolerance),
Edge (execution on group of edge nodes without fault toler-
ance), and traditional approach of cloud placement (Cloud).
We have tested for different numbers of players, and each
player has been assigned with a different number of subtasks.
We have chosen application latency, deadline missing ratio,
and network usage as metrics for evaluation.

Fig. 6 illustrates results related to application latency for
both of our approaches and cloud placement. The latency is
very high when application is executed on cloud, because all
of the data required to be transferred to cloud for processing,
while executions on group of edge nodes result in lower
latencies. Specifically latency is less when fault tolerance is
active. That is because in simple grouping approach, when an
edge node fails the allocated task its data will be transferred
to cloud for further processing.

49220 VOLUME 8, 2020

M. Mudassar et al.: Decentralized Latency-Aware Task Allocation and Group Formation Approach

FIGURE 7. Deadline missing ratio.

FIGURE 8. Decrease in network usage when application executed on
group of edge nodes.

To test for reliability with our proposed fault tolerance
approach, we have tested deadlinemissing ratios for subtasks.
Fig. 7 shows that our approach helps to reduce deadline
missing ratio when compared with cloud execution approach
as well as with edge side execution without fault tolerance.
It is clear that, when fault tolerance is active, our approach is
much better, with much smaller ratio of the number of tasks
missing their deadlines. As a result, it will increase applica-
tion reliability and availability. Execution at cloud shows poor
performance because of higher latencies, resulting in most of
application tasks missing their deadlines.

Our proposed methodologies also have impact on the total
network use as shown by Fig. 8, when applications are exe-
cuted in a decentralized way on group of edge nodes with or
without fault tolerance, total amount of data transmitted in
the network will be reduced if compared to cloud-based exe-
cution. Edge side execution results in saving the bandwidth
especially when fault tolerance is active. This is because, even
if edge node fails, the task is executed on a node present in
edge network (backup node). If there is no fault tolerance,
the failed tasks are completed on cloud as no backup is
present, which will lead to increase in network traffic.

Next, we have compared the energy consumption of exe-
cuting applications using edge grouping methodology with-
out fault tolerance and with fault tolerance. It is clear from
Fig. 9, that energy consumed with fault tolerance approach is
less than that without fault tolerance approach. For without
fault tolerance approach, when a node fails the task running

FIGURE 9. Energy consumption in proposed edge grouping with FT and
without FT.

FIGURE 10. Effect of increasing node failure rate on application
availability in terms of tasks completed on time, with high level of Rreq
(required reliability) and medium level of Rreq.

on that node is executed in cloud, which results in additional
energy consumed by cloud. When fault tolerance is active, all
tasks are executed in edge network. And even in the case of
node failure, the backup edge node will complete the task.

Fig. 10 shows results for the effect of increasing node
failure rate on application availability for edge node grouping
with fault tolerance activated (for high-reliability level and
medium level) and without fault tolerance. The application
availability is measured as the number of tasks completed on
time. It can be observed that, as the node failure increases,
application availability is reduced especially when fault toler-
ance is not present in edge computing. However, application
availability is increased for high value of Rreq, as it will
increase replication factor (RF). This will help to achieve
better results in fault handling.

Fig. 11 shows a number of replicas created as backup nodes
with different reliability levels of Rreq. When reliability level
is medium and node failure rate is low, our methodology
adjusts to create fewer backups to save resources. But when
failure rate is increased, high replication factor is achieved
to fulfill application reliability requirements. As for higher
failure rate, a high value of RF will ensure that, the system
can still find a backup inside edge network, hence helping
to complete a task within its deadline. However, when there
are more replicas, it will consume more resources, where the

VOLUME 8, 2020 49221

M. Mudassar et al.: Decentralized Latency-Aware Task Allocation and Group Formation Approach

FIGURE 11. Replication factor (RF) achieved for different reliability levels
(Rreq) in the system against node failure rates of 20%, 50%, and 70%.

system has to trade-off between reliability level and resource
utilization.

From the above results, we demonstrated that group forma-
tion of edge nodes helped to execute applications well in time
with decrease in deadline missing cases, as well as decrease
in overall data transferred over the network. For the results,
the battlefield simulation scenario also helped to analyze
different features related to edge computing like deadline
missing ratios for subtasks, and regarding the fault tolerance,
analysis of the failure rate and availability along with repli-
cation factor analysis. Results shown in figures related to
these parameters made it clear that results obtained using this
type of simulation scenario are very convincing, especially a
staggering decrease in network traffic is observedwith overall
increase in reliability. The decentralized group formation can
be performed on task arrival, and tasks can be executed on
edge devices with relative available resources. This makes
clear that we need not worry about clustering mechanism of
edge nodes in advance, in order to run latency oriented IoT
applications in distributed edge network.

V. CONCLUSION
In this paper, we have proposed a decentralized technique
to leverage edge nodes to execute a resource intensive task
inside the edge network to reduce the latency and by pro-
viding fault tolerance ensured availability in the error prone
edge network. Compared with conventional cluster-based
approaches to group different devices for distributed execu-
tion, the proposed approach has two desired features. Firstly,
no global information is required to consider cluster head
selection, whereas the edge node grouping starts as soon as
task arrives at organizer node, which collaborates with other
edge nodes to execute subtasks. With more devices added
to the group, parallel execution of subtasks helps to achieve
task deadline. Secondly, big tasks of IoT applications can be
executed successfully within edge network, hence reducing
the overall network traffic.

The distributed execution comes with the challenge of fault
tolerance, especially when executing machines are mobile
devices. We have presented a decentralized fault handling

methodology, with particular focus on increasing reliability
along with handling heterogeneity of edge devices. Simula-
tion results show that our approaches are effective, and our
decentralized handling of edge resources for task executions
along with providing fault tolerance has the best overall per-
formance. Compared with traditional cloud-based method for
executing big tasks, ourmethod achieves significant improve-
ment in reducing deadline missing ratio, decreasing overall
network traffic, as well as lowering latency.

REFERENCES
[1] W. Shi and S. Dustdar, ‘‘The promise of edge computing,’’ Computer,

vol. 49, no. 5, pp. 78–81, May 2016.
[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its

role in the Internet of Things,’’ in Proc. 1st ed Workshop Mobile Cloud
Comput. (MCC), 2012, pp. 13–16.

[3] H. Flores, P. Hui, P. Nurmi, E. Lagerspetz, S. Tarkoma, J. Manner,
V. Kostakos, Y. Li, and X. Su, ‘‘Evidence-aware mobile computational
offloading,’’ IEEE Trans. Mobile Comput., vol. 17, no. 8, pp. 1834–1850,
Aug. 2018.

[4] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya, ‘‘Mobile
code offloading: From concept to practice and beyond,’’ IEEE Commun.
Mag., vol. 53, no. 3, pp. 80–88, Mar. 2015.

[5] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, ‘‘Femto clouds:
Leveraging mobile devices to provide cloud service at the edge,’’ in Proc.
IEEE 8th Int. Conf. Cloud Comput., Jun. 2015, pp. 9–16.

[6] J. S. Kumar and M. A. Zaveri, ‘‘Clustering approaches for pragmatic two-
layer IoT architecture,’’ Wireless Commun. Mobile Comput., vol. 2018,
Apr. 2018, Art. no. 8739203.

[7] R. Paul, J. Melchior, P. V. Roy, and V. Vlassov, ‘‘Designing distributed
applications using a phase-aware, reversible system,’’ in Proc. IEEE Int.
Conf. Edge Comput. (EDGE), Jun. 2017, pp. 55–64.

[8] R. Morabito, J. Kjallman, and M. Komu, ‘‘Hypervisors vs. Lightweight
virtualization: A performance comparison,’’ inProc. IEEE Int. Conf. Cloud
Eng., Mar. 2015, pp. 386–393.

[9] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, ‘‘Towards fault tolerant fog
computing for IoT-based smart city applications,’’ in Proc. IEEE 9th Annu.
Comput. Commun. Workshop Conf. (CCWC), Jan. 2019, pp. 752–757.

[10] L. Xing, M. Tannous, V. M. Vokkarane, H. Wang, and J. Guo, ‘‘Reliability
modeling of mesh storage area networks for Internet of Things,’’ IEEE
Internet Things J., vol. 4, no. 6, pp. 2047–2057, Dec. 2017.

[11] W. B. Qaim and O. Ozkasap, ‘‘DRAW: Data replication for enhanced data
availability in IoT-based sensor systems,’’ in Proc. IEEE 16th Intl Conf
Dependable, Autonomic Secure Comput., 16th Intl Conf Pervas. Intell.
Comput., 4th Intl Conf Big Data Intell. Comput. Cyber Sci. Technol. Congr.
(DASC/PiCom/DataCom/CyberSciTech), Aug. 2018, pp. 770–775.

[12] O. Kaiwartya, A. H. Abdullah, Y. Cao, J. Lloret, S. Kumar, R. R. Shah,
M. Prasad, and S. Prakash, ‘‘Virtualization in wireless sensor networks:
Fault tolerant embedding for Internet of Things,’’ IEEE Internet Things
J., vol. 5, no. 2, pp. 571–580, Apr. 2018.

[13] T. N. Gia, A.-M. Rahmani, T. Westerlund, P. Liljeberg, and H. Tenhunen,
‘‘Fault tolerant and scalable IoT-based architecture for health monitoring,’’
in Proc. IEEE Sensors Appl. Symp. (SAS), Apr. 2015, pp. 1–6.

[14] S. Latre, P. Leroux, T. Coenen, B. Braem, P. Ballon, and P. Demeester,
‘‘City of things: An integrated and multi-technology testbed for IoT smart
city experiments,’’ in Proc. IEEE Int. Smart Cities Conf. (ISC), Sep. 2016,
pp. 1–8.

[15] H.-L. Truong and S. Dustdar, ‘‘Principles for engineering IoT cloud sys-
tems,’’ IEEE Cloud Comput., vol. 2, no. 2, pp. 68–76, Mar. 2015.

[16] L. Wang and R. Ranjan, ‘‘Processing distributed Internet of Things data in
clouds,’’ IEEE Cloud Comput., vol. 2, no. 1, pp. 76–80, Jan. 2015.

[17] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computation
offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[18] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, ‘‘Mobile-edge comput-
ing: Partial computation offloading using dynamic voltage scaling,’’ IEEE
Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.

[19] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, ‘‘Cost efficient resource
management in fog computing supported medical cyber-physical system,’’
IEEE Trans. Emerg. Topics Comput., vol. 5, no. 1, pp. 108–119, Jan. 2017.

49222 VOLUME 8, 2020

M. Mudassar et al.: Decentralized Latency-Aware Task Allocation and Group Formation Approach

[20] X. Su, P. Li, J. Riekki, X. Liu, J. Kiljander, J.-P. Soininen, C. Prehofer,
H. Flores, and Y. Li, ‘‘Distribution of semantic reasoning on the edge of
Internet of Things,’’ in Proc. IEEE Int. Conf. Pervas. Comput. Commun.
(PerCom), Mar. 2018, pp. 1–9.

[21] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu,
and B. Amos, ‘‘Edge analytics in the Internet of Things,’’ IEEE Pervas.
Comput., vol. 14, no. 2, pp. 24–31, Jun. 2015.

[22] W. Zhang, H. Flores, and P. Hui, ‘‘Towards collaborativemulti-device com-
puting,’’ in Proc. IEEE Int. Conf. Pervas. Comput. Commun. Workshops
(PerCom Workshops), Mar. 2018, pp. 22–27.

[23] S. Yi, Z. Hao, Z. Qin, and Q. Li, ‘‘Fog computing: Platform and appli-
cations,’’ in Proc. 3rd IEEE Workshop Hot Topics Web Syst. Technol.
(HotWeb), Nov. 2015, pp. 73–78.

[24] Z. A. Qazi, P. K. Penumarthi, V. Sekar, V. Gopalakrishnan, K. Joshi, and
S. R. Das, ‘‘KLEIN: A minimally disruptive design for an elastic cellular
core,’’ in Proc. Symp. SDN Res. (SOSR), 2016. p. 2.

[25] H. Guo, J. Ren, D. Zhang, Y. Zhang, and J. Hu, ‘‘A scalable andmanageable
IoT architecture based on transparent computing,’’ J. Parallel Distrib.
Comput., vol. 118, pp. 5–13, Aug. 2018.

[26] H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty, and
C.-T. Lin, ‘‘Edge of things: The big picture on the integration of edge,
IoT and the cloud in a distributed computing environment,’’ IEEE Access,
vol. 6, pp. 1706–1717, 2018.

[27] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ‘‘The case for
VM-based cloudlets in mobile computing,’’ IEEE Pervas. Comput., vol. 8,
no. 4, pp. 14–23, Oct. 2009.

[28] K. Habak, E. W. Zegura, M. Ammar, and K. A. Harras, ‘‘Workload
management for dynamic mobile device clusters in edge femtoclouds,’’ in
Proc. 2nd ACM/IEEE Symp. Edge Comput. (SEC), 2017, p. 6.

[29] H. Gedawy, K. Habak, K. Harras, and M. Hamdi, ‘‘An energy-aware IoT
femtocloud system,’’ in Proc. IEEE Int. Conf. Edge Comput. (EDGE),
Jul. 2018, pp. 58–65.

[30] M. Bouet and V. Conan, ‘‘Mobile edge computing resources optimization:
A geo-clustering approach,’’ IEEE Trans. Netw. Service Manage., vol. 15,
no. 2, pp. 787–796, Jun. 2018.

[31] Y. Sahni, J. Cao, S. Zhang, and L. Yang, ‘‘Edge mesh: A new paradigm to
enable distributed intelligence in Internet of Things,’’ IEEE Access, vol. 5,
pp. 16441–16458, 2017.

[32] C.-A. Chen, M. Won, R. Stoleru, and G. G. Xie, ‘‘Energy-efficient fault-
tolerant data storage and processing in mobile cloud,’’ IEEE Trans. Cloud
Comput., vol. 3, no. 1, pp. 28–41, Jan. 2015.

[33] A. Javed, K. Heljanko, A. Buda, and K. Framling, ‘‘CEFIoT: A fault-
tolerant IoT architecture for edge and cloud,’’ in Proc. IEEE 4th World
Forum Internet Things (WF-IoT), Feb. 2018, pp. 813–818.

[34] T. Jeong, J. Chung, J. W.-K. Hong, and S. Ha, ‘‘Towards a distributed
computing framework for fog,’’ in Proc. IEEE Fog World Congr. (FWC),
Oct. 2017, pp. 1–6.

[35] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, ‘‘Internet of
Things for smart cities,’’ IEEE Internet Things J., vol. 1, no. 1, pp. 22–32,
Feb. 2014.

[36] P. H. Su, C.-S. Shih, J. Y.-J. Hsu, K.-J. Lin, andY.-C.Wang, ‘‘Decentralized
fault tolerance mechanism for intelligent IoT/M2M middleware,’’ in Proc.
IEEE World Forum Internet Things (WF-IoT), Mar. 2014, pp. 45–50.

[37] M. Z. Hasan and F. Al-Turjman, ‘‘Optimizing multipath routing with
guaranteed fault tolerance in Internet of Things,’’ IEEE Sensors J., vol. 17,
no. 19, pp. 6463–6473, Oct. 2017.

[38] S. Cherrier, Y. M. Ghamri-Doudane, S. Lohier, and G. Roussel, ‘‘Fault-
recovery and coherence in Internet of Things choreographies,’’ in Proc.
IEEE World Forum Internet Things (WF-IoT), Mar. 2014, pp. 532–537.

[39] Y. Li, N. T. Anh, A. S. Nooh, K. Ra, and M. Jo, ‘‘Dynamic mobile cloudlet
clustering for fog computing,’’ in Proc. Int. Conf. Electron., Inf., Commun.
(ICEIC), Jan. 2018, pp. 1–4.

[40] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, ‘‘IFogSim:
A toolkit for modeling and simulation of resource management techniques
in the Internet of Things, edge and fog computing environments,’’ Softw.,
Pract. Exper., vol. 47, no. 9, pp. 1275–1296, Sep. 2017.

[41] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Softw.,
Pract. Exper., vol. 41, no. 1, pp. 23–50, Jan. 2011.

MUHAMMAD MUDASSAR received the mas-
ter’s degree from the School of Electrical Engi-
neering and Computer Science (SEECS), NUST,
Islamabad, Pakistan, in 2011. He is currently
pursuing the Ph.D. degree in computer science
with the Beijing Institute of Technology, Beijing,
China. He worked as a Lecturer with the Depart-
ment of Computer Science, COMSATSUniversity
Islamabad–Vehari, Pakistan. His research interests
include distributed computing, big data processing

frameworks, fault tolerance, and edge computing.

YANLONG ZHAI (Member, IEEE) received the
B.Eng. and Ph.D. degrees in computer science
from the Beijing Institute of Technology, Beijing,
China, in 2004 and 2010, respectively. He was a
Visiting Scholar with the Department of Electri-
cal Engineering and Computer Science, University
of California, Irvine. He is currently an Assistant
Professor with the School of Computer Science,
Beijing Institute of Technology. His research inter-
ests include cloud computing, big data, and edge
computing.

LEJIAN LIAO (Member, IEEE) received the Ph.D.
degree from the Institute of Computing Technol-
ogy, Chinese Academy of Sciences. He has served
as the Vice Dean of the school. He is currently a
Professor with the School of Computer Science
and Technology, Beijing Institute of Technology,
Beijing, China. He has published numerous arti-
cles in several areas of computer science. His main
research interests include machine learning, natu-
ral language processing, and intelligent networks.

JUN SHEN (Senior Member, IEEE) received the
Ph.D. degree from Southeast University, China,
in 2001. He held positions at the Swinburne
University of Technology, Melbourne, and the
University of South Australia, Adelaide, before
2006. He is currently an Associate Professor with
the School of Computing and Information Tech-
nology, University of Wollongong, Wollongong,
NSW, Australia, where he has been the Head of
Postgraduate Studies, and the Chair of the School

Research Committee, since 2014. He has published more than 120 arti-
cles in journals and conferences in CS/IT areas. His expertise includes
computational intelligence, web services, cloud computing, and learning
technologies, including MOOC. He is also a Senior Member of ACM and
ACS. He has been the Editor, the PC Chair, a Guest Editor, and a PCMember
for numerous journals and conferences published by IEEE, ACM, Elsevier,
and Springer. He is also a Current Member of ACM/AIS Task Force on
Curriculum MSIS 2016.

VOLUME 8, 2020 49223

